欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

优化设计论文(合集7篇)

时间:2023-03-29 09:24:16
优化设计论文

优化设计论文第1篇

针对爆燃动力装置不同工作阶段的不同特性,依据内弹道物理模型,借鉴内弹道火药燃气状态方程、燃烧方程、能量守恒方程、运动方程等内弹道经典理论[3],分别构建4个阶段的内弹道数学模型。定容燃烧阶段。火药燃烧阶段。此阶段的火药形状函数、火药燃烧方程、药筒和滑筒运动方程、药筒和滑筒运动速度与行程的运动学方程、能量方程分别为:爆燃动力装置内弹道数值模拟方程组中共有p、v、l、t、ψ、Z等6个自变量,其中:定容燃烧阶段含2个独立方程,2个未知量可解;火药燃烧阶段由5个独立代数方程和常微分方程组成,选定自变量t时,其他5个未知变量可以利用数值方法求解;第3、4阶段分别含2个独立代数方程和常微分方程,选定自变量t时,3个未知变量均可利用数值方法求解。

2基于遗传算法的内弹道优化设计

由于内弹道过程复杂,影响因素诸多,以往传统的内弹道工程设计方法,多凭经验或借助程序进行内弹道设计,只能保证所选方案的可行性,而不一定是最优方案。为此,依据内弹道数值模拟方程组,选用遗传算法开展爆燃动力装置内弹道优化设计,获取最优以选取更科学合理的方案,提高设计质量,缩短设计周期[6-7]。遗传算法中,根据所求解问题的目标函数构造一个适应度函数,通过该函数对由多个解构成的一个种群进行评估、选择、交叉和变异,经过多代繁殖,将适应度值最大的个体作为所求解问题的最优解[8]。

2.1目标函数的确定

为保证试飞组成员的生命安全,确保应急逃生通道的畅通,在爆燃动力装置结构尺寸严格受限的条件下,必须提高爆燃动力装置的装药利用率,满足爆燃动力装置做功能力的最大化。爆燃动力装置的做功能力与药筒最大出口速度成正相关关系,为此选择药筒出口速度v为优化目标函数。即:f=maxv。

2.2优化设计变量的确定

优化设计变量必须是对目标函数影响最大、最敏感且相互独立的。由于爆燃动力装置只能安装机机身门框与服务舱门之间的狭小缝隙内,装置安装空间、结构尺寸严格受限,装药量ω、药室容积V对爆燃动力装置的做功能力和药筒出口速度的影响最显著,本文中将这2个参量作为优化设计变量。

2.3约束条件的建立

基于爆燃动力装置安装空间及零部件结构强度的考虑,等式约束条件为气体最大压力pm=260MPa;药室容积不仅与爆燃动力装置的安装空间有关,而且与滑筒、药筒的结构尺寸也有密切关系,因此取约束条件:380mm3≤V≤570mm3;飞机飞行过程中面临的复杂强烈振动环境,同时考虑到火药燃烧性能及压药密度的可能性,取约束条件:1.7g≤ω≤4.8g。

2.4遗传算法优化过程

爆燃动力装置内弹道遗传算法优化流程(见图3)为:(1)对爆燃动力装置内弹道参数进行二进制编码,生成由一定数量个体组成的初始种群;(2)对种群进行译码,带入内弹道模型,依据既定的评价指标对初始种群内所有个体进行个体评价进行个体评价,计算可行解;(3)计算可行解的适应度函数;(4)依据适应度函数对生成的可行解种群进行评价,并更新非劣解集;(5)按照遗传算法中的选择、交叉和变异操作,生成新一代种群;(6)反复迭代循环执行(2)~(3)过程,直至获得爆燃动力装置内弹道参数最优解,计算结束[9-10]。

3数值模拟结果和实验验证

3.1数值模拟结果分析

遗传算法历代收敛状况如图4所示。由收敛状况曲线可知,遗传算法优化设计变量、约束条件以及目标函数在遗传算法搜索前期震荡剧烈,随着迭代次数的增加,震荡范围逐渐减小,当算法迭代次数达到500次时,算法已经收敛,获得了爆燃动力装置内弹道优化的最优解。获得最优设计点为:V=471mm优化后药筒出口速度为:v=8.9m/s。

3.2爆燃动力装置推门模拟实验

依据相似理论原理,研制了爆燃动力装置推门模拟实验装置(推门模拟实验原理框图如图5所示),舱门的结构尺寸、质量、受力状况等均与真实飞机舱门相同。为准确掌握爆燃动力装置的做功能力和内弹道性能,推门模拟实验过程中,对爆燃动力装置的内弹道性能进行测试,测试系统框图如图6所示。

