欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

简述智能制造技术(合集7篇)

时间:2023-07-23 09:16:40
简述智能制造技术

简述智能制造技术第1篇

关键词:机电一体化 智能制造 制造企业

机电一体化又称机械电子学(Mechatronics,由英文机械学Mechanics的前半部分与电子学Electronics的后半部分组合而成)。随着计算机技术的迅猛发展和广泛应用,机电一体化技术获得前所未有的发展。现在的机电一体化技术,是机械和微电子技术紧密集合的一门技术,它的发展使冷冰冰的机器有了人性化和智能化。如今的现代化企业已经进入了崭新的智能制造时代。

一、智能制造的概念

智能制造应当包含智能制造技术(IMT)和智能制造系统(IMS)。因本文不涉及智能制造技术本身,只侧重于论述制造模式,所以重点讨论智能制造系统。智能制造技术是指利用计算机模拟制造专家的分析、判断、推理、构思和决策等智能活动,并将这些智能活动与智能机器有机地融合起来,将其贯穿应用于整个制造企业的各个子系统,以实现整个制造企业经营运作的高度柔性化和集成化,从而取代或延伸制造环境中专家的部分脑力劳动,并对制造业专家的智能信息进行收集、存储、完善、共享、继承和发展的一种极大地提高生产效率的先进制造技术。智能制造系统是指基于IMT,利用计算机综合应用人工智能技术、智能制造机器、技术、材料技术、现代管理技术、制造技术、信息技术、自动化技术、并行工程、生命科学和系统工程理论与方法,在国际标准化和互换性的基础上,使整个企业制造系统中的各个子系统分别智能化,并使制造系统形成由网络集成的、高度自动化的一种制造系统。

IMS是智能技术集成应用的环境,也是智能制造模式展现的载体。IMS理念建立在自组织、分布自治和社会生态学机制上,目的是通过设备柔性和计算机人工智能控制,自动地完成设计、加工、控制管理过程,旨在解决适应高度变化的环境制造的有效性。由于智能制造模式突出了知识在制造活动中的价值地位,而知识经济又是继工业经济后的主体经济形式,所以智能制造就成为影响未来经济发展过程的制造业的重要生产模式。

二、智能制造系统的特点

IMS具有以下几个特征:

一是自组织能力,二是自律能力,三是自学习和自维护能力,四是整个制造系统的智能集成,五是人机一体化智能系统,六是虚拟现实。

综上所述,可以看出IMS作为一种模式,它是集自动化、柔性化、集成化和智能化于一身,并不断向纵深发展的先进制造系统。

三、智能制造的支撑技术

人工智能技术;

并行工程;

虚拟制造技术;

信息网络技术。

四、智能制造主要研究内容及目标

1.智能制造主要研究内容

(1)智能制造理论和系统设计技术;

(2)智能制造单元技术的集成;

(3)智能机器的设计。

2.智能制造主要研究目标

(1)整个制造过程的全面智能化,在实际制造系统中,以机器智能取代人的部分脑力劳动作为主要目标,强调整个企业生产经营过程大范围的自组织能力。

(2)信息和制造智能的集成与共享,强调智能型的集成自动化。

五、智能制造的发展简况

1.国外发展简况

自20世纪80年代美国提出IMS概念以来,IMS一直受到众多国家的重视和关注。日本、美国、加拿大、澳大利亚、瑞士和欧洲自由贸易协定国在1991年1月联合开展了由日本首先于1990年4月提出的为期10年的IMS国际合作计划。

2.国内发展简况

我国20世纪80年代末也将“智能模拟”列入国家科技发展规划的主要课题,已在专家系统、模式识别、机器人方面取得了一批成果。1993年,中国国家自然科学基金委员会重点项目“智能制造技术基础的研究”获准设立,1994年开始实施,由华中理工大学、南京航空航天大学、西安交通大学和清华大学联合承担。研究内容为IMS基础理论、智能化单元技术、智能机器等。至今,已取得了不少可喜的研究成果。

综上所述,可以看出IMS是一种集自动化、柔性化、集成化和智能化于一身的制造模式,具有不断向纵深发展的高技术和高水平的先进制造系统,同时也是需要投入巨大科研力量去突破一个个技术难点的先进制造系统。目前研究的重点为虚拟企业、分布式智能系统、并行工程和基于的IMS。同时也应看到,这是一个人机一体化智能系统,只要努力追求人的智能和机器智能的有效结合,这样的系统就有可能实现。当然,这种实现是一个从初级到高级的发展过程。

