欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

铁道建筑论文(合集7篇)

时间:2023-03-16 16:27:41
铁道建筑论文

铁道建筑论文第1篇

关键词:成本控制;铁道建筑管理;综合作用

铁道建筑公司是当前国内铁道设施修缮的主要公司,其不仅能够承担铁道的维护工作,还能够对建设良好的铁道设施、对于铁路运输发挥着十分重要的作用。在新时期的铁路发展过程中,各项基础设施的建设显得十分重要,而不同的铁道建筑所需要采用的技术内容也有着明显的区别。在这样的状况下,铁道建筑公司面临着相当大的挑战,需要充分优化当前的管理手段和技术内容,以迎合当前时代的铁道建筑需求,建设质量水平较高的铁道设施。而在传统的铁道建筑建设过程中,由于不同地域的材料和技术使用有着明显的区别,因而经常会产生材料的更换和技术的重新规划问题,在这个过程中,十分容易产生全新的成本消耗,不利于铁道建筑公司的科学发展。为了切实改变这样的状况,铁道建筑公司必然需要加强对自身的成本控制,积极发挥成本控制在整个铁道建筑管理当中的重要作用,使得铁道建筑更加完善合理,为铁路运输带来更大的社会效益。

一、铁道建筑管理当中的成本问题

1.材料上的盲目投入

在开展铁道建筑建设的过程中,首先需要对其技术和施工流程进行规划,而在这个过程中,需要确定最为合理的施工技术和施工材料。但是很多铁道建筑公司,并没有切实地考虑到铁道线路的覆盖区域,盲目地认为所有铁道线路设施都可以选择相同的材料。但是在实际的施工过程中,却呈现出来相当多的问题。很多铁道建筑材料与实际的铁道建筑建设要求截然不符。在这种状况下,铁道建筑公司只能够重新购入全新的建筑材料,进而严重增加了原来的成本投入量。其次,在对材料使用的过程中,一部分建筑公司并没有明确的管理和规划,很多时候容易将多余的材料投入使用,使得铁道建筑的成本消耗持续增大。而施工人员由于缺乏对铁道建筑施工材料的使用认识,因而在使用上,也呈现出了较为盲目的状况,导致大量铁道建筑的建设超出了既定的材料使用量,严重影响了铁道建筑的建设效率。最后,铁道建筑建设在基础的规划当中,往往对于材料的使用没有一定的限制,需要施工人员根据自身的需求进行材料申请,而这种状况很容易产生重复申请的状况,导致建筑材料成本的不断增加。

2.铁道建筑建设的中期调整

在新时期的铁道建筑建设过程中,合理的铁道建筑规划不仅能够为整个铁道建筑建设形成良好的规范,而且也能够使得整个接到建筑建设的工期得到保障。但是很多铁道建筑公司在进行基础的铁道建筑规划设计当中,并没有切实地考虑到各方面因素,使得很多建筑规划与实际的项目出现了较多的矛盾,进而不得不进行中期调整。而在这些铁道建筑的规划当中,往往涉及到了建筑材料和技术的使用,一旦进行变更,必然会产生全新的成本消耗,尤其是技术的更换,将直接导致施工设备和施工材料的更改。如果这一过程得不到有效的管控,容易造成更多的成本消耗,进而给公司形成更大的成本压力。同时,铁道建筑在建设的过程中,所需要考虑到的变化因素相当多,如一些材料与实际的材料需求不相吻合,需要迅速进行调整。一些时候,由于施工现场的地势较为险峻,还需要为铁道建筑部门设置合理的安全防护设施,这一过程又会产生相应的成本支出。由于铁道建筑管理体制的不完善,直接使得成本消耗问题过于严重,亟待过得有效的健全和调整。

二、铁道建筑建设的成本控制策略

1.加强对材料使用和技术选择的成本控制

在现如今的铁道建筑建设过程中,主要的成本支出产生于铁道材料使用和技术选择上,尤其是技术选择,不仅需要有专业的施工人员开展,而且需要在施工的过程中配置相应的施工设备,所产生的成本支出必然也会更高。面对这样的状况,铁道建筑公司必然需要加强对这两方面内容上的成本控制。首先,铁道建筑公司需要将材料使用控制在一个合理有效的范围,并且要考虑到整个铁道建筑建设的主体因素,根据不同的铁道建筑项目建设需求,设置最为合理的材料投入范围。其次,铁道建筑公司还需要加强对施工技术的控制,确保施工技术有着较高的适用性,不容易在施工的过程中出现变动。最后,对于施工材料的使用,很多施工人员都缺乏相应的责任意识,公司一方面需要加强对他们的培训,促使他们形成健全的建筑材料使用认知,另一方面需要对整个建筑流程进行监督,确保每一部分材料都可以投入其所需要的地方,提高建筑材料使用的合理性,也可以充分避免各种偷工减料状况的发生。

2.制定完善的铁道建筑建设成本使用规划

新时期的铁道建筑施工,施工规划是十分主要的内容,能够对后期的铁道建筑成本消耗产生直接的影响。而在制定施工规划的过程中,以往的规划人员缺乏对所有影响因素的综合考虑,因而经常需要在实际的施工过程中,进行一定的变动。为了在新时期改变这样的状况,铁道建筑公司需要建立全新的铁道建筑建设机制,要求会计人员和建筑管理人员需要在实际的建筑建设规划过程中,充分考虑到不同的成本要素,尤其是各项铁路技术产生的成本支出和施工人员的薪酬支出,都要给予充分的考虑。为了保障铁道建筑建设规划的合理性,还需要管理人员分析在建设过程中可能遇到的各种问题和风险,做好充分的应对准备,使得整个铁道建筑施工有着较高的合理性和实效性。此外,铁道建筑公司还有必要对每一项成本的支出进行合理的审核,确保其符合当前的工程需要,进而使得成本控制在一个较为稳定的水平。

三、结语

总之,铁道建筑公司在新时期的铁道建筑建设过程中,应当充分完善自身的成分控制策略,健全当前的铁道建筑建设体制,实时提高施工人员的材料使用意识和安全管理意识,进而使得最终的铁道建筑建设具有较高的质量保障,符合当前时代下人们出行和货物运输的主体需求,带来更高的经济效益和社会效益。

参考文献:

[1]杨一华.论铁路工程项目施工阶段的成本控制[J].长沙铁道学院学报:社会科学版,2015(1).

[2]曾洪泉.关于铁路工程项目成本控制的思考[J].当代经理人,2013(7).