3.3数值模拟结果与实验结果的比较

爆燃动力装置做功过程中的最大压力pmax、工作时间t、出口速度v等内弹道参数如表1所示,内弹道压力实测与理论计算曲线基本吻合,如图7所示。可见,建立的爆燃动力装置内弹道数学模型合理。由图7可见,压力的计算结果与实验结果有一定的误差,但最大误差小于3.84%。两者的微小差异,是由于爆燃动力装置做功过程中的热损失波动、火药燃烧不完全以及除间隙泄漏外的其他气体泄漏等造成的。内弹道遗传算法优化前后,爆燃动力装置推门模拟实验及内弹道测试过程如图8所示。内弹道遗传算法优化前,推动模拟舱门运动的距离达不到规定要求,且舱门发生较大角度的偏转,爆燃动力装置做功能力不符合预期目标;爆燃动力装置内弹道遗传算法优化后,推动模拟舱门的运动距离符合相关技术指标,且模拟舱门做平移运动,其翻转角度满足规定要求,能够按照规定的运动轨迹和飞行姿态运动,爆燃动力装置内弹道遗传算法优化设计结果达到了预期目的。

4结论

优化设计论文第2篇

1引言

海绵城市理念在园林绿地建设中极具适用性,而园林优化设计又是打造海绵城市过程中不可或缺的重要内容。当前,园林的主要功用是观赏、休闲、娱乐,在人们日常生活中扮演着重要角色。基于海绵城市理念,对其进行优化设计,不仅能够提高水资源利用率,而且能够有效解决水污染问题,使城市空气及环境得到净化,经济效益与生态效益兼备。

2海绵城市理念、建设原则及规划目的

2.1海绵城市理念

海绵城市即充分发挥现代城市的弹性,使其对环境变化及自然灾害具备较好的应对能力。海绵城市极为舒适,呈现宜居性特征,具备较好的渗透性和净化功能。主要实现方法是充分发挥生态、自然排水系统功能,对雨水进行吸纳和缓释,有效缓解城市内涝问题,改善城市环境,解决水资源浪费问题。

2.2海绵城市建设原则

安全性原则。参考城市防洪排涝标准,进行海绵城市建设,使城市雨水控制系统更加安全、可靠,抵制自然灾害,保护人民群众的生命财产安全,保障城市供水,为人们提供一个安全的用水环境。生态性原则。生态问题是海绵城市规划及建设中考量的重要内容,将自然排水系统应用到公园、河流、绿地等海绵体中,使雨水能够自然排放和净化,对水资源进行充分利用,使其具备较强的自然修复能力。因地制宜原则。依据区域性地质情况和水文特征等,分析园林设计中的各影响因素,以对开发设施和系统等进行针对性选择。④统筹建设原则。将海绵城市理念应用到园林优化设计中,需各部门及专业共同参与及合作,该过程中要分工明确,对各项设计施工内容进行统筹安排,达到园林预期设计目标,并兼顾社会性、经济性和环保性[1]。

2.3海绵城市规划目标

首先,提高雨水利用率。以海绵城市理念为基础,对园林进行优化设计,能够对雨水资源进行合理应用,具体实现方法是集蓄和渗透,继而对地下水进行有效补充,以对径流系数进行有效控制,使排水压力得到有效缓解。与此同时,也可以通过池塘、湿地和自然水体等,对雨水进行科学调蓄和应用,使城市生态环境得到有效改善。其次,改善城市景观。在园林优化设计中应用海绵城市理念,能够对现有城市景观进行有效改善。公园、绿地等多处于生态敏感地带,其因自身独有的生态格局,极具休闲性。但是,要改变传统开发模式,既要实现自然资源保护,又要促进城市发展,依据城市水文地质及水环境特征,实现控制目标规划。与此同时,建设园林时,很容易污染水资源,需对降水径流污染进行严格控制。

3基于海绵城市理念的园林优化设计方法

3.1转变传统设计理念

城市园林设计中,设计人员很容易沿用传统设计理念,采用水泵、管渠等设计方式,园林道路面积相对较大。部分设计人员秉承末端集中排水原则,导致园林很容易在降雨天气出现雨水淤积。海绵城市更倾向于采用自然排水方式,选择下沉式绿地等影响相对较小的排水方法,注重源头分散控制。相较于传统园林设计理念,基于海绵城市理念的园林设计方式更具先进性及可行性,不仅有助于节约水资源,而且排水畅通。设计人员也要依据园林实际情况,改变传统设计理念,选择适用性较强的设计方法,以达到良好的园林设计效果,符合海绵城市建设要求。例如,园林优化设计中,可选用渗透技术,构建雨水花园、生物滞留带、渗井等,减少不必要的水资源浪费问题,确保雨水天气排水畅通;在绿地、广场等设置湿塘以及各类渗管渠等。

3.2科学选择海绵体

海绵园林的优越性主要表现在三个方面:对园林原有生态系统进行有效保护;对已破坏生态系统进行修复。低影响开发。然而,现阶段,城市海绵园林建设中仍然存在诸多问题,海绵体吸收能力较小或者使用过程中发生损坏等。产生该类问题的原因主要是工作人员的重视度不足,其并未依据地区实际情况,对外部环境进行全面考察、分析和论证,导致海绵体选择过于随意,以至于无法达到良好的园林优化设计效果。我国国土资源辽阔,各地区环境和气候有所不同,存在较大差异,城市降水量也有差别。为将海绵体的效用发挥到最大,设计人员要依据城市园林建设要求及区域状况,对海绵体进行合理选择,确保其适用性,并进行严格的质量检查。而施工单位也要依据工作人员的调查情况,将基础设施采购工作落实到位,达到预期园林设计效果。