简述智能制造技术第2篇

关键词

电气自动化控制;人工智能技术;应用思路;分析

随着科学技术的不断发展,人工智能化技术势在必行,在各领域中均有所应用,人工智能化技术的应用使工作效率和工作质量均有明显提升。工业生产对我国经济发展和国计民生有着至关重要的影响,人工智能化技术被逐渐应用至工业中。工作人员需要对其技术要点以及具体工作流程等进行熟练掌握,正确掌握在工业生产过程中的使用方法,使其作用得到最大程度体现,真正用以促进工业进步与发展。

1人工智能化技术

人工智能化技术主要指在计算机技术的辅助下对人脑进行模拟,并且根据实际情况有针对性地对机器人系统、专家系统进行合理编制,通过上述两种系统进行合理控制电气自动化。下面对人工智能化技术的优势进行说明:其一,操作较为简便。人工智能化技术主要通过计算机来实现对电气自动化进行控制的目标,具有固定的操作流程,在实际工作中操作比较简便;其二,具有较大的价值。人工智能化技术中涵盖了计算机技术,并且通过此项技术可以实现对电气设备进行24小时实时监测,使人工操作量大幅减少,使投入成本降低,可以为企业创造更多的经济效益;其三,具有较高的准确性和可靠性。人工智能化技术主要使用计算机自动完成控制和监测等工作,对传统人工操作造成的误判及误操作进行合理规避,大大提升工作的安全与稳定。

2电力自动化控制中人工智能化技术应用思路分析

2.1对人工智能化技术在电气设备中的具体应用进行分析

电气设备是工业生产中必不可少的组成,电气设备的运行情况对工业生产能否顺利进行有着重要的影响。为此多数企业均设置了电气设备系统,以通过电气设备系统可以对电气设备实际运行情况进行掌握。在电气设备系统设置过程中可以对人工智能化技术进行合理应用,形成电气设备人工智能化系统(见图1),例如:使用人工智能化技术可以对电气设备的相关参数进行准确采集、分析和计算。处理后将参数返回系统中,让电气设备按照返回参数进行运行,从而提高电气设备运行效果,为工业生产创造有利条件。

2.2对人工智能化技术在电气控制过程中的具体应用进行分析

电气控制技术是电气自动化控制的重要内容,在整个过程中使用人工智能化技术对人为误判等情况进行弥补,可以滤除错误数据、定义设备状态、提供专家理论意见、生成解决方案等。人工智能化技术在电气控制中的应用主要包括对模糊控制、专家控制和网络神经控制进行合理使用,下面对各种内容进行分别说明。

第一,对模糊控制的具体应用进行说明。模糊控制主要指在模糊推理以及模糊语言变量的基础上将专业人员的经验作为主要依据对模糊器进行正确使用,进而对电气进行合理控制。相关研究证实模糊控制器主要通过交流传递和直流传动实现电气控制的目的。

第二,对专家控制的具体应用进行说明。专家控制将专家系统理论作为依据的同时借助其他控制理论技术对电气进行控制。此种控制方法具有灵活性较高以及适应性较强的特点,工作人员可以根据实际情况的要求对相关参数进行适当的调整,进而提高电气控制水平和工作效率。

第三,对网络神经控制的具体应用进行说明。网络神经控制主要指通过网络神经控制系统对人脑神经元的活动进行模拟,从而实现电气控制的目的。此种方法控制效果较好,为此在各领域中得到了广泛应用。

2.3对人工智能化技术在日常操作中的具体应用进行分析

电气行业和人们的生活息息相关,电气自动化控制中涉及的电气设备种类和数量较多,日常操作较为复杂,并且工作风险性高、效率偏低。为了有效地解决上述问题可以对人工智能化技术进行合理应用。工作人员可以使用人工智能化技术对基础控制算法进行合理设置,对原有的操作流程进行简化处理;在使用此项技术后可以使用计算机对各种电气设备进行操控,对设备的日常运行情况进行实时掌握,保证工业生产可以顺利进行。传统情况下电气工作人员需要对电气设备的相关数据进行及时记录,例如:瞬时发电功率、累积电量和损耗等情况。多数企业均采用人工记录的方法,因为电气设备较多,记录工作量较大,工作人员不能及时对所有的数据进行记录,并且人为错误的情况较为常见,无法为后期检修和维护工作提供可靠数据支撑。使用人工智能化技术建立数据采集系统,可以对电气设备的相关数据进行实时记录,保证数据准确性,为后期各项工作提供准确可靠的数据保障,同时提高工作效率及完成质量。