[3]毛爱兰.论铁路工程建设的成本控制途径[J].现代商贸工业,2013(1).

[4]张友珍.浅析铁道结算中心的资金风险控制[J].改革与开放,2013(6).

铁道建筑论文第2篇

关键字:地铁车站 建筑设计 防火分区 防烟分区 安全疏散

地铁车站是人员密集度最高的地区之一,加强地铁车站防火设计势在必行。在地铁车站防火设计中,应综合考虑,突出重点:风亭、地面亭、风道、出入口、地下车站主体各处耐火等级设定为一级;车站地面用房间、及其四周规建或已建建筑间、构筑物间防火间距应与国家出台的防火规范相符(但必须让出防火车道)。

一、地铁车站建筑设计防火分区、防火墙设置

(一)地铁车站建筑设计防火分区

地铁车站建筑设计防火分区依据是:车站面积、车站使用功能。常规地铁车站分区为:地下两层站:地下一层——站厅层;地下二层——站台层,站厅层与站台层人流疏散公共区——防火分区。

1.常规站厅层一端设备用房有人区——防火分区,其占地面积不大于1500平方米,该端设置直接到达地面的封闭楼梯(安全疏散楼梯);另一端设备用房——两个防火区:两个防火区间用防火墙隔断,其占地面积小于200平方米,停留人数不超过三人,并设通向邻近防火分区的甲级防火门。

2.站台层设备用房为若干小于200平方米,且常有不超过三人停留的防火分区,防火分区间用防火墙隔断,各防火分区分别设有甲级防火门通向站台。

3.防火门、防火墙设置

防火墙——防止火灾蔓延;穿墙管道与防火墙间的缝隙必须及时填塞密实,填塞材料为非燃材料;楼板——竖向防火分区隔断物,且穿楼管道与楼板间缝隙应该填塞密实,填塞材料为非燃材料;防火分区——采用防火墙隔断;防火墙(隔断防火分区)——为砌块墙,其耐火极限大于四小时;防火墙上防火门——甲级平开门,且开启方向为疏散方向;防火墙设甲级防火观测窗;公共区间非付费区与付费区栏杆处有必要设置疏散门;站厅层设备管理区配电室、变电所、消防泵房、空调及通风机房、信号及通信机房、车站控制室等设备房间隔墙——耐火极限应高于三小时;楼板——耐火极限高于两小时;房间门窗、墙体(砌筑至结构板底)应为甲级防火门窗;站台层变电所防火隔墙耐火极限高于四小时;地铁车站连通门、设备运输门应为甲级防火门或特级防火卷门。

参考《地铁设计规范》19.1.21条规定:地下出入通道长度应该被控制在100米以内,若超过这一范围,必须采取相关符合一定人员疏散的消防要求;19.1.34条规定:若地下出入通道及地下通道连续长度大于60米,应该设置机械排烟。

(三)装修材料

地铁车站内所涉及到的装修材料应为非燃材料,例如:地铁车站封闭楼梯间、疏散通道、出入口楼梯、站厅、站台等人流集散地,管理用房、设备及其顶面、地、墙装修建材,售票亭、检票亭、电话亭、座椅、广告灯箱等建材。需要注意的是,地铁车站内装修严禁使用塑料类、玻璃纤维制品、石棉等遇热产生毒气的材料。

二、地铁车站建筑防烟分区

地铁车站为封闭空间,其特点是:通风条件及对流条件差。如果地铁车站出现火灾,散热、排烟难度系数大,地铁因浓烟造成能见度下降,从而引起人员恐慌,且疏散难度大。据相关案例和数据显示,地铁车站火灾事故伤亡人数中,中毒、缺氧窒息、烟熏等为主要原因;其次,浓烟造成灭火难度增大。综上可以得出一结论是:有效减轻地铁火灾伤亡事故的措施为:科学合理设置排烟系统,且地铁建筑防火设计尤为重要。

地铁车站各防烟区面积应小于750平方米;地铁车站公共区内通常设定两个防烟区,其面积均应控制在750平方米以下;防烟区域防火区不得交叉,通常情况下,防烟区为防火区的二分之一。地铁站台层公共区与出入口间、站台层公共区扶梯口及楼梯口四周均应设置垂壁、挡烟垂帘。挡烟垂壁下缘到楼梯踏步面垂直距离应大于2.3米。各防烟区隔断层应为钢筋砼或挡烟垂壁,防烟垂壁高度应比吊顶面下高出500毫米;挡烟垂壁材料应为耐火极限大于0.5小时,且属A级燃烧性能。

如果公共区吊顶材料透空率在30%以上,则防烟垂壁应与结构板底保持一致性,地铁车站设备房及管理房处防烟分区面积应该控制在750平方米以下;如果地铁车站安全门为全高安全门,则站台层中心线上设置的挡烟垂壁有必要进行延伸处理,延伸长度至轨行区;轨行区上部挡烟垂壁设置规范为自结构底板往下垂直至建筑边界线;由于建筑构件通常会出现不同程度的变形,安全门四周应该预留50毫米宽的变形缝。

地铁车站由于处于地下全封闭的空间,所以,科学设置事故通风、排烟、防烟系统十分必要。如果排烟及防烟系统、正常通风及事故通风、空调系统三者间综合使用时,空调及通风系统应该选取可靠性、安全性、科学性更高的防火措施。此外,地铁车站防烟、排烟系统的设置应该严格按照国家相关防烟、排烟系统规范进行,并且,防烟、排烟系统应该具备一定的事故工况快速转换功能。

四、安全疏散

参考地铁规范:在地铁车站发生时,要实现在6分钟范围内将全部乘客人数、站台候车所有乘客、站台上内所有工作人员疏散至安全疏散,就普通车站而言,客流密度较小、车站高度不大。在6分钟范围内,地铁站台内乘客基本能够顺利被疏散到连接地面出入口或者达到地面,而就大型地铁车站而言,特别是埋设深度较大的地铁车站,应该中分考虑到最不利点到达出入口距离及车站深度的影响。

