欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

冶金工业论文(合集7篇)

时间:2022-07-19 10:12:47
冶金工业论文

冶金工业论文第1篇

随着资源的开发和工业的发展,环境保护问题日益严峻,水资源的保护和控制更成为世界性的突出问题,我国的环境保护法和水污染防治法,对水资源的保护和水污染的控制提出了更加严格的要求。《污水综合排放标准》(GB8978-96)中规定中,对水排放量及污染物总量进行限制。因而,对选冶金厂的给排水设计和管理提出了更高的要求。为此,在拟定给排水系统和水量平衡时,就应以充分利用循环水(回水)和减少排放为主导思想。

2冶金企业循环给水系统的特点

循环供水系统在各类工业生产中早已普遍应用,不过大多为供水量大、用水点少的情况,个别甚至采用一泵一机的供水形式,系统比较简单,而冶金生产企业循环供水系统通常单台设备的用水量小,用水点多,安全供水要求高,若考虑不周,将造成设备损坏事故,因此对供水压力要求严格。

有的设汁者由于对冶金工艺和设备性能的特点了解不深,供水管设计的水压降过大,致后面的设备水压不足,甚至形成负压、无水可供的情况,造成设备损坏。因此设计此类循环给水系统,应慎重考虑供、排水管的压力平衡,并应在进、出水管处采取相应技术措施,以确保系统运行的安全可靠。

3具体设计措施

根据笔者在工程中的实际体会,对于金属火眭冶炼企业生产设备循环给水系统的具体设计,可采取如下措施:

3.1供、排水管道采用大阻力、同程式系统大阻力、同程式系统、在供热、空调专业应用较多,在给水处理构筑物中也有应用,如采暖、热水供应、集中空调和给水处理的大阻力快滤池项目等。这类工程均有出水点压力要求严、用水点多、出水量少的特点。冶金生产企业循环供水系统的特点最与此类似,适宜于此类技术移植采用。即将进、出水水管的管径偏大采用,理论上使进、出水干管从起至终点的压力损失趋近予零,阻力主要集中在没备部分;管道配置中考虑先供水的设备先排水,后供水的设备后排水,尽量使水在管道中流经的距离近似相等。这种配置方式能确保进、出水管压力基本平衡,供水水量仅随支管管径大小而变化,可靠地避免了形成负压、出现断水的情况。

3.2设备进、出水连接管分别设置阀门、压力表由于市场经济的变化多样及原料供应等多方面的原因,工厂调整冶炼工艺流程和产品种类的事时有发生。在设备的进、出水连接管上分别设置阀门和压力表,可随时根据变化了的工况,对供水状况进行适当微调,并可实测相关数据,以累积经验,满足生产需要。

3.3设置供水压力略小于循环水泵的备用水源由于我国电力供应仍比较紧张,循环水泵一般不设双电源和应急电源,临时断电在所难免,故需设置供水压力略小于循环水泵的常高压备用水源。与此配套,还需在供水干管上设置阀门及逆止阀、压力表和断水报警装置,排水干管上设应急外排旁通管和阀门。采取了上述措施,正常工作时,由于循环泵工作压力大于备用水源压力,备用水源供水管关闭;停电时,断水报警系统动作,备用水源开通,即可保证设备安全运行。3.4安装调速装置循环水系统担负着选冶金企业主要设备用水的供给,输送水流量较大,电耗较高,如何减少循环水系统不必消耗的电力,是应引以重视的一个问题。特别当选别系列较多,而循环水泵工作台数较少时,一旦系列变化循环水泵往往不是在高效率区间工作。为此,建议循环水泵配置调速装置,根据生产系列的变化,调节环水泵的转速,使送出流量满足循环水量要求,并使水泵在高效区间工作,尽量避免采取调节闸阀消耗能量,同时不致因选别系列的变化,而引起工作系列水量水压的波动。调速设备可采用变频调速、液力耦合器调速和可控硅串级调速等,调速控制可依循环水泵压出管上的流量计读数为控制参数。应尽可能设计成在正常运行时,不论安装了几台循环水工作泵,只需其中一台泵调速运行,以节省调速设施投资。

4结语

给排水设施设计的合理性、操作性、适应性和可靠性是冶金企业维持正常和高效生产的重要前提,也是环境保护和水污染防治的基本要求;所以,设计人员在设计时应综合考虑技术、工程投资等各方面的因素,通过经济技术比较,确定安全可靠的方案,选用质优、价廉的给排水设备,为厂方提优质的设计。当然,给排水系统的科学管理和严密监控是实施上述要求的根本保证。设计和生产管理的协调配合才是促进生产技术不断完善、不断发展的有力保证。

参考文献:

[1]钱以明.高层建筑空调.上海:同济太学出版社.

[2]给水排水设计手册.第5册.中国建筑工业出版社.

[3]给水排水设计手册.材料设备续册3.中国建筑工业出版社.