3.3合理设计景观,低影响开发

依据地域特征及城市园林建设要求,既要确保基础设施建设工作,又要兼顾市政设施的稳定性。降雨之后,选择源头分散的控制方法,对雨洪进行低冲击开发利用。其中,控制参数包括排水量和径流系数,对各项技术进行合理应用和开发,设置透水铺装,将蓄水池、碎石沟、渗透渠等基础性海绵设施建设工作落实到位。小径流中,采用正确的方式,对观望承受的雨水压力进行有效控制,并合理建设排水网络,使其分布合理,既要确保各项基础设施建设的完整性,又要将其与市政设施进行完美融合。有效融合景观植物。设计施工单位要对园林土壤状况进行全面分析,对其具备清晰的认识,优选改良土壤,以实现径流量控制,并进行地下水补给。与此同时,也要依据区域状况及园林优化设计要求,对草、灌、乔等各类植物进行合理搭配,注重水生植物与陆生植物的协调性,增加园林中植物种类。对园林气候和水土特性等进行综合考量,优选植物群。该过程中,也要立体种植植物,依据植物特性,确保各品种之间搭配的合理性,并考量外部土壤、气候特征,使其与植物生长要求及规律等相符合,在园林优化设计中,实现多样化种植。在园林内部设置植物群落,以对地表径流进行有效控制,使水循环时刻处于良好的运行状况,使水资源得到充分利用,减少不必要的浪费问题。依据植物实际分布状况,考量生态效益的同时,适当种植乔木、草本植物等,达到防风固沙效果。树根经长期生长,蔓延到地下,用以保持水土。该过程中需要考量的相关内容比较多,需对公园和道路系统中的雨水节点、排水方向等进行严格考量,并划定排水分区,依据场地竖向,划定拟布局低影响开发设施汇水面,并测量其面积。选择低影响开发设施类型,并对其进行合理布局。

4结语

综上所述,将海绵城市理念应用到园林优化设计中极具适用性。市政及相关设计部门要结合园林设计及建设理念,对海绵城市概念具备清晰的认识,依据园林优化设计要求,改变设计人员的传统观念,合理选择海绵体,实现海绵园林建设目标,减少不必要的水资源浪费问题,实现环境保护,为人们提供良好的休闲、娱乐场所,提高我国城市园林建设整体水平。

作者:李跃雯 单位:中国城市建设研究院有限公司

优化设计论文第3篇

为了表示每级荷载作用下的单桩净沉降量Δs随荷载的发展情况,根据规范规定把Q除以极限荷载后绘制出试桩的Q/Qu~Δs曲线,如图6所示。由图6可知,变径桩承受约80%的极限荷载时曲线迅速跷起,在该位置之前曲线变化趋势比较平缓,斜率较小,这说明在上部荷载作用下,试桩上盘承载力在逐渐发挥作用,沉降变形较缓和;当荷载超过80%的极限荷载之后,曲线斜率增大,沉降也迅速增大。这种情况是因为上盘的承载能力已经达到极限,继续增加的荷载由盘间的侧阻力和下盘承担并向下传递到桩端,桩端土体被压实,此时变径桩达到了自身的极限承载力[5]。如果继续增加桩顶荷载,则该试桩就会由于桩顶沉降量超过规范规定而被认为达到了破坏状态。

2变径桩设计优化

2.1设计变量与目标函数

以变径桩承力盘直径及主桩身直径作为设计变量X={d,D1,D2},在满足承载力规定和沉降量约束等条件下,以整个变径桩桩身体积最小建立目标函数,达到节省材料的目的[7],如图1所示。

2.2约束条件

2.2.1承载力约束变径桩单桩承载力由桩侧摩阻力和承力盘及桩底端承力组成,其值应满足单桩承载力设计值[7]。2.2.2单桩总沉降量约束[9]竖向荷载下单桩的沉降由以下三部分组成:1)桩侧荷载传送到桩端平面以下引起的土体压缩,桩端随土体压缩而产生的沉降S1;2)桩端荷载引起土体压缩而产生的桩端沉降S2;3)桩身弹性压缩而产生的桩顶沉降S3。按分层总和法分别计算各部分沉降便可计算出单桩的总沉降,对于变径桩还应考虑承力盘荷载引起的桩端以下土体压缩S4。2.2.3承力盘间距约束一般情况下,承力盘的最小间距,粘性土、粉土≥1.5D;砂土≥2.0D(D为承力盘直径)。由于承力盘的竖向间距适当增加,能充分发挥承力盘的承载作用,本次优化设计根据所采用的工程地质条件,取承力盘的间距为2.0D。2.2.4承载力下限约束值为了保证竖向荷载能沿直桩身向下传递,承力盘发挥其承受荷载的能力,对变径桩的直桩身进行桩身抗压强度约束。2.2.5承力盘抗冲切验算变径桩在承受上部荷载时,如果承力盘高度不满足要求,则会发生承力盘挑出部分的冲切破坏,因此,需进行抗冲切验算[9]。对于冲切问题,因其是沿承力盘底部45°角方向产生冲切面,盘体的任何一条冲切线都经过桩本身而不断开就可保证承力盘不被冲切破坏,因此当承力盘的一侧扩出长度/承力盘高度≤1即可保证不产生冲切破坏。为了满足抗冲切的条件,本文中承力盘的高度分别取值为:(D1-d)/2、(D2-d)/2。由表2可知,在满足承载力、沉降等约束条件下,经优化后的工程实例节约混凝土量至少在15%以上。桩基设计规范规定承力盘直径与桩身直径的比值D/d≤3,该规定只给出了D/d的上限值,并没有给出优化结果。由于没有充分的理论根据,设计人员通常按一定的能量储备设计,往往取值在2左右,很少突破2.5。根据优化结果可知,D/d取值在2.5~3.0之间。由于承力盘直径的增加,承力盘部分承担的荷载必然要增加,桩身承担的荷载必然要减小,在混凝土用量不变的情况下,就实现了小桩径(与原设计相比)或短桩(与原设计相比)可以承担大荷载的结构。