2.4对人工智能化技术在电气设备故障诊断中的具体应用进行分析

在电气设备运行时在外界因素或者内在因素的影响下均可能使其出现不同程度的异常问题,如果不能及时发现并解决,继续进行工作,将会存在较大的安全隐患,会对人身安全和设备安全产生较大的威胁,并使工作效率和质量降低,导致企业的经济效益受损。在实现电气自动化后上述方面的问题有所改善,但是仍然存在一些问题。使用人工智能化技术可以对上述问题进行解决,可以尽快找出电气设备出现故障问题的原因,诊断准确率较高,人工智能化技术主要使用神经网络,专家系统以及模糊理论等对电气设备进行诊断,并且可以将上述方法进行综合使用,可以在短时间内得到诊断结果,为工作人员检修和维护过程提供便利,在经过分析后可以尽快采取有效措施进行解决,保证电气设备正常运行,从而提高企业经济效益。例如:生产过程中继保勿动,电气自动化控制方式为接收故障信号,保护动作,生成故障动作报告,全程录波。人工智能化技术可实现在现有技术基础上判断故障信号是否真实,是否需要动作保护跳闸,生成报告后简要判断故障产生原因,给出处理意见。

2.5对人工智能化技术在自控流程中的具体应用进行分析

在电气设备运行过程中对其进行自动化控制的过程具有一定的复杂性,并且相关规定的要求较为严格,如果某个控制过程出现问题均会带来不可估量的后果。使用人工智能化技术可以对电气设备的运行情况进行自动控制,并且可以对相关故障问题进行详细分析,使电气设备自动化控制水平明显提升,从而保证工业生产顺利展开。

简述智能制造技术第3篇

关键词:制造系统;智能主体;数据采集

随着社会经济的高速发展,先进制造技术已经成为全球经济竞争的主战场。数据采集技术是在不同学科之间交叉渗透的基础上出现的,对于制造企业而言,传统的信息采集方式已经难以满足制造业信息化的实时需求,所以迅速及时地将相关学科领域的最新研究成果应用到数据采集技术中,研究新型的数据采集技术方法,方便企业及时引进生产技术实现制造自动化,对产品质量的提高以及企业的竞争力增强是不可或缺的。

1制造系统数据采集方式

制造企业外部环境与自身环境复杂多变,要实现生产制造的安全高效,在注重环保效益的前提下生产出高品质的产品,需要制造系统安置大量的传感器与数据采集系统。对生产中设备运行状况、工艺水平、产品品质以及内外部环境变化数据实时监控反馈,为生产提供技术保障。制造系统数据采集技术主要有以下三种:

1.1集中式采集方式

集中式采集方式适用于小规模与相对简单的系统,这种方式系统全部传感器与数据采集系统直接相连,用一台工控机可以实现所有的数据采集与处理,具有结构简单、易于操作、维护方便、价格低廉的特点。

1.2分布式采集集中控制方式

这一方式适合规模适中且生产线较为简单的系统,可以实现生产线上分散的单体设备集中管理,被各大中型制造系统广泛采用。该方式将系统需要采集的数据依据一定的条件进行分组,由各组独立采集所辖区域的数据信息,各组协同完成整个生产过程的数据采集任务。通过各数据采集点设有独立的数据采集服务器,对站点进行维护管理,形成相对独立的局域网络。具有结构复杂、成本相对较高、使用维护简单以及具备网络功能的特点。

1.3集中式与分布式相结合方式

这种数据采集方式是前两种方式的高效组合,适用于大规模且承担复杂制造的系统,兼具前两种采集方式的优势。

2基于智能主体的制造系统数据采集技术

2.1智能主体与分布式人工智能

智能主体(Agent)涉及人工智能(Artificial Intelligent)技术的深层次问题,为人工智能技术以及计算机科学发展提供了新的计算求解范例和方法,也为CIMS(Computer Integrated Manu-facturing Systems,计算机集成制造系统)提供了更加高效便利的解决方案。应用智能主体思想与方法构建基于智能主体的数据采集系统,进一步推进数据采集智能化发展。智能主体属于分布式人工智能(DAI, Dis-tributed Artificial Intelligent)研究范围。分布式人工智能是相对于集中控制技术而言的,分布式问题求解的思想在工程领域应用始于分布式控制系统的研究。控制系统规模的扩大以及结构复杂化、功能增多等一系列影响系统性能的因素增加,需求一种基于整体优化的控制策略,亦即整体的总目标函数最优化控制方式。该函数包括质量产量技术指标,以及能源、成本与环保等经济社会指标,实现综合自动化生产。将大系统分解为若干相关小系统,控制小系统的目标对象,同时要考虑小系统之间的相互影响与作用,以小系统的最优化促进大系统的最优。