冶金工业论文第2篇

一、冶金工业遗产所承载的技术史价值:以铁桥峡为例

以焦炭炼铁开始的近代冶金业的技术创新在工业革命时期对人类文明影响巨大,因此在工业遗产保护领域受到普遍重视。如英国于20世纪80年代末启动了历史遗迹保护项目,钢铁工业历史遗迹作为其重要部分,形成了398个影像资料和70个文件的档案记录。[4]在英国所有与冶金工业有关的遗址中,最重要的当然是位于伯明翰西北50公里的泰尔福德(Telford)地区的铁桥峡。近代冶金工业遗产对工业文明带来的巨大影响,其根本上是钢铁冶炼新技术及其大规模普及所带来的,从这一意义上,我们认为冶金工业遗产的技术史价值可以从四个方面来概括:一是核心技术的发明或引进;二是新旧技术体系的交替;三是冶金产品如钢铁及其重要景观的形成;四是新技术及其生产系统对社会和文化的影响。而铁桥峡遗址具备了上述四种技术史价值的全部要素,围绕这些要素,相应的工业遗产保护和开发实践得以展开:第一,焦炭炼铁技术的发明和使用,是铁桥峡成为工业革命主要发源地的根本原因,也是其作为工业遗产的核心价值所在。铁桥峡之所以成为工业革命的主要发源地,是因为1709年亚伯拉罕.达比(AbrahamDarby,1676-1717)在此成功地用焦炭炼出生铁,这一技术创新使炼铁业摆脱了对木材的依赖而获得充分的发展空间,也拉动了煤矿业的进一步繁荣。以钢铁为原料的动力机械、工程建筑和铁路交通因此得以大规模发展,人类开始进入“钢铁时代”。[5]基于焦炭炼铁在技术史上的意义,铁桥峡成为了英国工业遗产保护的首要对象之一,1959年,达比的焦炭炼铁高炉也因此成为首个被挖掘和保护的对象,其最初的目的是纪念Coalbrookdale公司成立250周年。直到1968年铁桥峡博物馆基金(theIronbridgeGorgeMuseumTrust)创立,负责对方圆6平方英里的铁桥峡地区的工业遗产进行保护和研究,铁桥峡工业遗产的保护和开发由此全面展开。第二,焦炭炼铁试验成功后,铁桥峡地区经历了近半个世纪的新旧技术系统交替的时期,这直接体现在高炉动力系统的变革上,这是焦炭炼铁系统得以最终确立并使这一地区成为工业革命摇篮的又一因素,也成为铁桥峡工业遗产保护和展示的主要内容之一。达比的高炉最初是靠上下水池的落差形成动力来鼓风的,为解决干旱的夏天上水池枯水的问题,最初是通过修建马车轨道来输送水,1742年,纽可门蒸汽机代替了马车,用于水的提升,高炉鼓风的动力仍然来自水轮机。直到1776年,直接将博尔登-瓦特蒸汽机用于鼓风的方法得以成功研制,蒸汽机才在高炉炼铁中取代了水力鼓风[5]。在铁桥峡,达比二世修建的上下水池间的运水轨道被保存下来,成为体现新旧动力系统交替过程的主要景观。科尔布鲁克代尔铁博物馆(CoalbrookdaleMuseumofIron)用文字、图片和模型,完整地展示了该地区新旧高炉技术系统的变迁过程,达到了更清晰地再现工业革命是如何发生的效果。第三,1779年修建的铁桥,作为世界上第一座用生铁建造的桥,是工业革命时期新炼铁技术所带来的钢铁新产品和新景观,构成了铁桥峡技术史价值的另一重要内容,这是炼铁新技术实现产业化的直接产物。而人们如何首次用生铁来建造这样一座大桥,本身就是另一项很重要的技术创新。针对高炉和铁桥,联合国教科文组织为铁桥峡作为世界文化遗产作出了以下两点评价:1)科尔布鲁克代尔高炉使亚伯拉罕•达比一世在1709年发明焦炭炼铁的历史得以永存。铁桥作为第一座生铁构建的大桥,同样是体现人类创造天才的杰作。2)科尔布鲁克代尔高炉和铁桥在技术和建筑发展历史上有着重要的影响。可见,正是因其在技术发展史上的意义,铁桥和达比的高炉成为铁桥峡工业遗产的核心价值所在。此外,铁桥本身的建造技术的复原也成为了工业遗产的重要研究内容。1997年,瑞典画家伊莱亚斯•马丁1779年的一幅水粉画在斯德哥尔摩曝光,这幅画描绘了铁桥建造的方法。随后,大卫(DavidDeHaan)等人进行了详细的考古学、历史学和图片的研究,为了验证画中描绘的方法的可行性,2001年在铁桥峡地区的比利斯特山露天博物馆的运河上,一座按1:2的比例的铁桥使用18世纪的材料和技术建造起来,这一成果成为了展示铁桥建造技术的景观之一。第四,新技术引发的工业化导致运输、生活方式和城镇景观的改变,是铁桥峡地区在整体上作为工业遗产的价值体现,正如联合国教科文组织对铁桥峡价值评价的第3条称:“铁桥峡提供了近代工业地区发展的一个极具魅力的缩影。采矿区、运输业、生产企业、工人住所以及交通网络被很好地保留下来,形成了一个非常协调的整体,具有显著的潜在教育价值。”如果说炼铁炉和铁桥承载着技术本身的历史,那么因冶金业的兴盛而形成的工业社会,则属于“外史”范畴。对这一层面的历史价值进行挖掘,可以为工业遗产的保护和开发提供更广阔空间。铁桥峡现有的10个博物馆中,BlistsHill维多利亚城镇(BlistsHillVictorianTown)是游客参观人次最多的景观,19世纪后半叶的维多利亚时代被认为是英国工业革命的峰端,通过BlistsHill维多利亚城镇的重建,铁桥峡地区还原了19世纪经过工业革命后的英国人的生活状况,这个露天景观包括维多利亚时期普通工人的住房、银行、公立学校、药店、食品店、糖果店、铸铁厂、蜡烛厂、印刷厂,以及火车站和铁路等。这些展示也使铁桥峡地区作为工业遗产景区,更具观赏性和吸引力。