3结论

优化设计论文第4篇

论文摘要:为贯彻煤矿“安全第一,预防为主,综合治理”的生产方针,钻孔的应用越来越广泛,特别是高瓦斯矿井和突出矿井的区域综合防突措施的预抽钻孔,每个钻场设计上百钻孔。为使繁琐的钻场钻孔设计精确、方便、快捷,笔者根据《2009最新版防突细则》解析了穿层钻孔预抽石门揭煤钻孔最小控制范围;分析确定了最少(3个)求值参数及其种类(56种)和最优求值参数的论证,并对其验证;以穿层钻孔预抽石门揭煤区域煤层瓦斯区域防突措施钻场设计阐述验证。

引言

《2009最新版防突细则》第四十九条中预抽石门揭煤钻孔的最小控制范围为两个必要条件,意思不够直接明确;钻场设计繁琐,且大部分钻场设计工作者未能把钻场设计与计算机紧密结合;钻场钻孔求值参数多,求值方法多,但却未选择最优求值参数,导致设计钻孔参数不够精确。笔者针对以上情况以预抽石门揭煤钻孔为例阐述了钻孔最小控制范围和最少最优求值参数,以便精确、方便、快捷的设计钻场钻孔。

1、钻孔最小控制范围解析

《2009最新版防突细则》第四十九条(四):预抽石门揭煤钻孔的最小控制范围是:石门和立井、斜井揭煤处巷道轮廓线外12m(急倾斜煤层底部或下帮6m),同时还应保证控制范围的外边缘到巷道轮廓线的最小距离不小于5m。

据以上规定可知石门揭煤钻孔最小控制范围为两个充分必要条件,即:煤层倾角β<45°时,最小控制范围需满足上、下帮巷道轮廓线外倾向12m和法向5m,左、右两帮法向5m;β≥45°时,最小控制范围需满足上帮巷道轮廓线外倾向12m和法向5m,下帮巷道轮廓线外倾向6m和法向5m,左右两帮法向5m。

根据煤层空间位置关系可知:sinβ=法向控制范围/倾向控制范围,煤层倾角β越小,法向5m所控制的倾向范围越大。经分析石门揭煤钻孔最小控制范围如图表1所示。(注:asin(5/12)=24.6°,asin(5/6)=56.4°)

表1石门揭煤钻孔最小控制范围

煤层倾角范围

上帮

轮廓线外

下帮

轮廓线外

左、右两帮

轮廓线外

β≤24.6°

法向5m

法向5m

法向5m

24.6°<β≤56.4°

倾向12m

法向5m

法向5m

β>56.4°

倾向12m

倾向6m

法向5m

2、钻场情况及钻场设计

煤层厚2m,倾角β=30°;石门揭煤巷道高3m,宽5m,方位α0=195°。据《2009最新版防突细则》及表1设计石门揭煤钻场如图1。(为视图清晰,抽采半径假定为5m)

图1预抽石门揭煤钻场设计图

3、最少求值参数

以28号钻孔为例,预抽钻孔立体及简化图如图2所示。线EC为28号钻孔线,面ABCD为水平投影面,线AC为钻孔水平投影线,面ADHE为钻孔铅垂剖面,线ED为钻孔铅垂剖面线;α偏28钻孔方位偏角,θ为钻孔倾角,H为穿煤孔深等钻孔参数。

图2预抽钻孔立体及简化图

由图1中钻场设计剖面图,直角三角形AED除直角外有5个参数(三角形的3角3边)均可用CAD量出;由图1中钻场设计平面图,直角三角形ADC除直角外有5个参数均可用CAD量出。直角三角形ADC与AED有一条公共边AD,所以两三角形一共有9个参数,且均可量出,但量取参数是繁琐的重复过程,为此需确定最少的参数并准确的求取所需的钻孔参数。

如图2中28号孔空间立体简化图,经分析:需求解α偏28、θ28和H28必须求解四面体ACDE,而把直角三角形AED和ADC解出,四面体ACDE即解出。直角三角形已知2个参数(除直角外)即可求解,求解两个直角三角形需4个参数,因为直角三角形AED与ADC有一条公共边,所以求解这两个直角三角形仅需3个参数,且直角三角形AED与ADC各需至少一个参数(公共边AD除外),即求解钻孔α偏28、θ和H参数仅需3个参数。