针对地铁车站的特殊性质,加强防火设计及安全疏散设计是保障地铁车站安全的重要途径。常规地铁车站站台层及站厅层均设置了 两组的扶梯、楼梯,而且其设置规格是依据车站远期高峰一小时上下车人流及车站超高峰系数而确定的;或依据车站具体地址,并借助列车通过某一车站高峰小时断面人流量进行核算。与此同时,车站扶梯、楼梯数目及规格应该满足一定的要求,即车站在火灾发生后,能在六分钟内将整列车乘客及站台处人员全部安全撤回安全地点。参考《建筑设计防火规范》,地铁车站站台处自动扶梯及人行楼梯的设置均应沿着车站纵向,并满足车站站台有效长度内任何位置与通道口及楼梯口距离能够被控制在40米以下。乘客专用单向通行人行楼梯规格应该控制在大于1.8米;双向通行被控制在2.4米以上。如果人行楼梯宽度超过了3.6米,其中间有必要设置扶手,且楼梯应该与建筑模数相符合。地铁管理房及设备房安全出口、楼梯宽度应被设定为1.2米;房间疏散通道单面布置宽度应该达1.2米;双面布置宽度应为1.5米。站台有效长度外两侧与轨道面间应设置一定规格的楼梯通直区间,以此方便火灾发生后,该区间内的人员疏散。

参考文献:

[1]张雄.地铁车站防排烟设计中若干问题的探讨和建议[A].2008铁路暖通空调学术年会论文集[C].2008.

[2]余斌,徐正良,宁佐利.上海轨道交通7号线花木路车站大中庭设计[A].2010城市轨道交通关键技术论坛暨第二十届地铁学术交流会论文集[C].2010.

铁道建筑论文第3篇

关键词: 城市轨道交通系统; 建筑物; 振动

1 前言

随着城市公共交通的发展, 地铁、轻轨等城市轨道交通系统以其高效、快捷、环保等优点, 成为缓解城市交通和减少污染的有效手段, 在 现代 城市的立体交通体系中发挥着重要的作用。我国拥有和正在建设城市轨道交通系统的城市也越来越多, 作为国内第 4 个地铁投入运营的城市, 广州未来的城市轨道交通架构将由十几条地铁及轻轨线组成, 深圳地铁也已建成投入运营, 广州—佛山、广州—珠海轨道交通系统近期亦即将开工建设; 珠江三角洲作为 中国 最重要的城市群之一, 其轨道交通的规模在国内首屈一指, 城市轨道交通系统将在广东省的 经济 生活中起到越来越重要的作用。但城市轨道交通系统在给人们工作和生活带来高速、便捷的同时, 其对周围建筑物的影响也逐步引起人们的关注。

2 振动的影响 由于城市轨道交通系统投资巨大, 一旦建成则很难改线和迁移, 而建筑物正常情况下也具有较长的使用年限, 轨道交通的振动污染一旦形成将长期存在。 目前 广东省正大力发展城市轨道交通系统,对环境质量的要求也愈来愈高, 因此开展城市轨道交通对周围建筑物振动影响的研究, 不仅具有重大的社会意义, 还可以对轨道交通的规划、设计提供较为详细、可靠的依据, 减少将来为降低这种振动污染所需的巨大经济投入。

3 振动的特点

近年来, 英国、日本、德国等国家已广泛开展了对轨道车辆振动的传播、衰减特性的研究, 并提出了一些减少振害的措施。英国铁路管理局等部门对行车速度、激振频率和轨道参数的相关关系及共振现象进行了试验研究; 日本的研究人员就轨道车辆引起的结构振动发生机理、振动波在地下和地面的传播 规律 及其对周围居民的影响进行了研究; 德国的研究人员提出了一种基于脉冲激励和测试分析的诊断测试 方法 , 以预测市区轨道线附近建筑物地面振动水平。上述研究主要集中在进行相应的测试并分析研究振动波传播的规律, 侧重于采取改善道床结构、车辆构造以及设置隔振设施等措施减少振动。

在国内, 由于近年来城市轨道交通系统的迅速发展以及全社会环保意识的提高, 一些研究机构也开展了对地铁区间隧道及附近地面的振动测试分析工作, 在地表振动波的衰减规律等方面取得了一定成果[4]。但主要偏重于地铁隧道结构振动及振动传播方面的研究, 未直接以对建筑物的振动影响作为研究对象, 并将其与城市轨道交通系统产生的振动以及振动传播的特性进行综合分析。

由于目前缺少专门的评估振动对建筑物影响的标准, 因此仅能根据已有的少量测试数据及相关标准较粗略地分析建筑物所受的影响, 而且建筑物的振动与其基础、结构形式、自重等多方面因素有关,显得较为复杂。同时, 轨道车辆振动的传播较为复杂, 与土层介质有着密切关系, 振动波的传播特性在不同地质条件的地区不尽相同。由于地基土的区域特殊性, 在其他地区测试、分析的结果并不一定符合广东省的实际情况, 特别是该地区地质条件复杂, 具有很强的多样性, 因此, 可结合广东省的土质特点,对已建成使用的地铁隧道结构及周围建筑物进行现场测试, 结合相应的岩土试验, 分析地铁隧道结构及周围土体体系的动力特性, 研究振动的传播途径、振动性状及对建筑物的影响, 确定不同地质等条件下城市轨道交通系统与不同结构类型、基础形式建筑物的合理距离, 为已建成的地铁线路周围建筑物振动影响的评价及拟建轨道交通系统的规划、设计提供相应的 理论 依据。

4 有限元数值分析

由于城市轨道交通系统引起的振动较为复杂,涉及地铁轨道道床、隧道结构形式, 场地土层类型,邻近建筑物的基础、结构形式等多种因素。而地铁在线路上运行产生的振源是一连串移动式作用点,对地面形成迭加作用, 较为特殊。同时, 埋置于土中的地下结构在动荷载的作用下, 土与结构的动力相互作用不可忽视, 是否考虑土与结构相互作用, 其 计算 结果将相差很大。土中的地下结构由于土体介质的存在, 将使结构的振动特性发生很大的变化, 其结构的动力性能很可能完全改观, 因此对城市轨道交通系统引起的振动进行分析具有一定的复杂性。

动力有限元法是目前研究土与结构动力相互作用的最常用的数值计算方法, 是随着有限元法的发展与结构动力学理论的日趋成熟而逐渐发展起来的。

动力有限元法可以方便地处理介质的非均匀性、各向异性、非线性以及复杂的几何形状及边界条件, 因此可以进行地下结构动力特性的全面深入的研究。 建筑物在地铁引发振动下的响应 分析 , 过去的 研究 多为在一个二维体系或两个正交的二维体系下的分析, 但仅当建筑物沿隧道方向有着相当长度及一致性时方可勉强简化为二维情况进行分析, 而实际情况中极难满足这些要求。因此, 本文针对某地铁穿越其下的建筑物, 建立了地铁隧道、土体及邻近建筑物的三维整体模型(如图 3), 对隧道及建筑物在列车振动荷载作用下的动力响应进行有限元分析[5]。