二、中国近代冶金工业遗产的技术史价值特征

中国是世界上发明和使用生铁最早的国家,然而土法炼铁技术是与传统的农业社会相适应的,并未导致工业社会的诞生。近代西式钢铁技术在中国的兴起始于19世纪80年代。相对于西方工业化国家而言,中国近代冶金技术与工业化历史有其自身的特点,使中国近代冶金工业遗产的技术史价值具有一些不可忽视的特殊性:第一,中国近代冶金技术史是一段单向的技术转移过程,且这一时期的技术引进并未带来中国钢铁工业的发达,这是中国近代冶金工业遗产技术史价值首要的特殊性。1885年至1936年,先后有贵州青溪铁厂、汉冶萍公司等钢铁企业在中国创办(见表1),主要设备和技术全部来自英、德、美、比利时等国,其中汉冶萍公司是唯一的煤铁一体化企业,其炼铁和炼钢设备的产能超过中国钢铁企业总产能的2/3,1926年随着汉冶萍公司冶炼设备全部停产,中国近代冶金工业化走向了谷底,中国所需的钢材回到了完全依赖进口的状况。[6]虽然中国近代冶金工业最终走向衰败,但这一时期的冶金工业遗产有着不容忽视的技术史价值。首先,汉冶萍公司等企业的遗存作为中国冶金工业近代化的起点,见证了中国最初的技术近代化的努力,无论其成败以否,意义均非常巨大。其次,客观还原这段艰难而曲折的技术引进史应成为中国早期冶金工业遗产挖掘和保护的主旨所在,对中国来说,这段充满挫折的记忆或许更值得珍视,这是中国近代冶金工业遗产与英美等国的不同所在。第二,在大规模引进西方技术的同时,近代中国广大的乡村仍然长期存在一个土法冶炼系统,为人们日常耕作和生活提供材料。中国早在春秋以前就发明了生铁冶炼,几千年来,铁是支撑中国传统农业经济系统的主要技术要素之一。明清时期,山西因坩埚炼铁的发展和丰富的铁矿资源,逐渐成为铁的最大产地,(图3)这一状况一直持续到19世纪末20世纪初。相对于欧洲,中国近代新旧冶炼技术的交替显得更为艰难和特殊。在对中国近代冶金工业遗存进行挖掘和保护时,我们不能将目光仅仅锁定在新式冶金工业遗存,还应该重视逐渐消亡的近代土法冶炼遗存的价值。正如下塔吉尔所说:“许多旧的或废弃的生产工艺中人类的技艺,是极为重要的资源,一旦失传无可替代。应当被详细记录并传给后代。”而目前中国对在工业化进程中逐渐消失的传统冶炼遗存的关注远远不够。第三,近代新冶炼技术和工业发展所带来的社会变迁,是这段并不成功的工业化进程给中国社会和文化带来的最大影响,是中国近代冶金工业遗产技术史价值另一重要内涵,值得工业遗产价值保护中深入的挖掘和展示。近代随着汉阳铁厂等现代工业的兴起,以农民和乡绅两大社会阶层为基础的传统社会关系逐渐改变。首先,部分农民从乡村手工业者转变成了新式产业的工人。其次,乡绅阶层也发生明显转变。以汉冶萍公司为例,地方乡绅参与到大冶铁矿和萍乡煤矿的开发中。此外,为培养技术人员,士绅的后代被公司选派出国攻读采矿冶金等专业,成为中国第一批本土钢铁工程师。[6]从工业遗产的角度来说,中国目前保留下来的近代冶金设备、厂矿建筑等实物留存已经非常罕见,但我们在现存的企业档案文献中可以挖掘出一批反映技术与社会变迁极具价值的遗产。例如我们在英国谢菲尔德大学找到的汉冶萍公司送培英国的留学生的档案。借助对相关文献的挖掘和整理,可以使中国冶金工业遗产的内涵更丰富,也更具讲述历史和教育后人的功能。

作者:方一兵 姚大志 单位:中国科学院

冶金工业论文第3篇

随着资源的开发和工业的发展,环境保护问题日益严峻,水资源的保护和控制更成为世界性的突出问题,我国的环境保护法和水污染防治法,对水资源的保护和水污染的控制提出了更加严格的要求。《污水综合排放标准》(GB8978-96)中规定中,对水排放量及污染物总量进行限制。因而,对选冶金厂的给排水设计和管理提出了更高的要求。为此,在拟定给排水系统和水量平衡时,就应以充分利用循环水(回水)和减少排放为主导思想。

2冶金企业循环给水系统的特点

循环供水系统在各类工业生产中早已普遍应用,不过大多为供水量大、用水点少的情况,个别甚至采用一泵一机的供水形式,系统比较简单,而冶金生产企业循环供水系统通常单台设备的用水量小,用水点多,安全供水要求高,若考虑不周,将造成设备损坏事故,因此对供水压力要求严格。

有的设汁者由于对冶金工艺和设备性能的特点了解不深,供水管设计的水压降过大,致后面的设备水压不足,甚至形成负压、无水可供的情况,造成设备损坏。因此设计此类循环给水系统,应慎重考虑供、排水管的压力平衡,并应在进、出水管处采取相应技术措施,以确保系统运行的安全可靠。

3具体设计措施

根据笔者在工程中的实际体会,对于金属火眭冶炼企业生产设备循环给水系统的具体设计,可采取如下措施:

3.1供、排水管道采用大阻力、同程式系统大阻力、同程式系统、在供热、空调专业应用较多,在给水处理构筑物中也有应用,如采暖、热水供应、集中空调和给水处理的大阻力快滤池项目等。这类工程均有出水点压力要求严、用水点多、出水量少的特点。冶金生产企业循环供水系统的特点最与此类似,适宜于此类技术移植采用。即将进、出水水管的管径偏大采用,理论上使进、出水干管从起至终点的压力损失趋近予零,阻力主要集中在没备部分;管道配置中考虑先供水的设备先排水,后供水的设备后排水,尽量使水在管道中流经的距离近似相等。这种配置方式能确保进、出水管压力基本平衡,供水水量仅随支管管径大小而变化,可靠地避免了形成负压、出现断水的情况。

3.2设备进、出水连接管分别设置阀门、压力表由于市场经济的变化多样及原料供应等多方面的原因,工厂调整冶炼工艺流程和产品种类的事时有发生。在设备的进、出水连接管上分别设置阀门和压力表,可随时根据变化了的工况,对供水状况进行适当微调,并可实测相关数据,以累积经验,满足生产需要。

3.3设置供水压力略小于循环水泵的备用水源由于我国电力供应仍比较紧张,循环水泵一般不设双电源和应急电源,临时断电在所难免,故需设置供水压力略小于循环水泵的常高压备用水源。与此配套,还需在供水干管上设置阀门及逆止阀、压力表和断水报警装置,排水干管上设应急外排旁通管和阀门。采取了上述措施,正常工作时,由于循环泵工作压力大于备用水源压力,备用水源供水管关闭;停电时,断水报警系统动作,备用水源开通,即可保证设备安全运行。