4、最少求值参数种类

经上分析:已知求解参数有9个,为计算钻孔参数方便快捷仅需3个求解参数即可,直角三角形AED与ADC各需至少一个参数(公共边AD除外),即一个三角形2个参数,另一个三角形1个参数(不包括公共边)。

无公共边最少求值参数种类:(C42-C22)×C41×C21

有公共边最少求值参数种类:C41×C41

最少求值参数种类:(C42-C22)×C41×C21+C41×C41=56(种)

5、最优求值参数

已知求解参数有9个:包括4个角度,5条边。

结合图1与图2分析:

1)、方位偏角α偏可直接量出但每个钻孔的偏角不一,且量取角度误差较大;

2)、每个钻孔的AC与DE不一,需一一量出;

3)、1、5……25号孔,2、6……26号孔,3、7……27号孔和4、8……28号孔的X(CD)各均相同;

4)、1-4号孔、5-8号孔、9-12号孔、13-16号孔、17-20号孔、21-24号孔和25-28号孔的Y(AD)和Z(AE)各均相同。

综上所述:X、Y和Z为最优求值参数。

优化设计论文第5篇

结构优化的概念较早就已经提出。结构优化设计的任务在于对结构方式和外形尺寸等因素做参考进行优化设计。计算工作量较大,在计算机完全替代人工计算后,使这种方法的应用逐步变得广泛。我们把系统的设计限制来作为优化设计的束条件,将设计变量以及性能变量的一组不等式表示了出来,将可以反映设计要求的数值作为目标的函数,运用数学的方法和手段得到了满足全部条件且使目标函数为最佳的设计变量。这既是总体的设计优化方案思路也是该设计的精髓。

针对不同的设计问题,其最优设计程序通常是基本相同的,首先应当了解结构的技术以及使用的要求,完成基本布局。此后再用一组设计变量来表述结构的尺寸以及物理性能等变量,此后可以写出关于设计变量的荷载函数。并能够建立起结构分析的方法,最终形成设计变量的一种约束方程,也可以说对设计变量值进行限制。在完成最优化方案之前,应当用公式来给出一个判别指标,也就是目标函数作为设计变量的函数。使之最小的一组设计变量也将成为为最优方案。

2.减速器齿轮箱体的优化设计

本论文的优化目的在于在齿轮箱结构满足强度和刚度的基础上,进行减轻重量,并完成合理均匀分布应力的优化工作。我们提出的优化具体设计为:

第一步,针对结构确定设计方案,并通过CAD软件进行建模。

第二步,通过CAD软件和有限元分析软件的连接传递到有限元分析软件中,并获得相关的应力以及位移等参数。

第三步,据实际情况进一步确定优化目的,对设计进行计算结果分析和比较,明确能够修改的结构参数。

第四步,通过修改参数,重新进行分析,并通过这种方法获得结构参数以及相应的响应值。并完成最佳参数的选取,同时得到更加科学合理的结构和尺寸。

我们做出的优化主要是针对箱体的质量的。即在外载荷不变而且不改变结构布局的前提下,对齿轮箱进行优化。将重量当作优化的目标函数,采取结构优化设计技术能够在确保质量的情况下,有效节约成本,提高质量。实现安全性、可靠性、节约型等多个层面的兼顾。因为结构布局和材料是固定不变的,所以箱体结构也是不发生变化的,仅仅是把箱体的具体部位厚度作为设计变量,用箱体工作结构的最大位移作为状态变量,把结构的质量当作目标函数。也可以说是在原设计的基础上,不对其做大的调整和改变,仅仅是对结构最大允许最大范围进行调整,达到箱体最轻的优化设计效果。引入边界条件的方法,考虑边界条件。在边界条件发生改变时,场变量函数并不需要改变,这对于通用程序有大的简化。

3.减速器优化设计的数学模型

3.1目标函数

目标函数为A=min{f(x)} =min{f(x1, x2,…, xn)}其中: A为减速器总的中心距离,也就是各中心距的综合;x为设计变量(包含中心距和螺旋角以及齿数、模数等等); n为变量的数目。

3.2约束条件

约束条件是用来判别目标函数当中变量的取值可行与否的规定,所以减速器优化设计中提出的任何一个方案都必须满足所有的约束条件的变量所构成。在给出优化设计的约束条件的情况下,需要从各个方面进行周密的考虑。比如设计变量本身的取值要求;齿轮和零件的紧密程度等等。一般来说要充分考虑到以下几个约束条件:

一是离散性约束。其中包括齿数,也就是每个齿轮的齿数需要是整数;模数:要求齿轮模数必须符合模数系列(GB1357-78)的要求;中心距:要以10mm为单位。

二是上下界约束。螺旋角:对于直齿轮应当为零,斜齿轮取8°~15°;总变位系数:因为总变位系数能够影响齿轮承载能力,通常取0~0. 8。

三是强度约束。一般是指齿轮的齿面接触强度和轮齿的弯曲强度,依据GB3480-83标准进行。强度是否达标,需要根据实际安全系数进行实践检验。

四是根切约束。为规避根切现象,规定出最小的齿数,其中直齿轮是17,斜齿轮是14到16之间。

五是干涉约束。需要中心距和齿顶圆以及轴径满足没有干涉的关系。针对三级传动的减速器,干涉约束可以看作两个约束;第二级中心距需要比第一级大齿轮齿顶圆半径和三级小齿轮顶圆半径的总和;第三级中心距需要大于第二级大齿轮顶圆半径和第四轴半径的综合。二级齿轮传动以此类推。在完成优化设计后,能够可以获得响应,并直观地显示出参数的变化对函数的影响