2.2基于智能主体的数据采集技术

该智能主体技术以主体感知外部环境信息以及对信息分析、推理、评估,为下一步采取应对措施为基本思想。制造系统之所以要设置数据采集系统,是为了通过传感器监控制造过程中的各种信息,并对其处理、分析,对系统的运行状况以及运行趋势做出判断预测,对故障指出处理措施。基于这一思想,构造依托于多智能体的数据采集系统可以对当下的数据采集方法给予加强改进,一种适用于先进制造系统的数据采集系统模式应运而生。该模式由若干传感器与一个数据采集平台组成,数据采集平台由一个数据采集服务器与多个数据采集点组成。传感器用以监控生产过程中的各种内部外部信息,数据采集平台负责数据的采集、处理、存储与输出,在形式上依然是分布式与集中式采集集中管理模式。

3结语

计算机技术与信息技术的飞速发展为制造系统数据采集技术提供了更多的可能性,基于智能主体的制造系统数据采集技术,对于制造企业运用现代化的制造技术,在制造自动化、提高生产力与生产制造高品质的产品、增强企业的综合竞争能力,实现经济效益与社会效益有重要意义。

参考文献:

[1]王聪,纪志成.基于智慧车间的生产执行系统的研究及应用[J].计算机时代,2012(08)

简述智能制造技术第4篇

关键词:机械电子工程;人工智能;关系;信息化

中图分类号:TB

文献标识码:A

doi:10.19311/ki.16723198.2017.13.099

一般意义上而言,机械类工程包括两种类型:动力类和制造类。制造类大家都比较熟悉,包括机械的加工制造和一般的加工制造业;而动力类的有带动各种机器的发电机等等。由于纯机械制造的衰落,传统机械与电子工程的结合成为发展的主流。随着人们生活需求的增长,机械电子工程技术也向着高精尖方向发展,服务大众生活的功能越来越强,尤其是人工智能与机械电子工程的结合使得其功能越来越强大。

1关于机械电子工程的简述

1.1机械电子工程技术的发展历程

机械电子工程已经有了一个相对较长的发展时间,20世纪已经达到了一个相对高的水平,尤其是第三次科学技术革命又一次把机械电子工程推向了一个新的高峰,新科技革命完美地将电子科技和传统的机械工程结合了起来,使得机械电子工程越来越向信息化和智能化,并把它们应用到民众的日常生活和企业的管理过程中。

总的来说,机械电子工程大致可分为四个阶段:第一阶段主要是在西欧中世纪晚期,新的资本主义萌芽的生产关系出现,生产力有所发展,但仍然相对低下,新的商业贸易促成了货物需求的大量增加,然而当时具有的动力仍然是水力、风力和牲畜力,这些动能远远不能满足生产发展的需要,大大制约了生产的发展,这时的科学家,准确的说是处于工作一线的机械技师开始思考如何提高动力,逐渐推动了机械工业的初步发展。第二阶段主要是生产力有了进一步的发展,大部分企业为了提高工作效率和产品的质量,依据马克斯・韦伯的流水线程序安排产品生产,然而,这种流水线对机械的水平要求很高,当时的机械相对不能满足流水线生产的需要,于是就出现了该种技术的第二阶段的发展。第三阶段是我们在日常生活中常见的机械电子工程技术,现代人们生活节奏越来越快,为了工作的便利,生活简易化程度要求也越来越高,对产品的机械化、智能化、灵活度要求极其的高,以机械电子技术为核心的高灵敏性技术便应运而生了。第四阶段是随着工业4.0的发展而发展的,工业4.0技术进一步推动了机械电子技术的快速发展,是的该行业领域内即将出现另外一次革命的征兆,将人们带入更加便捷的时代。

1.2机械电子工程的特点

机械电子工程是机械自造技术和电子工程科技的有机结合,因此,该专业不仅具有机械工程的一般特点,还有电子工程的一般特点,同时,还具有机械电子工程本身独有的特点。综上所述,机械电子工程具有以下特点。

1.2.1设计上的综合性

机械电子工程是一门综合性的学科,他是由几种学科综合而成的一门学科。因此,作为一门综合性特别强的学科,从设计上可以看出,机械电子工程会依据现实的需要而结合其它技术,例如它会根据具体现实需要结合企业需要的管理技术、生产制造技术等,以利于现实的需要。

1.2.2机械电子产品的复杂性

机械电子a品体积小,结构比较简单,但是构造确实很精细,产品性能很高,大大满足了人们对高灵敏性、高智能性的要求。同时,这种机械电子产品体积特别小,特别容易携带,结构复杂功能多样,不失为一种好的日常用品。

2关于人工智能的简述

2.1什么是人工智能

什么是人工智能呢?不同的专家有不同的定义,Nierson认为,所谓人工智能就是关于如何得到科学并把科学运用到现实的一门实用性很强的应用型学科。著名教授Wenston认为,人工智能是使计算机去做只有高级人才才能做的工作。综合以上的定义,我们认为,所谓的人工智能是指综合了现代计算机技术、信息技术、心理学语言学等对门学科的一门高精尖的学科,它通过延伸扩展计算机技术模拟人的一门技术。