3.4安装调速装置循环水系统担负着选冶金企业主要设备用水的供给,输送水流量较大,电耗较高,如何减少循环水系统不必消耗的电力,是应引以重视的一个问题。特别当选别系列较多,而循环水泵工作台数较少时,一旦系列变化循环水泵往往不是在高效率区间工作。为此,建议循环水泵配置调速装置,根据生产系列的变化,调节环水泵的转速,使送出流量满足循环水量要求,并使水泵在高效区间工作,尽量避免采取调节闸阀消耗能量,同时不致因选别系列的变化,而引起工作系列水量水压的波动。调速设备可采用变频调速、液力耦合器调速和可控硅串级调速等,调速控制可依循环水泵压出管上的流量计读数为控制参数。应尽可能设计成在正常运行时,不论安装了几台循环水工作泵,只需其中一台泵调速运行,以节省调速设施投资。

4结语

给排水设施设计的合理性、操作性、适应性和可靠性是冶金企业维持正常和高效生产的重要前提,也是环境保护和水污染防治的基本要求;所以,设计人员在设计时应综合考虑技术、工程投资等各方面的因素,通过经济技术比较,确定安全可靠的方案,选用质优、价廉的给排水设备,为厂方提优质的设计。当然,给排水系统的科学管理和严密监控是实施上述要求的根本保证。设计和生产管理的协调配合才是促进生产技术不断完善、不断发展的有力保证。

参考文献:

[1]钱以明.高层建筑空调.上海:同济太学出版社.

[2]给水排水设计手册.第5册.中国建筑工业出版社.

[3]给水排水设计手册.材料设备续册3.中国建筑工业出版社.

冶金工业论文第4篇

网络是现代社会良好的资源平台。在冶金行业,由国际钢铁协会发起成立的钢铁大学网站是行业内认可度较高的专业网站。该网站涵盖的知识面较广,主要使用对象为在校师生和企业员工。在网站上,可以使用钢铁生产的所有原理,包括基本知识、冶金工艺、热力学和动力学原理等。然而网站最突出的特色不是对这些知识的应用,而是一系列灵活的、涉及炼钢生产的像游戏般的模拟。这对于年轻大学生们来说,很具有吸引力。我校冶金工程专业自2010年开始对国际钢协举办的网络炼钢大赛给予了高度关注。经过两年时间对该赛事进行深入调研和初步探索之后,于2012年参加了由中国金属学会主办、武汉科技大学协办的“2012全国网络虚拟炼钢大赛培训班”,事后就培训的相关内容结合钢铁生产的基础知识和计算机操作技巧,发展成专门的一门课,并将这门课纳入到我校的“个性化教育”实践环节,同时每年筛选出成绩优异的学生参加全国炼钢大赛。2013年3~4月,还曾协助河北省冶金学会承办了河北省首届网络模拟炼钢大赛,获集体三等奖。

通过这两届“网络炼钢大赛”的开展,教师们发现学生参加大赛,有助于其将大学四年所学的知识尤其是专业知识融会贯通。例如,在网上模拟转炉炼钢工艺时,学生必须首先对炼钢的工艺过程有全面的了解和掌握,熟知钢铁料和造渣材料的加入时间与方式、氧枪的操控制度(何时开始吹氧、纯吹氧时间、氧流的大小)等各个知识点,并将这些知识点有机结合到一起,运用到冶炼过程中,最终炼得符合规格要求的钢种。事实上,网络模拟炼钢的过程,可以使学生真正体验到当“炉长”的感觉,并有助于其建立炼钢工艺的全局观。通过成功地冶炼一炉钢水,不仅使学生将整个钢铁生产串联起来,了解各生产工艺的原理、特点和操作,还极大地满足了他们的自我成就感,加深了学生与本行业的情感。最后,通过对毕业生的回访了解到,他们在进入企业参加工作轮岗时,在很多岗位上都有一种“似曾相识”的感觉,因为网络炼钢培训使其对工艺的各个环节有了较深刻的认识,也熟知了相应岗位上的操作。由此可见,网络炼钢训练对毕业生工程实践能力的提高起到了积极的作用。

二、开展实验室开放项目,提升学生的创新能力和动手能力

实验教学是实践教学体系中的一个重要组成部分,是培养学生实践能力和科技创新能力的关键环节。而实验室开放项目与普通的实验相比,在创新能力和动手能力方面的要求更高。作为成立不久的新专业,面对科研基础薄弱、设备和经费不足的局面,如何促进实验室开放项目的顺利开展并且保证实施的效果,是全体教师关注的焦点。为此,系里分别从硬件环境、软件师资和参研学生的筛选三个方面进行了充足准备。首先,冶金工程专业的实验中心经过了大规模的升级改造,不仅新增了感应炉、高温烧结炉等一系列教学科研设备,实验中心的布局及环境也得到了良好的提升,为实验室开放项目的开展提供了强有力的硬件保证。其次,在师资方面,经过自愿报名和专家组评选,最终挑选有经费、有能力的优秀教师指导开放项目,从而为项目的选题、经费和实施提供了保证。最后,在实验室开放项目的学生人选方面分三个阶段进行选定。第一阶段,对自愿报名的学生进行摸底调查,调查内容主要是学习成绩和学习时间的投入多少,选择成绩较好且学习时间投入较少的学生,这样能保证被选中的学生有比较充足的时间进行项目的执行;第二阶段,对选择出来的学生进行简单的项目背景介绍,引导其进入课题,之后分配给学生一到两个月的自学时间,深入全面地了解课题,这是为了考察学生的自学能力、创新能力和查阅文献的能力;第三阶段为课题答辩环节,学生需要将查阅的文献进行归纳总结、消化吸收,完全理解之后再在答辩环节表达出来。通过答辩的学生才是最终参加开放项目的人选。选定学生之后就可以深入开展项目,在项目执行过程中要严格遵循“以学生为主体”的原则,即从实验方法的选择、实验方案的制定到具体的实验操作,以及后期的数据处理等全部由学生来完成,教师则主要起到“三导”作用,即“引导、指导和督导”。因此,学生执行项目的过程实际上就是运用知识解决问题的过程,可以很好地锻炼其动手能力和创造力。