优化设计论文第6篇

门盖在工作时与汽车壳体之间的接触过程非常复杂,不仅涉及到接触、大位移、大变形等非线性问题,而且由于不同车型的汽车外壳结构不同,选用的材料也不同,所以研究时必须考虑汽车壳体模型.由于研究的主体是门盖,而推动门盖的主动力已知,汽车壳体只是力传递的边界条件,所以引入汽车壳体的简化模型.汽车壳体采用一般小轿车大小4500×1750×1300的简化模型,其材料模型采用线弹性模型,弹性模量取相比结构钢较小的值,这样既可以模拟在压缩过程中出现的较大变形,又避免引入材料非线性影响计算效率,同时对门盖的应力和变形计算影响很小..根据门盖的结构形式和特点,CAE建模时采用壳单元(ShellElement)来划分网格.在不影响分析结果的前提下对门盖进行了必要的简化,如忽略了螺纹孔、圆角及倒角等特征,从而提高有限元模型的质量、减小模型的计算规模.分析模型如图2所示.

2有限元分析

门盖闭合过程中,门盖与汽车壳体之间存在接触非线性.同时,工作过程中汽车壳体的刚度不是恒定的,它随着变形的大小而变化,即存在几何非线性.因此本文作SOL601,106高级非线性静力学分析.非线性分析和线性分析相比,非线性分析的计算时间和计算机存储量要大得多,而且在数值计算方法和求解参数的设定上有较大区别[2].边界条件包括载荷、约束和仿真对象[3].在门盖的左右轴套上分别施加轴承力,力的大小为800KN,方向为沿着油缸的轴向,指向门盖.在汽车壳体的底部作固定约束、门盖的旋转轴处作销钉约束.同时,忽略门盖组件各结合面之间的接触变形,近似将各接触部分看作刚性接触,在FEM下为门盖的各边、面之间添加1D连接[4-5].门盖与汽车壳体之间的接触是非线性的,在仿真模型下,定义高级非线性接触,汽车壳体作为“源区域”,门盖底板作为“目标区域”,“接触参数”保持默认.有限元计算模型如图3所示,分析结果如图4所示(只显示门盖).根据图形可知门盖最大等效应力为170.76MPa.应力主要集中在门盖的左右轴套上,即油缸与门盖连接处.门盖的材料为Q235号钢,屈服强度为235MPa,可见在该工况下门盖满足强度要求.

3优化设计

有限元分析的最终目的是进行优化设计,现在需要对门盖结构进行优化,优化的目标是模型的重量最小[6-7].约束条件是在不改变门盖模型网格划分、边界约束和载荷大小,并能满足强度要求的前提下,控制最大等效应力值不超过材料屈服强度的70%(约165MPa).

3.1筋板的布置

根据分析结果可知,应力主要分布在左右轴套处,大部分的筋板受力极小,因此,可通过布置筋板的分布进行优化设计.为便于加工和装配,门盖筋板布置采用均匀分布的方式.设计变量为筋板的数量,原结构中单行设置的筋板数量为10,考虑减重的目标及结构的稳定性,取筋板数量为3-7.图5为筋板数量与门盖最大应力和位移关系,图6为不同筋板数量对应底板的应力分布图.结果表明筋板数量对门盖的最大应力(轴套处)影响较小,对门盖底板的应力分布位置影响较大.底板最大应力发生在门盖油缸轴线方向上的临近筋板与主横筋板接触处,最大应力为N=4时σmax=61.52MPa.综合考虑最大应力、最大位移和底板的应力分布,以及实现减重的目的,确定新结构的筋板数量为4.

3.2筋板厚度的优化

3.2.1灵敏度分析

灵敏度分析是为优化设计做铺垫.通过灵敏度分析可以确定模型各参数对输出结果影响的大小.在模型校正过程中重点考虑对输出结果影响较大的参数,排除那些对输出结果影响很小的参数,这将在很大程度上减小模型校正的工作量,提高优化设计的效率[8-9].NX高级仿真中几何优化模块下提供了全局灵敏度解算方案.设计目标为门盖的重量最小,约束条件为门盖的最大应力,设计变量为筋板厚度.为便于加工与安装,门盖结构中相同结构的尺寸应保持一致.筋板厚度参数主要包括底板厚度T1、主横筋板厚度T2、横筋板厚度T3、竖筋板厚度T4、轴套厚度T5、前板厚度T6、门盖耳套帮板厚度T7和其他筋板厚度T8.对上述筋板厚度进行全局灵敏度分析,获得各参数对设计目标影响的全局灵敏度曲线,最后将所有灵敏度曲线调整到一幅图表中进行比较,根据各参数的全局灵敏度曲线的斜率大小判断设计参数对设计目标的灵敏程度,最终确定T1、T2、T3、T4.根据各参数对约束条件的影响曲线,确定T5.全局灵敏度曲线如图7所示.由图7(a)可知底板、主横筋板、横筋板及竖筋板的厚度对门盖的重量影响较大,其中底板的影响最大.由图7(b)可知轴套的厚度对约束条件的影响最大.为提高门盖强度以及减轻门盖的重量,主要对底板、主横筋板、横筋板、竖筋板厚度进行减小,同时适当增加轴套的厚度.