2.2人工智能的发展历程

2.2.1最初时期

在400多年前,法国科学家发明了第一台可以计算数字相加的计算器,此后,科学家们纷纷朝着这一方向进行攻关,以求完善这一创造,后来美国著名学者冯诺依曼发明了世界上第一台全自动的计算器。在最初阶段,也可以说是人工智能的萌芽阶段,这一阶段最显著的特征就是技术发展缓慢,但是仍旧取得了一些成果和经验,为以后的发展奠定了一些基础。

2.2.2第一个快速发展阶段

在上世纪50年代,美国科学家第一次使用了“人工智能”这一概念,从此人工智能进入到一个快速发展阶段。这一阶段主要将人工智能应用到翻译、证明等事情上,并取得了较好的成果。人工智能在这一阶段的飞速发展使得人们坚信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个可以模仿人们生活的机器。

2.2.3反复阶段

随着对人工智能的进一步研究人们发现,对人类高智能的模仿并不是一件容易的事情,学者不能完全设计出对人类模仿的简单映射。但是这一时期仍然出现了相当多的成果。

2.2.4稳定发展阶段

当人类意识到建立全方位模仿人类高智能的是一件不容易的事情之后,他们开始安定下来潜心研究进一步发展的技术和相应的功能,随着科学界学者的努力,他们逐步攻克了难题,同时世界互联网的发展也大大普及,这一切都促使人工智能的稳定发展。

3人工智能与机械电子工程的综合应用

进入21世纪,互联网已经渗入到我国民众生活的方方面面,信息化的民众生活离不开智能化的发展,无论是各行业的模型的建造,还是事故处理都离不开人工智能,人工智能在机械电子工程当中起着信息处理的强大功能。

随着社会经济的进一步发展,简单的人工智能已经不能满足人们日益复杂的工作需要,科学家们开始研究综合性的人工智能技术,使其功能发挥到最大化。

参考文献

[1]傅丽玲,杨平.机械专业综合型实验平台建设[J].电子科学技术大学学报,2005(7):37.

[2]陈庆霞.人工智能研究纲领的发展历程和前景[J].科技信息,2009,(33):127.

[3]史忠值.高级人工智能[M].北京:科学出版社,2006.

[4]肖斌,薛丽敏,李照顺.对人工智能发展新方向的思考[J].信息技术,2009,(12):3132.

[5]王孙安.机械电子工程系统设计[D].西安:西安交通大学,2006,10.

[6]王建,黄宗艺.工程机械一体化、机器人[J].中国机械工程,1996,7(3):6466.

[7]周文盛.发展中的机械电子工程[J].中国电子教育,20021997,(1):4851.

简述智能制造技术第5篇

【关键词】现代机械设计;计算机辅助设计;设计手段;发展趋势

1.现代机械设计优越性

机械设计是为实现某一使用功能,同时考虑其运动可能性、制造可能性、经济可能性,从而构思一种具有一定创新的机械产品的过程。传统的设计技术受低劣的设备条件和落后的技术方法所限,只能在保守的观念下,依据粗略的验算甚至估计,通过大量的简化和静止化假设完成机械工程设计,它必然使设计存在随意性,对个人的经验和习惯的依赖性极大,极难实现合理、准确和高效的设计。现代设计技术充分利用了当今迅速发展起来的计算机技术、计算技术、应用数学和力学、电子学、测试和分析技术,使设计技术有可能从经验的、静止的和随意性很大的传统设计变为基于计算数据、知识工程或专家系统的、动态的现代设计。这需要充分收集、分析和检索必要的信息、快速的数值运算和方案寻优,因而必然大规模地使用CAD技术和人工智能技术、数据库技术等。

现代设计虽然大体上继承了传统设计的原则和步骤、价值分析法则和指标、造型设计标准和观念、类比设计思想、组合/分解方法等但科技发展对设计技术的促进使之不可能一成不变地沿袭旧有模式,而是几乎在产品设计全周期的各阶段,都应引入现代科技成果和工具,使用各学科的新发现、新观念。在计算机技术、通讯技术、图形图象处理和传输技术基础上组建“计算机支持的协同工作”(CSCW,ComputerSupportingCooperationWorking)环境以综合集体的智慧;用系统工程的观点乃至大系统理论对问题进行分解简化或综合分析。而在随后的分析计算和优化设计阶段(或者总称详细设计阶段),应以弹性力学为基础,以有限元分析系统为工具进行机械结构的应力/应变分析和强度计算,以塑性力学、材料力学为基础,以有限元方法、计算机数字仿真和图形仿真技术为手段,进行针对材料屈曲和塑性破坏的极限设计;以振动理论、强化试验理论和安全寿命预测理论为基础,在计算机系统支持下完成针对疲劳损伤的疲劳设计。由此可见,现代设计技术的相关学科领域除上述传统设计过程中涉及的技术门类外,还融进了计算机仿真技术、随机振动与动态载荷分析、模块化设计、优化设计、计算机辅助设计、有限元分析、动态试验及其强化、计算机信息交换方法和标准等,其中,动态、优化和计算机化是其核心。