研究表明, 在类似工程地质条件下, 地铁振动对其穿越或紧邻建筑物的 影响 以体波为主, 以通过体波将振动能量直接传至建筑物基础再影响上部结构为主要方式, 面波对于该建筑物上部结构的影响甚微[5]。

5 结语

城市轨道 交通 系统不仅有效地缓解了交通拥挤状况, 同时还极大地推动了 社会 经济 发展 , 加快城市化建设步伐。由于国内已进入了城市轨道交通系统以及城市化建设的高峰期, 积极开展城市轨道交通系统对周围建筑物的振动影响的研究, 不仅可以较为准确地评估其现有的影响, 同时将使以后的城市轨道交通系统的规划、建设更加全面、 科学 , 具有较强的前瞻性, 对于保护生态环境和社会可持续发展具有重要的现实意义。同时, 由于地铁引发的建筑物振动 问题 较为复杂, 涉及交通工程、土动力学、结构振动等领域, 需对地铁振动波的传播机理进行更深一步的研究, 并确切地分析邻近建筑物的振动效应。

参 考 文 献

[1] 夏禾, 吴萱, 于大明. 城市轨道交通系统引起的环境振动问题[N]. 北方交通大学学报, 1999(4)

[2] 曹国辉, 方志. 地铁运行引起房屋振动的研究[J]. 工业 建筑, 2003(12)

[3] GB 10070- 88 城市区域环境振动标准[S]

[4] 辜小安, 刘宪章, 张春华. 地铁环境振动预测 方法 浅析

铁道建筑论文第4篇

关键词:地铁;主体结构;变形监测;

中图分类号:U231+.3文献标识码: A 文章编号:

1 地铁主体结构监测的必要性 1.1地铁结构随地层的隆沉引起变化 地铁建设过程中主体结构的变化主要随地层隆沉而变化。如某地铁工程地处沿海地区,局部有软土层和地震液化层,整体沉降量较大。工程地下段采用明挖或盾构法施工,存在围护结构施工、因降水引起地下水位变化及基坑开挖过程会产生基底土卸载,造成坑底隆沉;主体构筑、覆土回填会重新给基底土施加荷载,造成地基的隆沉;而主体结构竣工后地下水位的变化会对结构产生浮力,减少结构沉降的趋势,浮力过大时会造成结构上浮。地铁工程结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。如结构变形和沉降超过允许值,将会对地铁的运营造成影响,甚至会造成运营中断。对结构进行监测,了解变形情况,分析变形原因并采取有效措施,对于预防事故、保证地铁的正常运营是非常重要的。 施工期间除在基坑开挖、主体结构构筑过程中需对地面进行监测外,还要对周边建筑物、地下水位变化进行监测,实践证明这些监测项目都在发生不均匀的沉降变化。

1.2 不同的线路敷设形式存在结构变形差异 地铁工程呈线状分布,分布范围较长,整个工程范围内由于线路敷设形式不同有可能存在着不均匀沉降的问题。一条地铁线一般包含地下线、高架线和地面线等不同的线路敷没形式,如图1所示。地下结构有采用盾构施工的圆形隧道、明挖施工的矩形结构及暗挖施工的马蹄形结构,高架部分有连续梁、简支梁、钢混结合梁等不同的结构形式,地面线路基部分有填土、挖方等情况,不同结构形式变形复杂,各分体结构存在差异变形,需要及时了解全线各部位特别是衔接处的变形情况。

图1 地下隧道线路形式示意图

1.3 既有线与新建工程存在结构变形差异 个别地铁项目存在既有线改造的情况,随着城市规模和经济水平的快速发展,早期建设的地铁已经不能满足现代生活的需要,需要从规模和标准上进行改造。改建工程要充分利用了既有段区间结构,只对车站进行拆除、改建,每个改建站两端均与新结构体衔接,衔接处均存在着新旧结构间的差异沉降问题。差异沉降量势必影响到结构的稳定,甚至会影响到地铁线路的正常运营。因此,需在运营期间对地铁结构、轨道结构等进行变形监测,及时准确地了解结构变化 趋势,针对变形情况采取必要的补救措施,以保证地铁正常运营。在建的新规划地铁利用一段既有人防工程,在建设中也应再视变形监测。 1.4 地铁运营会诱发结构变形 地铁运营时反复的振动和曲线上未平衡的离心力等的作用都可能诱发区间隧道洞体的形变和隧道周围土体性质的变化,因此也是地铁运营监测的重要原因。 1.5地铁周边环境的改变也会造成结构变形 地铁所经过的沿线多是城市繁华地带,一些高层商务楼宇正在或即将施工建设,这些距地铁较近的建筑物在施工期间极易引起地铁结构的变形。为此,在周围工程开工前,对地铁制定适宜的监测方案,伴随周边工程的建设,对地铁进行变形全程监测也是十分必要的。 2 地铁主体结构监测工作重点 2.1通过监测随时掌握地铁结构变形全貌通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全,确保工程的可靠度。地下结构和高架桥结构形式不同引起的变形也不尽相同,通过监测可验证沉降变形理论的正确性和可靠性,了解结构实际受力状态,判断结构的安全承载能力和使用条件。通过监测系统收集各种技术数据,建立数据库,以便更好地随时掌握结构变形全貌,及时发现变形现状及发展趋势,并采取处理措施预案。