三、充分利用生产实习,强化学生的职业认识

我校的实践环节共包括以下几个部分:金工实习、生产实习、毕业实习、课程设计、个性化教育、专业技能培训、毕业设计(论文),其中在生产实习中,学生与企业的直接接触时间最长,且有充足的机会与现场工人师傅讨论交流,这是强化其职业认识的最佳途径。目前国内高校生产实习的主要方式有跟班式、参观式、现场讲座式以及座谈交流式。考虑到我校的生产实习周期短(一般2到3周)、任务重(炼焦车间、烧结车间、炼铁车间、炼钢车间、炼铸车间等)以及学生自身的安全问题,历年来的生产实习多采用“参观式”。整个实习下来给学生的感觉就是“走走看看”,学生缺乏对岗位的深入了解,印象不深刻,实习效果较差。为此,自2012年开始专业对“参观式”的实习方式进行了改进,并增加了现场讲座式和座谈交流式。在“现场参观”的过程中,要避免“走马观花”,首先要对学生们明确实习的目的,及时下放任务书及实习计划安排,然后有选择、有重点地参观:对有高炉、转炉、轧机等设备的车间,多分配时间,多做讲解;对炼焦炉、烧结机、制氧机、缓冷机等附属设备则“提纲挈领”式讲解。带队教师要尽量安排时间让学生向一线工人师傅取经,内容包括现场操作经验、岗位特点、工作制度等,使学生对各岗位有充分的认识。“现场讲座式”实习方式是邀请具有5年以上工作经验的工程师,为学生讲解其负责的设备(如烧结机、高炉等)特点及该设备在整个工艺流程中的位置和作用、基本原理等内容。有的工程师在讲座的过程中还进行现身说法,就大家敏感的考研、工作、自身职业发展和钢铁行业的历史规律、最新动态等内容进行互动交流,效果颇佳。“座谈交流式”实习主要是请有经验的现场人员为学生解答一些参观过程中遗留的与实际生产相关的问题,并就其多年的工作经验和对本行业的了解对学生的价值观进行引导,加深学生对本行业的认识,从而帮助学生树立良好的职业意识。

四、区别安排毕业论文(设计),促进毕业生与未来对接

毕业论文(设计)是我校冶金工程专业实践环节的最后一环,学生做完论文就面临着就业或者进入高校继续深造。由于我校的冶金工程专业暂时还没有硕士点,因此,毕业论文(设计)模式按照“985工程”或“211工程”等高校通常采用的“博士带硕士,硕士带本科生”的方式难以实施,近几年的毕业论文(设计)都是由指导教师亲自指导,“手把手”式地教学生如何一步步进行实验。这种方式存在以下三个问题:第一,由于每位教师指导的学生人数太多,而且学校要求“一人一题”,且四年内的论文题目不能相同和类似,因此每年的毕业论文题目都是教师们绞尽脑汁想出来的,缺乏必要的研究基础和课题的深度。第二,做实验需要有经费支撑,而指导教师大多参加工作时间尚短,处于课题研究的摸索探究期,未形成明确的研究方向,而且很少有经费入账,因此对于他们而言,大部分毕业论文的费用只能自己筹集。第三,从学生角度考虑,这一环节的安排还涉及到与毕业去向的对接问题:对于毕业之后攻读研究生的学生而言,跟着指导教师做科研是合适的和必需的,因为可以很好地锻炼其深入钻研课题的能力;但是对于毕业之后参加工作的学生而言,他们更需要多了解和熟悉工厂的布局、设备等情况,以缩短其就业后的适应期。根据师生的实际情况,并吸取兄弟院校的经验,自2012年起对我校冶金工程专业的毕业设计实践环节的实施进行了合理改革,在原来单一的“做实验”型毕业设计基础上,增加了设计型和在企业做课题的选题模式。安排的原则是:对毕业后参加工作的学生安排设计类课题和在签订工作的企业做课题,前者如设计工厂布局、高炉车间或转炉车间、高炉、转炉或轧机等,通过做设计让学生深入掌握现场的车间格局、设备构造,并通过对设备的掌握进一步加深对工艺原理基础知识的理解;而在企业做的课题往往是由企业提出,他们希望毕业生提前进入工作状态。指导教师则全程监督指导,保证论文质量。考研的学生则偏重于做毕业论文,通过文献的查阅和综述、实验方案的设计和实验过程的具体执行,培养学生的创新能力、思考问题和解决问题的能力,为考研学生日后继续深造奠定坚实的基础。

五、结语

冶金工业论文第5篇

随着资源的开发和工业的发展,环境保护问题日益严峻,水资源的保护和控制更成为世界性的突出问题,我国的环境保护法和水污染防治法,对水资源的保护和水污染的控制提出了更加严格的要求。《污水综合排放标准》(GB8978-96)中规定中,对水排放量及污染物总量进行限制。因而,对选冶金厂的给排水设计和管理提出了更高的要求。为此,在拟定给排水系统和水量平衡时,就应以充分利用循环水(回水)和减少排放为主导思想。

2冶金企业循环给水系统的特点

循环供水系统在各类工业生产中早已普遍应用,不过大多为供水量大、用水点少的情况,个别甚至采用一泵一机的供水形式,系统比较简单,而冶金生产企业循环供水系统通常单台设备的用水量小,用水点多,安全供水要求高,若考虑不周,将造成设备损坏事故,因此对供水压力要求严格。

有的设汁者由于对冶金工艺和设备性能的特点了解不深,供水管设计的水压降过大,致后面的设备水压不足,甚至形成负压、无水可供的情况,造成设备损坏。因此设计此类循环给水系统,应慎重考虑供、排水管的压力平衡,并应在进、出水管处采取相应技术措施,以确保系统运行的安全可靠。

3具体设计措施

根据笔者在工程中的实际体会,对于金属火眭冶炼企业生产设备循环给水系统的具体设计,可采取如下措施:

3.1供、排水管道采用大阻力、同程式系统大阻力、同程式系统、在供热、空调专业应用较多,在给水处理构筑物中也有应用,如采暖、热水供应、集中空调和给水处理的大阻力快滤池项目等。这类工程均有出水点压力要求严、用水点多、出水量少的特点。冶金生产企业循环供水系统的特点最与此类似,适宜于此类技术移植采用。即将进、出水水管的管径偏大采用,理论上使进、出水干管从起至终点的压力损失趋近予零,阻力主要集中在没备部分;管道配置中考虑先供水的设备先排水,后供水的设备后排水,尽量使水在管道中流经的距离近似相等。这种配置方式能确保进、出水管压力基本平衡,供水水量仅随支管管径大小而变化,可靠地避免了形成负压、出现断水的情况。

3.2设备进、出水连接管分别设置阀门、压力表由于市场经济的变化多样及原料供应等多方面的原因,工厂调整冶炼工艺流程和产品种类的事时有发生。在设备的进、出水连接管上分别设置阀门和压力表,可随时根据变化了的工况,对供水状况进行适当微调,并可实测相关数据,以累积经验,满足生产需要。

3.3设置供水压力略小于循环水泵的备用水源由于我国电力供应仍比较紧张,循环水泵一般不设双电源和应急电源,临时断电在所难免,故需设置供水压力略小于循环水泵的常高压备用水源。与此配套,还需在供水干管上设置阀门及逆止阀、压力表和断水报警装置,排水干管上设应急外排旁通管和阀门。采取了上述措施,正常工作时,由于循环泵工作压力大于备用水源压力,备用水源供水管关闭;停电时,断水报警系统动作,备用水源开通,即可保证设备安全运行。

3.4安装调速装置循环水系统担负着选冶金企业主要设备用水的供给,输送水流量较大,电耗较高,如何减少循环水系统不必消耗的电力,是应引以重视的一个问题。特别当选别系列较多,而循环水泵工作台数较少时,一旦系列变化循环水泵往往不是在高效率区间工作。为此,建议循环水泵配置调速装置,根据生产系列的变化,调节环水泵的转速,使送出流量满足循环水量要求,并使水泵在高效区间工作,尽量避免采取调节闸阀消耗能量,同时不致因选别系列的变化,而引起工作系列水量水压的波动。调速设备可采用变频调速、液力耦合器调速和可控硅串级调速等,调速控制可依循环水泵压出管上的流量计读数为控制参数。应尽可能设计成在正常运行时,不论安装了几台循环水工作泵,只需其中一台泵调速运行,以节省调速设施投资。

4结语

给排水设施设计的合理性、操作性、适应性和可靠性是冶金企业维持正常和高效生产的重要前提,也是环境保护和水污染防治的基本要求;所以,设计人员在设计时应综合考虑技术、工程投资等各方面的因素,通过经济技术比较,确定安全可靠的方案,选用质优、价廉的给排水设备,为厂方提优质的设计。当然,给排水系统的科学管理和严密监控是实施上述要求的根本保证。设计和生产管理的协调配合才是促进生产技术不断完善、不断发展的有力保证。

参考文献:

[1]钱以明.高层建筑空调.上海:同济太学出版社.

[2]给水排水设计手册.第5册.中国建筑工业出版社.

[3]给水排水设计手册.材料设备续册3.中国建筑工业出版社.

冶金工业论文第6篇

学生完成任务之后,教师要进行纠正说明以及总结评价,从而保证学生所讲内容的正确性以及完整性,进一步深化教学内容。除了专业问题外,每位学生要发表学习过程中的一些感受,其他学生要进行提问,使学生们都参与到课堂中来,提高学生们的学习兴趣。在学好专业知识的基础上,培养学生们的创新意识及科学素养。最后由教师进行总结与评价,评价内容包括学生在此次任务完成中的表现,对目标知识掌握的程度以及解决问题的能力和创新思维的能力等。

二、立体式教学法的应用

立体式教学法旨在保障知识传授的基础上,强化思维能力的训练。经过对三届选修冶金工程新工艺及新技术课程的研究生进行的对比实验教学,选取72名无显著差异的研究生作为研究对象,对立体式教学法进行了探索与研究。

1.对于拓展视野的帮助

研究生的学习需要以开阔的眼界来观察与研究专业领域内的热点问题。研究生不能沉浸在周围的小环境下,需要放眼世界,从更大的角度去审视问题、分析和处理问题。结果表明,绝大多数学生认为立体式教学法有助于拓展学生的视野,但仍有8%的学生认为该教学法无助于拓展学生视野。究其原因,主要有以下四点:(1)教师所设置的任务所包含知识面还不够广泛,具有一定的局限性;(2)学生在完成任务的过程中查找资料的途径比较局限,文献查阅能力有待提高;(3)教师应当收集一些学生收集能力范围之外的有用信息教授学生,从而起到引领作用;(4)各个学生在讲述自己所准备的材料过程中,因为个人表达能力等方面因素的差异,导致信息传递不畅。

2.思维创新能力的培养

有23%的学生认为,该课堂教学法对于其思维创新能力的培养非常有效,44%的学生认为该方法是有效的,完全认同的学生数量相对较少,同时,也有5%的学生认为该教学法对于其思维创新能力的培养没有效果。这主要是因为:(1)受大纲对于课程内容规定的限制,课程内容涉及面仍显较窄。因此,应该进一步加强授课内容的改进,强调交叉融合。(2)交流不足,学生们还没有完全适应该教学法,课堂上稍显怯懦,同时,教师由于长期受到传统教学思维的影响,在这种新型教学的课堂上,并没有完全消除“填鸭式”教学法的影响,教师往往在点评过程中,进行了某些灌输,对学生们的思考有些束缚。在立体式教学过程中,可适当邀请某些冶金领域知名教授前来参与课堂教学活动,与学生们开展对话与交流,锻炼学生的胆量,同时,也可以从自身实际出发,启迪学生们的思维,引导学生去发现问题。