2.现代机械设计特点

现代设计技术具有以下特点:一是智能化。大型复杂机械的设计必须完成“分析—分解—综合”的过程。其中包含了大量创造性思维过程和智能活动。二是经济性,市场的竞争、用户的选择使对产品的经济性要求越来越高。三是并行性。必须超前考虑后续过程,实现DFM、DFA,以压缩废品、库存的消耗,确保上述经济性。四是集成化。即树立人—机一体化、机—电一体化、硬件—软件一体化观念,综合多方面测试分析数据指导、评价设计,融多种现代科技成果和技术,特别是CAD技术于机械产品之中。五是精确性。这是机械工程产品复杂度、综合性提高的必然结果,现代先进的计算技术、计算理论和计算分析工具的使用也使之得以迅速提高。六是动态性。不仅分析设计对象要从动态的观点出发,设计组织的合作协调也具有动态性,后者要求设计数据集成、设计系统无缝连接。

3.计算机辅助设计技术的发展趋势

从目前的情况来看,CAD技术主要应用于机械设计的以下诸方面:几何建模、工程分析(如结构分析中的应力/应变计算,动态特性、热传导特性分析等)、设计审查与评价(如公差分配审查、干涉检查、运动仿真等)、计算机辅助绘图、工程数据库的建立及其操作和工程设计信息的处理、检索和交换等。然而,机械设计是一种反复改进、分析评价的创造过程。这一过程具有以下特征:一是创造性,针对市场需求或用户需求构思出具有一定创意的产品模型;二是多解性,建模中材料、用户对象、设计标准、经济指标等的差异均可导致迥然不同的设计结果;三是近似性,不论计算手段多么先进、设计工具多么强有力,也必须进行必要的简化近似。这些特性在机械设计过程中非常突出,但又没有确定的数学模型,也难以得出明确的解答,现有CAD技术因此在其中尚无用武之地。由于具有上述特征的工作基本上集中在设计过程的早期,其中构思的优劣、设计目标选择的合理与否,对后续工作的影响不论在深度还是广度上都非常大。为了在机械工程设计的早期最大限度地将工程技术人员从繁琐无序的摸索尝试中解放出来,从而充分发挥人类卓越的创造力,同时综合运用人类多年积累的知识成果,发挥设计组织的集体智慧,必须将繁杂的数值计算、知识信息的传送处理和检索、简单而又众多的判断等工作尽可能地交给计算机完成。因此,CAD技术必须向智能化、信息集成化、信息交换接口标准化和CAD/CAM一体化方向发展。可以预见,随着近年来人工智能、知识库数据库技术、信息集成与交换技术的飞速发展和信息交换标准的拟定、发展与完善,CAD技术正在向智能化、信息集成化、信息交换接口标准化方向发展,它在机械设计过程中的应用也趋于向设计早期深入。

人工智能在CAD技术的智能化中起着突出的作用,人工智能与CAD技术相结合的一切研究,几乎都围绕着提高CAD系统的创造力而展开。基于范例推理的设计,基于约束满足的设计等方法的广泛应用,导致了智能CAD技术的产生和发展。其中具有一定智能的专家系统主要以两种形式存在,即用于方案综合和设计评价。近年来还出现了处理设计条件描述不充分问题的基于神经网络的设计方案推导系统,以及针对机械工程设计多解性的模糊设计、模糊评判方法。

随着工程设计项目规模和设计队伍的扩大,设计周期的缩短,以及DFM、DFA模式的引入,关于设计系统内部信息共享的要求日益迫切。信息集成包括MIS(管理信息系统)、DSS(决策支持系统)、CIMS(计算机集成制造系统)的数据共享及其完整性、安全性和一致性维护。然而,实现这一目标的困难在于:设计中大量存在非结构化、非定长的多媒体信息,如工程图样、产品样品图象、关于用户调查及产品评价的录音等,对他们的有效管理必须借助于多媒体数据库。虽然目前用于商业和教育的多媒体数据库系统已进入实用阶段,但支持工程设计的多媒体工程数据库(EDB)还有许多问题尚待研究。因此,为了减轻网络负载,必须解决Client/Server环境下智能化多库协同问题,多媒体信息传输、播放的同步问题等。CAD系统集成化的另一途径是信息交换接口的标准化。为此,已先后产生了IGES、PDES、STEP等信息交换标准,目前它们还在进一步发展完善中。