2.2重视积累监测资料,提供病害治理可靠依据随着城市的不断发展,地铁等轨道交通建设规模必然不断扩大,并将成为城市公共交通的重要支柱。城轨交通的安全运营已成为城市窗口形象,通过对地铁主体结构监测,收集监测数据、记录整治方案,系统地整理、积累资料,及时掌握现有建成地铁工程运营变形情况。通过对主体结构进行监测,及时准确掌握现有建成地铁工程的运营变形情况,不断总结相关经验教训,为病害治理提供可靠依据,也可供今后相关工程设计、施工、运营维护时借鉴。 2.3 重点监测位置根据理论分析和以往的经验,一般对地铁的以下主体部分进行重点监测,掌握重点位置的结构变形情况:(1)车站与区间衔接处的差异沉降;(2)地铁穿越河流、不良地质地段的隧道区段的特殊沉降;(3)既有隧道与新建隧道衔接处的差异沉降;(4)区间联络通道附近衔接处的差异沉降;(5)地铁沿线有高大建筑或工程正在施工的地段对隧道的影响;(6)本线与后建设的地铁线路交叉点附近地段对本线隧道的影响;(7)高架桥地段的墩台沉降、梁体的挠曲变形;(8)隧道、高架桥与路基的过渡段的差异沉降;(9)地铁穿越国家既有铁路对隧道的影响。 2.4地层沉降理论的支持和分析 对于地铁建设时和运营后主体结构的地层沉降,一般采用现在通用的理论,如派克法、有限元法和派克修正公式对地表沉降量进行估算。派克(Peck)法是假定地层损失在隧道长度上均匀分布,地面沉降在垂直隧道方向上正态分布。对隧道上方地表沉降槽横向分布的地面沉降量提出估算公式。计算结果应根据工程的具体地质情况和土质特征,一般要对估算公式进行修正,并通过监测得到验证。 2.5对重要建筑物的地基变形计算依托的理论依据对于地铁附属的重要建筑物和周围紧邻的高大建筑物的建设对地铁主体结构的影响,首先要掌握建筑物荷载在地基土层中引起的应力变化,其次必须掌握地基土层的分布情况及其应力一应变关系特征,由此可预先计算出将发生的变形值。

对建筑物而言,在一般情况下最主要的是地基的竖向压缩变形,表现为建筑物基础的沉降。因此,地基变形计算通常即指基础沉降计算。

自地铁开始施工之日起,对地铁保护区范围内的新建建筑物,就要进行监测,直至评定其已经稳定,或变形值和变形速率在正常值范围内。一方面要对建筑物基坑围护结构的变形进行监测,同时对临近建筑物地段的地铁结构重点加强监测。根据工程情况和变形情况,采取适当的监测方案,必要时采取现场设置探头和传感器,用光缆传输数据,远程适时监测。

结束语综上所述,为了及时掌握地铁主体结构的变形情况,及时消除安全隐患,在运营期间,对主体结构采取适宜的变形监测是非常必要的,根据变形监测情况,及时提出整治方案,以保障城轨的运营安全。

参考文献:

[1]夏才初,潘国荣,等.土木工程监测技术[M].北京:中国建筑工业出版社,2001

[2]陈希哲.土力学地基基础[M].北京:清华大学出版社,2007

铁道建筑论文第5篇

关键词:迪拜;地铁;建筑设计

中图分类号:TU2文献标识码:A

1地铁建筑设计原则

地铁属大型公益交通设施,它的最直接最易被人们认识的功能是人们出行时的代步工具。其主要表现特点是:方便、快捷、舒适、安全等等。同时它噪音小、污染小、对环境影响小,更有利于人们的身心健康它还和人们的生活水平、生活习惯、生活方式相适应,能满足所有层次人群的出行需要基于这些,构成了人们目前侣导的绿色地铁,人文地铁的主旋律地铁侣导“以人为本”,可要做到这点并非易事它不仅需要地铁具有完善的装备和设施(比如自动化程度,适合各国文化特色的建筑装修,满足人们生理和心理需求的各种手段和措施等),同时,它还应有较高的服务水平,这也需要从各个层面加以体现(比如工作人员亲切周到的服务、温馨高雅的乘车环境、灾害情况下的紧急疏散措施、残疾人设施的建立、一目了然的路标指引、甚至小到卫生间和电话亭等服务设施),让人消除陌生感、距离感;带来亲切感、安全感简言之,应当有家的感觉,这才是人性化、智能化的设计,“以人为本”才能得以充分体现。

2车站建筑造型外观设计

迪拜地铁全线都设置于路侧,均为地面2层,地面一层为站厅层,地面二层为站台层,采用一线一景形式,全线所有车站建筑造型一致,只是根据站点位置,大小不一致。整个外形采用玻璃架钢结构形式,外形现代、时尚,采光效果较好。全线采用同一造型,有利于建设阶段招标,并利于乘客对地铁系统的识别,体现迪拜地铁的特色。

3车站内部布置设计

迪拜地铁标准站为地面2层侧式站台车站,地面一层为站厅层,地面二层为站台层,站厅层设置一个付费区与一个非付费区,付费区内设置了4部扶梯、4部楼梯、2部电梯。

一般车站每侧站台2端各布置一台扶梯,呈倒八字布置;中部布置2部转折楼梯夹一部垂直电梯;扶梯一部设置为上行,一部下行,客流呈流线(一端为上车客流,一端为下车客流)走向,避免客流交叉。中部2部转折楼梯专为消防疏散使用,电梯为无障碍电梯。所有扶梯楼梯处于一条线上,单排布置,减小了车站整体宽度,减小车站建筑体量,让车站整体建筑效果更加美观。

重点车站每侧站台2端各布置并行的一台扶梯、一部楼梯,呈倒八字布置;增大车站的进出站客流疏散速度,及服务功能。

4装修设计

有生命的建筑设计离不开环境,围绕环境、结合环境才能创造出具有地方特色的建筑,地铁车站建筑也不例外。地铁车站的装修设计是地铁建筑设计的重要组成部分,是车站建筑设计过程的延续深化。通过装修设计营造该站的环境空间,简洁明快而又不失庄重,热情洋溢而不娇柔造作;既反映建国道地的特色,同时又能够反映迪拜蒸蒸日上的风貌让乘客保留一份恋恋不舍的情结,使之觉得地铁的便捷迅速及优美环境实为城市交通的首选。对于地铁建筑装修设计以功能要求为主,适度装饰为辅,力求简洁、明快,体现时代气息与地域人文特色。车站装修室内设计将努力改善小型车站封闭、沉闷和压抑的感觉,为乘客创造一个舒适、愉悦的乘车环境。车站地面建筑外装修要与周边城市环境相协调,同时具有轨道交通建筑的特点。备用房的装修在满足各种工艺要求的前提下尽可能的做到简洁实用。

由于迪拜地区天气炎热,整个车站采用的全封闭的屏蔽门系统。车站外形采用的的是玻璃家钢结构形式,地面采用石材装修,天花为铝制板材,设备房间墙面采用搪瓷钢板、外墙面面采用通透玻璃墙面,扶手栏杆采用玻璃夹不锈钢形式。整个车站装修风格比较现代时尚。

5公交接驳及通道与物业结合情况

所有车站周边均设置了与公交接驳设施,车站出站通道处设置了与公交换乘示意图及公交服务范围图,车站出站口附近设置了自行车停车场、小汽车停车场、公交车站,方便地铁乘客与公交系统之间换乘。