3.2.2尺寸优化

尺寸优化是建立在数学规划论的基础上,在满足给定条件下达到最佳经济技术指标[10].NX高级仿真结构优化的解算器采用的是美国Altair公司的AltairHyperOpt,它拥有高效、强大的设计优化能力.结合以上分析结果,进行筋板数量等于4时筋板厚度的优化分析.在“几何优化”对话框中作如下设置:①定义目标:重量定为最小;②定义约束:门盖上的最大等效应力为165MPa;③定义设计变量见表1;④控制参数:选择最大迭代次数为20.经解算,找到最佳方案:底板厚度由原来的52mm修改为45mm,主横筋板厚度由原来的50mm修改为45mm,横筋板厚度由原来的25mm修改为20mm,竖筋板厚度由原来的20mm修改为16mm,轴套厚度由原来的34.5mm修改为35.2mm,为了便于生产,将轴套的厚度圆整为35.5mm.优化后与优化前的分析结果对比见表2.从计算结果可看出,优化后的门盖强度得到明显提高.另外,重量由原来的10496kg降低为8786kg,减重17.2%,取得了优化设计的预期效果.

4结论

优化设计论文第7篇

1.1问题的提出

为建设黄壁庄水库副坝防渗墙,拟在副坝下游侧桩号2+000和3+750处的压坡平台上兴建2座产量200m3/h的大型混凝土生产系统,该系统含2个长×宽×高为60×60×8.4m一次储量7000m3的储料场和2座2×1.5m3的强制式机组的拌和楼见图1。由于副坝是整个水库工程存在隐患最多的部位,水库主管单位对在压坡平台上兴建工程严加限制:一不得深挖;二不得宽挖。保证在除险加固完成前副坝的安全度汛。在地形条件受限制的情况下,如何确保储料场按计划完成,关键在挡土墙设计。

如何在众多形式的挡土墙中选择一种适合现场条件的档土墙结构是当前必须研究的课题。档土墙作为一般拦土结构物,常用在闸坝的翼墙和渡槽、倒虹吸的进出口边墙及其他路堤挡土部位等。对这类工程的优化设计问题往往易被忽视。我们的实践表明,各类挡土墙的技术经济效益有着相当大的差别。本项研究,从工程实际出发,意图在如减压式挡土墙、重力式挡土墙、悬臂式挡土墙和扶壁式挡土墙等四种结构中进行双向优选,即进行本类的优选设计和各类之间的优选比较,最后确定一种技术、经济状况最优、现场适应性最好的挡土墙方案用于本工程。现将研究过程介绍如下。

1.2课题研究思路

该课题的研究思路分三步的研究思路。

第一步,首先确定方案比选的统一标准。过去人们的观点认为挡土墙形状各异,结构不同,各有优缺点,要比较相当困难。实际上任何形式的挡土墙功能都是挡土拦土,因此研究认为,它们的正常挡土状态就应当是一个统一标准,而这个正常的挡土状态正是现行的规范状态,在规范状态下这些参与比选的各类挡土墙是处在同一个设计水平上,因而可以比较。

第二步,确定优化设计的风险决策方法。众所周知,任何挡土墙的稳定性特征值都是挡土墙背填土物理力学特性的函数,同时又受地基结构特性的约束;对于挡土墙的经济造价,又与结构特征相关的工程量及市场物价相关的分析单价密不可分。显然,这些都是描述挡土墙特征的随机变量。鉴于挡土墙具有上述特点,因此可以认为每类挡土墙也是离散随机变量,采用数学期望准则和优势比较准则完全能够将含离散随机变量的各个方案进行优劣比较,按照定义,离散随机变量的一切可能值Xi与对应的概率P(ζ=Xi)的乘积之和称为数学期望,记为Mζ。如果随机变量只取得有限个值:X1、X2、X3、……Xi,而取得这些值的概率分别是P(x1)、P(x2)、P(x3)……P(xi)则

Mζ=X1P(x1)+X2P(x2)+X3P(x3)……XiP(xi)

运用到风险决策中来,以Mζ值最小为最优方案。

优势比较准则实际是将方案的技术效益或造价进行比较。当方案Ⅰ的随机变量S1、S2、S3、……Si与方案Ⅱ的随机变量S1、S2、S3、……Si对应相减,其值为“0”或“+”值,则方案Ⅰ有优势;若相减后其值为“0”“0”“+”“-”或“0”“0”“-”“-”,则方案Ⅰ不存在优势。