简述智能制造技术第6篇

【关键词】无线技术总线技术智能家居

一、引言

所谓智能家居,其核心当然是“家”,然后将建筑、自动化和智能化集于一体,以打造出舒适、安全和便利的家居环境。智能家居的技术起源于美国,最具代表性的便是X-10总线技术。

二、总线技术在物联网智能家居中的应用

下文将对总线技术在物联网智能家居中的应用现状做出探讨:

1.常用的几种总线技术。(1)X-10技术。X-10技术使用的历史最长,但是也是最简洁的一种总线技术。它以50或60Hz的载波,120kHz的脉冲为调变波为主发展而来的数位控制技术,而市电的传播则是利用市电电源的正弦信号的过零点来进行的。电力线是X-10控制总线系统的配线方式,它将住宅内的电力线直接作为控制总线。(2)CEBus技术。消费电子总线(CEBus)技术的出现,一开始便是为了弥补x-10技术的不足之处,CEBus技术的系统是开放的,它要求所有媒体中的传输信号都要以相同的速度进行传输,从而有效避免了瓶颈问题。(3)LonWorks技术。LonWorks技术主要为设计、创建、安装和维护设备网络方面的许多新问题提供解决方案。LonTalk协议由各种答应网络上不同设备彼此间智能通信的底层协议组成。LonTalk协议提供一整套通信服务,这使得设备中的应用程序能够在网络上同其他设备发送和接收报文而无需知道网络的拓扑结构或者网络的名称、地址,或其他设备的功能。

2、当前应用的总线技术优缺点。综上所述,可以看出,当前应用的各种总线技术都具有一系列优点,首先X-10技术的安装施工简便,不必对墙体造成破坏,且具有系统稳定可靠,使用比较方便,系统扩展功能强。但是由于我国和国外的差别,这种总线技术的应用并不广泛;而虽然CEBus技术具有一系列优势,但是其接口技术比较复杂,成本高,因此,当前应用CEBus技术的用户还是较少,尤其在我国;当然LonWorks技术的价格太高,光电开关的体积太大,虽然Echelon公司开发了一个智能型收发器―――PL3120芯片组,其也只是逐渐在较多的高级建筑中被采用。

三、无线技术在物联网智能家居中的应用

1.红外技术。红外技术也是家庭组网的一个选择之一,其突出的优点便是设备简单、价格低廉。它采用红外波段内的近红外线,波长在0.75um个25um之间,由于其波长较短,对障碍物的衍射能力不强。因此,控制器与接收器要在没有障碍物的距离之内,使得其红外技术不适合于大范围对家居进行组网。

2.蓝牙技术。蓝牙技术是一种突破红外限制的较新型技术,当前也取得了很大的成果,尤其是在各种移动设备之间的资源共享中,更是较为方便。它的数据通信功能比较强大,由于其主要应用在数据交换和语音信号传输中,成本高,协议复杂,使得其在家居中的应用也受到较大限制。

3.ZigBee技术。而ZigBee技术却是一种近距离、低功耗、低速率和低成本的无线通信技术,其完善和标准化的技术规范,使得其在自动控制和远程控制领域中尤其适合应用。和当前热门的近距离无线通信技术蓝牙、红外等技术相比,ZigBee技术在家居组网中具有明显的可靠、成本、可扩展、安全性和信号覆盖率等方面的优势。

ZigBee技术是基于IEEE802.15.4标准的,而IEEE802.15.4标准正是为了满足无线网络低成本和低功耗的要求,并可以在低成本之间实现低数据率的传输。在ZigBee技术中,各个简化标准通常使用“层”这个概念来描述,每个层按照设计完成相应的功能,并且向上层提供特定的服务。其体系结构通常用“层”来描述它的各个简化标准,每一层负责完成特定的任务,并向上层提供服务。ZigBee技术的体系结构主要由物理层、媒体接入控制层、网络/安全层以及应用框架层组成。各层之间的通过接口进行连接,连接服务需要通过定义的逻辑链路来提供。

四、结语

由于ZigBee技术所具有的一系列优势,笔者认为,未来可以将ZigBee技术同当前热门的GPRS通信技术相结合的方式来搭建一个比较完善的智能家居控制系统,使其可以为未来我国物联网智能家居水平做出贡献。

参考文献

[1]叶玮琼,余永权,刘志煌.智能家居电力线总线研究与实现[J].微计算机信息,2008,(08).

[2]江修波.基于现场总线技术的智能家居照明[J].福建电力与电工,2005,(03).