与周边商业较近的车站,均设置了过街天桥直通商业大厦内部。做到了车站与物业的完美结合。

6过街天桥设计

由于迪拜地铁位于道路一侧,所有车站均设置了过街天桥,由于迪拜地区炎热,过街天桥为钢结构加玻璃全包形式,内部设置空调,增强天桥内部的舒适度。天桥内部设置了2部扶梯夹一部楼梯,方便乘客上下天桥。天桥一端包于车站之内,减小乘客走行距离,方便乘客乘坐地铁。

7结论

通过迪拜的地铁建筑设计实践,认识到地铁车站建筑设计需要经历从大到小、从线到点、内外结合的设计过程,需要从站位布设、车站规模、换乘方式、交通接驳、综合开发、内部流线组织、室内装修设计等多方面进行设计研究,仅针对能反映迪拜地铁车站设计特点的几个方面进行了设计分析,主要结论如下。

(1)车站建筑的站点设置应以吸引客流、方便乘客为基本原则,结合现状环境和规划条件统筹考虑,如没有难以解决的工程地质、拆迁等问题,站位应跨主要干道的十字路口敷设。对于和大型交通枢纽接驳的车站,车站站位要以便捷换乘作为首要选择。

(2)换乘车站的换乘组织形式力求换乘距离最短,便于乘客便捷换乘,同时又要防止客流出现拥堵,站内的楼扶梯、检票机等设施布置要满足最不利状况下的运营组织需求。通过调研,乘客的换乘距离宜控制在60m以内,换乘时间控制在1min左右,乘客是较为满意的。

(3)车站的综合开发研究应结合城市规划及经济条件,提前进行研究、策划,以利于地铁空间的开发利用高效合理,车站的开发方案、开发性质符合规划及周边客流需求,有效缓解地铁建设对地方财政的压力,促进城市轨道交通的可持续发展。

(4)地铁车站建筑装修设计,应结合线网、各国地域文化特点,因地制宜,既要满足使用功能、体现出线路的特点,又能体现线路所经区域的人文特点,使地铁建筑实用功能与审美功能达到统一。

地铁建筑设计在有限的面积上充分利用空间资源,尽量缩小车站规模,降低车站造价,这也是设计者必须树立的观念。车站设计还有一个重要的环节是公共区的布置,这需要设计者充分了解乘客的行为心理,牢固树立“以人为本”的设计理念,为他们创造一个良好的乘车环境,不仅满足现代社会还要满足未来时代人们出行的需要。

参考文献

铁道建筑论文第6篇

关键词: 通道施工 地表的沉降 受力分析 环境影响

Abstract: the article is focus on the subway construction from the start, showing subway construction stage, the subway construction environment and subway construction of ground subsidence caused by, and finally, we'll discuss how to solve these problems.

Keywords: channel construction of surface subsidence stress analysis the environmental impact

中图分类号:TU74文献标识码:A 文章编号:

在信息高速发展的时代,速度决定一切。我们能够在地表运动的范围也越来越小,大型甚至超大型城市的出现表明,人类能都利用的土地资源正在减少,我们必须选择一个更好的舒缓地表压力的办法。因此,向地下发展成为一个折中的办法,并且正早逐步实现。发展地下空间,刻不容缓。甚至有人语预言,21世纪必定是一个向下开发的世纪,不久,人们将在地下世界开发出新的城市脉络。

一、 地铁的好与坏

1、 地铁有着许多的有点。

这一点毋庸置疑。它已经在很多城市扮演了不可缺失的角色。地铁安全、可靠、准时、方便、舒适、速度快,并且不破坏地上的景观,因为它永远隐藏在地下。地铁还缓解了地上的交通阻力,将大部分的人转移到地下,非常有效的缓解了城市的交通拥堵问题。在战争时期,人们还可以利用地铁的隧道做防空洞使用,十分隐蔽和安全。

2、地铁施工也带来许多的问题。

例如,施工期间给地面环境造成干扰,是路面拥堵。还会产生许多施工垃圾,如不及时处理,影响环境;施工挖掘隧道,容易引起地表的沉降。是在该范围内的建筑或者一些共建设施、绿化等扭曲、变形、倾斜,严重的甚至有倒塌的危险,所以我们要不断的加固周围的建筑;施工地铁所经过的隧道需要占用地面下很大的面积,在该面积内不能有不相关的设施,因此,原来这里地下的管道、电线等等就需要改线,这是一件很费力的事情。

3、 地铁的运行存在噪音

在地铁建设完成后,运行的时候就会产生很多声音,虽然有厚厚的土地掩盖这些声音,但是还是会干扰到地面一些居民的起居。噪音还包括来往行人的声音,地铁出入口处必定是密集的人群,这会给周围居民带来一定的困扰。还有一点就是,地铁运行时会产生震动,轰隆声,这些都会让居民有所困扰。

二、地表沉降分析

首先,地表沉降是地铁隧道施工给周围环境带来的最大的问题。他可能导致的后果很多,轻则变形重则倒塌,供热管道等主要管线的破裂,使得污水或其他水上溢;另外,这些管道在又地铁施工的工程中往往改变其通道或者做加固等特殊处理。

此外,在有桥梁等设施的地方施工的时候,挖掘隧道容易是桥梁基础活动,发生沉降,抑或者对柱体产生摩擦甚至岌岌可危。当他倒塌时人们也许措手不及,造成严重的意外,后果不堪设想。

第三、沉降对房屋来说也是非常危险的。他对房屋的结构来说是种挑战。总的来说,沉降对于建筑构成的危害主要有以下几种:

1. 对房屋基础的影响。地铁施工引发的沉降,这种力不仅仅是纵向的力,也有横向的拉力,就好像是水平应变再将基础撕碎。而建筑的基础主要是承受压力的构件,因此对基础来说拉应变是最致命的破坏,他在破坏基础的时候占有主导地位。

2. 地基的承载能力减弱。土地基础具有相当大的承载能力,在地下施工作业中,不断地震动会使土地变得松散,失去承载荷载的能力。所以在施工过程中,减少震动松土是首要重点。

3. 对房屋上部结构的伤害与影响。地下施工会对建筑产生一定的力的作用,然而这种力的作用是不规则的,他会在建筑内部一次不间断的传递,建筑因此可能产生不规则的变形,从而失去重心,慢慢又倒塌的危害。