第三步,选取拟比较的能反映方案特性的随机变量可能值。研究认为,方案的规范状态,挡土墙的墙基应力,墙基对围岩的扰动度参数——挡土墙的宽高比B/H和相对避扰度、工程造价及相对效益A等值,基本能描述挡土墙的特征,而且这些变量在分析过程中都能一一取得。故以它们作为研究比较的随机变量是合理的。

第四步,搜索各类挡土墙的规范状态并按数学期望准则和优势比较准则分别考核各个待选方案。选出最优秀方案。

2各类挡土墙的设计指标

2.1确定计算挡土墙的土压力理论

目前计算土压力的理论有多种,而各种理论又用各自不同的假设分析方法来求算土压力。根据初步筛选,除减压式挡土墙外,其余重力式挡土墙,悬臂式挡土墙和扶壁式挡土墙背墙顶与墙踵连线倾角均大于临界角εer,本工程εer=45-ψ/2。尽管一些方案的墙背可能出现第二滑裂面,尽管采用的计算公式可能出现误差,为方便起见确定统一采用郎肯主动土压力理论来计算各类挡土墙的主动±压力。初步分析估算,计算误差不会导致大方案比较结果出现错位。

有关郎肯主动土压力计算公式详见图2。

2.2现行规范(SD133-84)指标与现场地质的物理力学特性。

现行规范(SD133-84)指标与现场地质的物理力学特性见表1。

2.3四种挡土墙的现行规范状态的计算成果

根据前述2.1和2.2节确定的数学模型和物理力学指标,无论用手算方式还是计算机搜索都可得到现行规范状态下的挡土墙计算成果。详见图2、表2和表3。

表2中的“GF”是“规范”二字的汉语拼音缩写;“围岩相对避扰度”意思指“围岩避免扰动的相对程度”,此相对值越大表明围岩受扰动越小,反之则越大。

3挡土墙优化设计的风险决策

3.1按数学期望准则的风险决策

采用数学期望准则风险决策之前先将表2中的第(2)项和第(5)项、表3中的第(12)项集中到表4来,并认为表中所有随机变量X1、X2、X3的概率P(x1)、P(x2)、P(x3)值均为0.333,则可算出a、b、c、d各方案的数学期望Mζ值,详见表4。

由表4可见,减压式挡土墙Mζ值较小,而悬臂式挡土墙的Mζ值较大。比较结果表明,减压式挡土墙在这四种挡土墙方案中为最优方案。

3.2按优势比较准则的风险决策

在进行优势比较准则决策之前,先将表2中的第(3)项第(6)项和表5中的第(13)项集列成表5并进行优势比较。详见表5。

将表5中各个随机变量相互比较发现,减压式挡土墙对其他三类挡土墙比较均得到“0”“0”“+”“+”,表明减压式挡土墙方案比较优秀,为首选方案。重力式挡土墙和扶臂式挡土墙方案对悬臂式挡土墙,比较结果也显示“0”“0”“+”“+”,表明该两者也有一定优势,可作为备选方案。

总之,无论采用数学期望准则还是采用优势比较准则分别对减压式挡土墙,重力式挡土墙、悬臂式挡土墙和扶壁式挡土墙进行分析,结果基本一致。在规范状态下,减压式挡土墙方案对围岩土扰动较小、较好地适应现场受限制的地形条件、工程量及造价较低,是被考核的四个挡土墙方案最具优势者。

4减压式挡土墙在黄壁庄水库除险加固工程混凝土生产系统中的应用。

4.1减压式挡土墙设计应注意事项

混凝土标号应为C20以上。进行配筋计算时宜取安全系数K≥1.4。并且墙底不得有虚土。

4.2减压式挡土墙的施工

注意墙体分段施工程序:先浇筑Ⅰ墙基底板——Ⅱ垂直墙体下半部分——Ⅲ减压平台以下的土方回填夯实——Ⅳ浇筑减压平台——Ⅴ浇筑垂直墙体上半部——Ⅵ减压平台以上回填。

4.3减压式挡土墙应用效果

在储料场的两端,总长4×40m=160m,墙高8.4m,墙基宽2.51m的减压式挡土墙于1998年11月建成投入运用。当储料7000m3时,减压平台以上储料高度h>4m,墙顶变形2mm,墙基变形为0,运行正常。此种结构应用在储料场工程,减压平台可以代替部分混凝土硬化地面的工程量,一举两得,技术和经济效益明显。

5结语

本项研究采用数学期望准则和优势比较准则对不同类型挡土墙方案进行风险决策获得满意的效果,使工程实际中提出的问题得到解决,是对挡土墙结构优化设计的有益尝试。

减压式挡土墙是本项风险决策研究比选的出的优秀挡土墙方案。在黄壁庄水库工程应用结果表明,它的挡土效果与其他重力式挡土墙、悬臂挡土墙和扶壁式挡土墙相当,而工程造价仅为其他三类挡土墙的57%—81%、对围岩的扰动影响仅为其他三类挡土墙的41%—44%,对受限制的土基条件适应性较好,技术和经济效益明显。宜作闸坝翼墙及一般渠系建筑物进出口过渡段工程的选择方案。

本项研究的思路可供同类工程建设参考。

参考文献

[1]武汉水利电力学院.土力学及岩石力学[M].北京:水利电力出版社,1979.