简述智能制造技术第7篇

关键词:智能控制;智能控制工程;研究进展;发展策略

智能控制是应用广泛的技术,被广泛地应用到各个领域。随着信息处理技术和人工智能技术的不断发展,智能控制在控制原理和智能控制工程研究上都获得了很大的进步和发展。

1 智能控制工程的研究现状

1.1 机器人智能控制研究

机器人是智能控制应用的重要领域之一,智能控制技术已经在机器人研究的各个方面得到应用。在智能控制技术中,模糊控制、人工神经网络以及专家系统的技术在机器人环境监测和控制以及规划、机器人定位等方面的应用研究已经成熟,并且在实际应用系统中得到了验证。机器人视觉处理与传感器信息融合也利用智能控制技术。机器人动力学广泛地采用神经网络,进行控制器的设计。

1.2 智能控制在机械制造中的应用研究

现代工业制造业涉及很多复杂的行为和操作。在先进的制造系统中,要根据不精确和不完备的数据来解决很难预测或无法预测的状况,人工智能的应用有效的解决了这个问题。智能控制在机械制造中得到广泛应用,通常是在机械制造的过程中在用神经网络与模糊数学的方法进行动态环境的建模,采用传感器的融合技术预处理和综合各种信息。

1.3 智能控制在电力电子领域中的应用研究

与电能有关的很多领域都应用电力电子学,电力系统中的各种电机电器设备的设计与生产、运行以及控制是非常复杂的过程。智能控制技术引入电气设备,对于电气设备的故障诊断、设备控制与优化设计等发挥了重要的作用。电气设备的优化设计可以采用遗传算法,这样可以缩短计算的时间,降低成本,提高设计的质量和效率。还可以采用神经网络、模糊逻辑以及专家系统的智能控制技术用于电气设备的故障诊断,并且现在对于集成这三种技术的实验研究也取得重大发展。

其中,在电流控制脉冲宽度调制(PWM)中采用智能控制技术最具代表性的应用,也是被关注的研究热点。

1.4 智能控制在工业过程中的应用研究

生产过程中智能控制主要包括局部级与全局级两个方面。局部级智能控制是指智能控制应用于工业生产过程的某一个单元部分的控制器设计;全局级智能控制是指智能控制用于整个工业生产过程的自动化。局部级智能控制研究主要是对PID控制器设计。全局级智能控制应用研究已经非常广泛。

1.5 广义控制领域智能控制的应用研究

自动控制的广义理解是不利用人工的而作用自动控制或操作控制对象的过程,当然也可以是具体的机械设备与抽象的时刻变化着的信息对象。对这种对象进行控制,需要利用符号的信息知识进行建模和表达,并且设计智能算法的程序用于自动决策和推理。广义领域智能控制的应用研究正处于探索研究与发展的阶段。

2 智能控制工程的发展对策

2.1 发展智能控制工程的理论指导

智能控制已经建立了基本的理论思路和框架,但是仍然没有发展成熟。智能控制没有科学的理论指导就会导致工程研究的盲目性。智能控制应用研究主要是智能控制分支技术的应用,控制方法在工程的应用研究中没有系统的指导缺乏标准性的评价标准,导致智能控制技术的优越性很难得到体现。因此,要加强智能控制理论的研究工作。

2.2 进一步明确智能控制的研究目标

首先,要发展新的控制方法,采用混合模型或是非完全的模型;其次,利用了解较少或是不正确的系统模型,在控制系统工作过程中进行在线改进,使其知之渐多并逐步完善;再次,采用本质上断续系统与离散事件驱动动态系统;最后,要采用混沌和进化等新技术,对智能控制系统进行进一步发展与开发。因此,为完成这些研究目标,智能控制的信息处理理论和智能控制思想将会深入到建模的过程中,不断改变和改进模型,使模型不仅要包含解析的数值,还要有定性分析的符号。

2.3 智能控制的设计要遵循简单的原则

在智能控制的应用领域中,应该坚持从简单的系统进入,然后逐渐地过渡到复杂的系统。在控制器设计过程中,不断优化复杂的控制策略,以得到简单的控制器。智能控制的发展应用主要是为了满足控制系统复杂化的要求,设计智能控制器要坚持简单的原则,在某个控制的目标下,要选择简单的方法进行问题解决,这样可以节省成本,减小维护与使用的难度。智能控制应用目标是设计性价比高、操作简单的控制系统。

2.4 促进技术创新为智能控制工程发展创造条件

智能控制工程研究中,没有建立专门的软件环境。随着软件构件化的发展,需要能够在智能控制应用中直接调用的模糊控制函数和神经网络等。因此要重视新技术的开发和创新,对具有自主知识产权的软件与硬件产品进行开发。并且参与国际的竞争,促进智能控制工程研究在国际上的发展。

[参考文献]

[1]蔡自兴,陈海燕,魏世勇.智能控制工程研究的进展[J].控制工程,2008(1).