3.对于提高科研能力的帮助

良好的科研能力是研究生所必须具备的基本功,这包括资料收集与处理的能力、科研创新能力、发现问题及解决问题的能力、逻辑思维与口头表达的能力等。研究发现,仅有20%的学生认为该教学法对于提高自身科研能力具有很大的帮助,这说明,就培养学生科研素养而言,该教学法仍需适当改进,以进一步提高学生的认可度。同时仍有3%的学生认为该教学法对于提高其科研能力没有帮助。究其原因,主要是:(1)学生的学习主动性有待提高。这需要教师融理论教学于实际之中,让学生明白所学专业知识的用途以及运用的方式,从而激发学生的学习热情。(2)在教学过程中,科研方法方面的内容应进一步增强,也就是增加方法论方面的内容,教授学生科学思考及科学研究的方法,从而帮助学生提高科研能力。

4.知识收获方面

对研究生而言,重在能力及方法的学习,但是作为课堂教学,知识的传授也必不可少,只是与本科生相比,所获得的知识应更加前沿,更加接近实际。通过调查发现,有20%的学生认为,通过该教学法,其所获取的知识量一般,更有5%的学生认为,并没有通过该教学法获取更为丰富的前沿知识。鉴于此,在应用这种方法开展教学时,应着重注意:(1)注重价值引导,强调知识的作用,诱发学生获取新知的欲望;(2)注意研究生教育过程中存在的“重科研、轻教学”的问题,处理好之间的关系,重视课堂教学,使学生的课堂学习与科学研究有机结合,实现课程学习为科研服务,在科研活动中又获取新知的良性循环。

三、结束语

冶金工业论文第7篇

铌钽资源价格昂贵,因此二次资源有着重要的回收价值。铌钽二次资源主要来自铌钽冶炼过程中产生的肥料及铌钽制品在使用过程中报废的元器件[25]。对于纯金属废料,一般经化学清洗后再采用真空熔炼、电子束熔炼和氢化制粉等火法回收[26]。对于硬质合金废料,铌钽的含量较低,仅作为富集物回收,处理方法有锌处理法及硝酸钠熔融富集法,经处理后的富集物含铌钽可达30%。对于铌钽电容器废料的处理比较复杂,首先得采用化学法或机械法除去外壳,然后采用钠还原或碳还原脱氧,然后再进行电子束熔炼得到铌钽锭[27]。此外,对于废铌钽酸锂单晶回收,开发出了铝热还原法,碱处理法等[1,27]。

2.冶金技术方法

2.1酸法

2.1.1氢氟酸法

对于铌钽精矿来说,氢氟酸法是一种应用比较常用的处理方法。该法一般采用60~70%的氢氟酸在90~100oC下进行反应,浸取反应通常在内衬铅,钼镍合金或镶砌石墨板的反应器中进行,搅拌装置需要蒙耐尔合金。值得注意的是,浸出液中铌钽的存在形式,与氢氟酸的浓度是密切相关的,对铌而言,随着酸浓度的增加,其存在形式会出现氟氧铌酸络合物型向氟铌酸络合物型的过渡:H2NbOF5H2NbF7HNbF6;对钽而言,则出现H2TaF7HTaF6的转化。当HF浓度<20%时,主要有如下反应:除了铌、钽外,其他元素如铁、锰、锡、钛、硅等也都能以络合物HFeF3,HMnF3,H2SnF6,H2TiF6,H2SiF6等的形式进入溶液,而稀土、铀、钍、钙等碱金属元素等会生成难溶的氟化物REF3,UF4,ThF4,CaF2等进入浸取渣中。对于后续的分离,主要用到的是萃取的方法。铌钽氟络合酸在一定酸度下能被有机溶剂(如甲基异丁基酮)选择性的萃取出溶液体系。萃取后的有机相再经酸洗、反萃铌、反萃钽、氨水中和等步骤可分别得到钽、铌氢氧化物;再经过干燥及煅烧,即可得到氧化铌和氧化钽产品。为加快反应速度以及提高钽铌矿的分解率,浸取时会加入硫酸。硫酸的加入也有利于后续萃取工段去除杂质的效果。典型的操作步骤为采用60~70%浓度的HF,反应温度为90~100oC,耗浓硫酸量按照化学反应计量比的105~110%,精矿的磨碎粒度<74μm。反应时,首先控制反应液的温度在50oC左右,将磨好的精矿边搅拌边加入到反应器中,此时需要控制加料速度,防止反应剧烈造成HF的挥发。加料完成后,升高反应器的温度至90~100oC并搅拌继续反应约4h。反应完成后,冷却反应液至室温并过滤,滤液进入下一步的萃取工序。利用该法铌钽的浸取率在98%以上。氢氟酸的使用不可避免的会产生很多环境问题,虽然有很多研究人员已经着手解决该问题,如Meyer[28],Brown等人[29]等,但治理成本较高,工业应用前景并不被看好。如何开发出高效提取铌钽矿中有价资源的无氟化工艺路线,将是铌钽工业的研究热点。