城市地铁的隧道施工所引起的建筑物倒塌事故屡见不鲜,已经更引起了有关

部门和社会的高度重视。国内外最近几年,就地表沉降问题已经有过多次的理论讨论和实践论证,并且取得了不俗的成绩,获得相当成熟的理论和成果。但是在我国,相关完整的建筑保护标准还没有准确的划分标准。我国所做的沉降数据的研究,只为我们提供一个在施工中允许沉降的最大值,并以此来加固建筑或道路,或者控制施工。

这种方法是不得已而为之的,他并不准确也不算很科学,因为这种方法尚缺少足够的理论依据。根据这种方法所做的加固工程或者防护措施往往是十分苛刻的,因为怕意外的发生。但是,一些建筑物本身其实对沉降并不敏感。这样做的结果就是经济尚的损失,就是投资的增加,不符合市场经济的可发展战略。因此,找到一条属于中国的地下隧道挖掘道路迫在眉睫。我们要根据以往的经验和实际施工的情况,以及一些影响规律相结合起来,为将来的节约成本和巩固隧道挖掘技术做出贡献。

三、 隧道与其相邻建筑的关系

隧道挖掘过程中又着对地表的扰动,使隧道周围的应力场发生很大的变化,水位也会因为这些变化而变化,这回导致上层土壤层的塌陷和固结。然后不断的传递,扩展到周围的建筑物的地基下面,再由地基传递给建筑物基础,然后不断上升,传给结构,引发不同层次的结构的内力的变化和变形,然后倾斜、倒塌。

在实际的施工当中,地质的因素也是不可忽略的。实际上,不同个图层固定的程度有所不同,通过对土质的研究,我们能够进一步研究沉降的程度和原因,从而加快缓解隧道施工给环境带来的伤害,并且节约相对成本,符合可持续的战略思想。

四、 地铁施工中的其他风险

由于地铁工程是一项非常复杂和危险的建设工程,因此,了解隧道的施工规则必不可少,应该有预防又经验的开始施工工程,避免事故的发生。

当下我国的地铁工程建设规模庞大、发展迅速,但是我国的地铁隧道施工技术还不成熟,还处于发展阶段。目前我们的状况是遇见困难解决困难,而不能够有效的预见困难。这样做的后果不仅仅是资源、经济的极大浪费,更有关于国家的发展前途。我们应该在未来的建设工程中不断的挖掘新的方式方法,决绝问题,并且赶超国外,尽量避免无知给沉降等问题带来的困扰。

五、 结语

当然,除此之外,地铁隧道工程不仅仅又沉降的危害,也有其他的风险和问题。比如地铁施工过程中的失误和计算错误或者是设计错误引起的经济损失,意外施工事故中的人员伤亡损失,自然条件变化下影响的施工环境的损失,又与一些不及时的沟通等原因带来的工期延误甚至搁浅的损失,或者是施工质量不佳引发的工程建设耐久性削弱的损失,等等这一切都需要抓紧解决。

因此,完善地铁建设工程施工的规章制度,整理与之相关的理论、经验,设计跟多的施工方法,更安全、更有效的施工,这些都需要我们及时的学习和寻找,虚心在这项事业里不断提升自己的能力,不断地学习。

【参考文献】

1. 刘波,叶圣国,陶龙光,唐孟雄.地铁盾构施工引起临近基础的沉降FLAC数值模拟[J],煤炭科学技术,2002,(16)

2. 阳军生,刘宝琛.城市地铁施工引起的地表沉降及变形[M],中国铁道出报社,2002,(8)

3. 王铁生,张利萍,华锡生.地铁隧道施工变形预测综合[J],水利水电科技进展,2003,(5)

铁道建筑论文第7篇

关键词:高速铁路 机车车辆限界 建筑限界 宽度

中图分类号:U298.1 文献标识码:A 文章编号:1674-098X(2014)03(b)-0083-02

为了防止列车与铁路线路两旁的建筑物或设备发生刮蹭、碰撞,凡接近铁路线路的各种建筑物和设备,必须与线路保持一定的距离,保证列车在铁路线路上的运行安全,这就形成了铁路建筑限界。建筑限界是铁路基础的技术标准,它的制定与机车车辆、信号、桥梁、隧道等设备的设置密切相关。建筑限界过小,影响列车的运行安全,限制列车的运行速度;建筑限界过大,则会使站场、桥梁、隧道的建设费用增大。高速铁路列车运行速度高,既保证列车运行安全,又要减少建设费用,更要科学、经济、合理的确定建筑限界。本文就关于高速铁路建筑限界最大宽度的影响因素及确定方法进行探讨。

1 高速铁路建筑限界的概念及作用

高速铁路建筑限界是一个与线路中心线垂直的极限横断面轮廓,除机车车辆及与机车车辆相互作用的设备外,其它设备和建筑物均不得侵入的轮廓范围。建筑限界是确保机车车辆能够安全通过的起码空间,是确定线路两旁建筑物或设备,至相邻线路中心线的最短距离,以及站场设计的依据。

2 确定高速铁路建筑限界最大宽度应考虑的因素

2.1 机车车辆限界的宽度

机车车辆限界是一个和线路中心线垂直的极限横断面轮廓。无论是新造的机车车辆,还是具有最大限度公差或磨耗的空重车,停放在水平线路上,应无侧向倾斜与偏移,除使用中需要探出的部分(如受电弓、塞拉门等)外,任何部分都应容纳在限界轮廓内,不得超越。机车车辆限界是静态限界轮廓,规定机车车辆不同部位宽度、高度的最大尺寸和其零部件至轨面的最小距离,因此它决定了新造机车车辆的外形尺寸。

机车车辆限界宽度越大,其建筑限界的宽度就愈大。在确定高速铁路机车车辆限界宽度时,应考虑现行机车车辆情况,并为远期发展留有余地。目前我国高速铁路运行的动车组,CRH2的车体宽度最大为3.38 m,考虑座位布置能从2+2排列方式发展成为2+3排列方式,使车体宽度有增加的余地。因此高速铁路机车车辆静态限界,其宽度仍为3.4 m,与GB146.1-83中机车车辆限界规定的宽度相同。

2.2 列车运行时的横向偏移量

列车运动是复杂的动态过程,除了滚动之外,还有横向、垂向的振动和滑动,其中车辆的横向振动会使车辆横摆、摇头和侧滚,造成车体中心线偏离线路中心线,从而产生车辆的横向偏移。列车运动时所产生的横向偏移量越大,建筑限界的宽度就越宽。造成列车横向振动的原因如下。

2.2.1 车辆结构

车辆是由车体、轴箱、摇枕、侧架、轮对等基本部件组成的,各部件之间通过刚性、弹性、或摩擦阻尼装置相连接。车辆的这种结构特点,使列车运行时产生横向振动。同时车辆转向架各部件之间的游间,以及制造误差等,也会使车辆产生横向振动。

2.2.2 轨道的不平顺

高速铁路线路的两股钢轨顶面在直线地段应保持同一水平,线路和道岔处的轨距都应是标准轨距。但由于施工技术的问题使新铺的轨道,在验收时其水平和轨距都允许有一定的误差,这些因素造成轨道的不平顺,当高速列车运行时,使列车横向振动加剧。

通过研究表明,车辆的横向偏移量随着列车运行速度的提高而增大,且速度越高,振动偏移量随速度变化越明显。高速铁路虽然动车组的制造技术高,轨道按照高平顺性设计,但高速运行会使列车由于车辆结构和轨道状态引起的横向振动加剧,横向偏移量增大。所以,确定建筑限界的宽度时,就必须考虑列车的横向振动所引起的横向偏移量对建筑限界的影响。

2.3 安全裕量

安全裕量是考虑一些未定因素如施工误差、线路大修等,使线路可能发生的非正常状态偏移,以及车辆各部件磨耗引起的车辆摇头、点头振动、列车会车压力波等对横向偏移量的影响,而裕留的安全空间。

3 高速铁路直线地段建筑限界最大宽度的确定

建筑限界的确定是在考虑机车车辆限界的基础上,将车辆结构、轨道不平顺所引起的横向偏移量,按照最不利情况进行组合,得出高速车辆在直线和曲线上的振动总偏移量,再考虑未定因素的影响而留有的安全裕量。

目前,机车车辆限界的宽度为1700 mm,列车运动时的最大横向偏移量约为446 mm,安全余量取150 mm,加总后取整为2300 mm,按此计算高速铁路建筑限界最大宽度应为4600 mm。由于高速铁路没有货物列车运行,建筑限界可适当减小。但考虑到与既有铁路限界宽度的一致性,并且不引起工程量增加,因此高速铁路建筑限界的最大宽度可不小于既有铁路,与GB146.2-83中规定的一致,为4880 mm。第十版《铁路技术管理规程》规定,200 km/n≤v≤350 km/h的客运专线,其建筑限界的最大宽度为4880 mm。日本新干线建筑限界的最大宽度为4400 mm,德国大部分线路也是4400 mm,可见我国建筑限界的最大宽度已留有足够的安全空间,能够保证高速列车的运行安全。

4 高速铁路曲线上建筑限界的加宽

当列车在曲线上运行时由于车体中心线与轨道中心线不吻合,两转向架中心销之间的车体中心线向曲线内侧倾斜,车体纵向两端向曲线外侧突出,同时由于曲线部分外轨超高也使车体向曲线内侧倾斜,这些因素都会使车体与建筑限界之间的安全空间减少。因此为保证行车安全,曲线上的建筑限界应加宽。加宽量的计算式为:

公式(1)中的第一项和公式(2)都是由于车体中心线与轨道中心线不吻合,所产生的曲线内侧加宽和外侧加宽,即几何偏移,公式(1)中的第二项是由曲线外轨超高所产生的曲线内侧加宽,即超高倾斜。由此可以看出,几何偏移所引起的加宽量与曲线半径有关,曲线半径越大,加宽量越小。第十版《铁路技术管理规程》规定的客运专线最小曲线半径为2200 m,困难情况下为2000 m。按照困难情况计算,其内侧加宽为20.25 mm,外侧加宽为22.00 mm。在确定建筑限界最大半宽时,各种影响因素已按最不利情况组合,还考虑了150 mm的安全裕量,在此基础上由2300 mm加宽到2440 mm,有足够的安全空间。因此,几何偏移所引起的加宽数值就显得太小,可以不用考虑。所以高速铁路曲线上建筑限界的加宽,只考虑超高倾斜加宽就可以了。即:

由(3)式可以看出,高速铁路曲线建筑限界的加宽量与H、h有关。H为计算点至钢轨顶面的高度。当线路旁的建筑物或设备的高度大于或等于机车车辆限界上外侧突出点的高度时,取机车车辆限界上外侧突出点作为计算点,该点至钢轨顶面的高度为3850 mm,即H=3850 mm.。当建筑物或设备的高度小于机车车辆限界上外侧突出点的高度时,计算点取建筑物或设备的顶点,H为建筑物或设备的高度。h为曲线外轨超高,它随曲线半径的不同而不同,可利用公式求的。通过铁科院研究表明,当列车停在外轨超高为200 mm的曲线上时,旅客感到站立不稳,行走困难且有晕眩之感,德国和法国为180 mm,日本新干线为200 mm,因此我国高速铁路曲线外轨超高最大值为180 mm。

5 高速铁路曲线上建筑限界的加宽方法

列车运行从直线经过缓和曲线到圆曲线,或从圆曲线经过缓和曲线到直线,为保证列车在此过程中运行平稳,曲线上建筑限界的加宽不是突变,而是采用阶梯递减的方法。加宽范围为部分直线、缓和曲线和圆曲线。阶梯递减法将加宽区域分为两段进行加宽,具体为

第一段:取直缓点外22 m处作为加宽的起点,该距离为车体一侧转向架中心至另一侧车体端部的距离,该点是产生加宽的临界点。取缓中点向直缓点方向13 m处为第一段加宽的终点,该距离为车体长度的一半。该段按加宽量的一半进行加宽。

第二段:从第一段的终点开始直到缓圆点,该段按全部加宽量进行加宽。

6 结语

随着高速铁路建设及运营,高速列车运行安全问题日显突出,建筑限界的确定就成为保证高速列车运行安全的重要内容之一。本文基于我国高速铁路设计标准,对高速铁路建筑限界影响因素及确定方法进行了探讨,旨在正确理解建筑限界宽度的影响因素、曲线上建筑限界加宽理论和方法,合理确定线路两旁建筑物和设备至线路中心线的距离,为高速铁路站场设计提供帮助。

参考文献

[1] 中华人民共和国铁道部.铁路技术管理规程[S].北京:中国铁道出版社,2006.

[2] 铁道第三勘探设计院,铁道第四勘探设计院.京沪高速铁路设计暂行规定(上、下)[S].北京:中国铁道出版社,2005.

[3] 徐鹤寿,郝有生.高速铁路建筑限界的研究[J].中国铁道科学,1998(19):75-81.