2.1.2硫酸法

硫酸法主要用于易分解的复合矿,可以回收矿石中的有价金属,有着较高的浸取率。硫酸法可以分为硫酸溶液浸取(100~200oC)和硫酸化焙烧(200~330oC)。铌钽能和硫酸作用生成多种硫酸盐,不过铌更易于被还原成低价以及发生水解。在硫酸介质中铌很容易被锌汞齐、金属镁和碱金属还原到+3价,而钽很难被还原,而且只能到+4价,铌和钽在硫酸介质中表现出较大的差别。硫酸溶液浸取时,反应温度控制在120~200oC,硫酸浓度为40~60%,可使精矿中的大部分组分都能转化成可溶性的硫酸盐。过滤后的滤液,用少量的水稀释溶液,碱土元素的硫酸盐水解产生沉淀,分离沉淀后调节溶液的pH值,可分别沉淀出铌钽的氢氧化物纯液,不过也可以直接从硫酸溶液中萃取分离铌和钽。为强化铌钽的浸出效果,硫酸溶液浸取过程中常加入氟化铵等[11]或硝酸[4,30]。在硫酸溶液浸取中加入硝酸,主要起到氧化剂的作用[4,30]。El-Hussaini和Mahdy[4]曾经利用硫酸-硝酸混合溶液,对含有褐钇铌矿、黑稀金矿和铁钛铀矿的原矿进行了有价金属元素的提取。通过各因素如温度、硫酸-硝酸浓度、时间、矿/酸比等的考察,得到了较优的浸取条件:混合酸中硫酸浓度为10.8M、硝酸浓度为5.3M、酸矿比为3:1、反应温度为200oC、反应时间为2h。结果表明几乎全部的铌和钽全部浸取出,同时Th和稀土元素的浸取率能分别达到86%和70%。硫酸化焙烧对于铈铌钙钛矿的分解有着很好的效果。一般是将铌钽粗精矿和浓硫酸(85~92%)按照一定的质量比(1:2~3)进行配料,然后置于马弗炉中进行焙烧,温度为150~200oC。此外,在焙烧时常加入少量的硫酸铵以防止反应物烧结。焙烧过程中,铌和钽在大量钛存在的条件下以同晶形杂质进入硫酸钛复盐。焙烧完后对熟料进行水浸可使铌钽可以进入溶液中。此外,熟料也可以采用硫酸(150~300g•L-1)及双氧水(10~30g•L-1)溶液浸取的方法。这时主要生成可溶性的过氧络合物,如H2NbO4(H2NbO2(O2))、H2TaO4(H2TaO(O2)2)等,溶液再进入下一步的分离纯化。当硫酸铵的用量较高(粗精矿:硫酸铵=1:1.4)时,在硫酸化焙烧温度为230~270oC的条件下,所生成的铌钽复盐不会被钛所同晶置换。此时将熟料进行水浸,铌和钽则以络合硫酸盐的形式进入到溶液中。

2.2碱法

碱法分解钽铌矿主要采用氢氧化钠和氢氧化钾试剂,也常采用NaOH+Na2CO3或KOH+K2CO3的混合试剂来降低熔融物的熔点和粘度。按照分解工艺来说,碱法可以分为碱熔法、碱性水热法和KOH亚熔盐法。

2.2.1碱熔法

碱熔法的一般工业实施方法基本相似,首先将混合试剂放入到钢制坩埚中在400~500oC下进行熔融,然后边搅拌边加入粒度为0.1mm的精矿,此时应控制精矿的加入速度,加入速度过快会引起激烈反应而导致熔体喷溅。精矿按照与氢氧化钠(钾)重量比为3:1的比例进行加入。加入完成后,将反应釜的温度升高至800oC,并维持约30min,然后将熔体倒入到水中进行水淬,或薄层倒入铁盘中。钠分解时多钽酸钠和多铌酸钠与氧化铁、氧化锰均转入到沉淀中,而大部分硅、锡、钨、铝等元素以硅酸盐的形式进入到溶液中,实现了与铌钽的分离。过滤分离后的固体渣用盐酸在一定温度下进行分解,铁与锰则进入到溶液中,多钽酸钠和多铌酸钠转为氢氧化钽和氢氧化铌,经水洗,烘干等步骤,即可获得工业纯钽铌化合物。用氢氧化钾做熔剂时,水浸反应完成后的熔体,大部分的钽和铌以可溶性的多钽酸钾和多铌酸钾的形式进入到溶液中,氧化铁、氧化锰和钛酸钾则留在水浸渣中。此时向水浸液中加入氯化钠,可以使得铌和钽以多钽酸钠和多铌酸钠沉淀的形式全部沉淀出来。再经过盐酸处理即可获得钽和铌的混合氢氧化物。该法的缺点是钽铌的回收率偏低,约为80%,不过采用氢氧化钾分解所得钽铌混合物的纯度较采用氢氧化钠制得的要高,相对来说流程较长。

2.2.2碱性水热法

为解决碱熔法分解钽铌矿中的不足,前苏联学者开发出了碱性水热法,亦称碱溶液高压釜分解法。利用该法可使得钽铌的浸取率在90%以上,并使得碱耗降至碱熔法的1/6,不过该法一直未实现工业化。该法采用30~40%的NaOH或KOH在温度150~200oC下与精矿进行反应2~3h,分解时首先生成可溶性的多钽酸和多铌酸,随后转化为不溶性的偏钽酸和偏铌酸。将用NaOH水热法处理钽铌矿后得到的溶液过滤,滤液补充碱后返回釜中再利用。滤渣用15%的盐酸(固液比1:1)在温度80~90oC下进行酸洗30min,得到的不溶性偏钽酸钠和偏铌酸钠在室温下即可被10~20%的氢氟酸所溶解,进入下一步的钽铌的萃取分离。采用KOH对钽铌矿进行分解时,典型反应条件为33~37%的KOH,反应温度为200oC。为提高生成多钽酸和多铌酸的速度,需要加入一定量的氧化剂。根据生成的六钽(铌)酸钾在KOH溶液与水溶液中溶解度的差异,可先将分解后的沉淀物进行水洗,将钽铌转入到溶液中。然后将溶液进行蒸发浓缩,重新加入KOH以沉淀出六钽(铌)酸钾,得到的沉淀物经盐酸分解后即可得到纯度较高的铌钽混合氧化物。

2.2.3KOH亚熔盐法

最近几年来,中国科学院过程工程研究所张懿等[31-34]从生产源头着手,研发了KOH亚熔盐强化浸出低品位、难分解铌钽矿的清洁化工冶金共性技术。亚熔盐为原始创新的反应/分离介质,定义为提供高化学活性和高活度负氧离子的碱金属高浓度离子化介质,具有低蒸汽压、沸点高、流动性好等优良物化性质和高活度系数、高反应活性、分离功能可调等优良反应、分离特性。

2.3氯化法

氯化法主要是利用铌钽矿中各元素的氯化衍生物的蒸汽压的差别,把精矿中的主要组分加以分离。该法在工业上一般用于处理复杂的钽铌精矿或锡渣。典型的工艺流程为:精矿在还原剂(如木炭、石油焦等)的作用下,在400~800oC下进行氯化反应,生成的沸点较低的铌、钽氯化衍生物在氯化过程中可被气体带走,经冷凝之后可回收。而沸点较高的氯化物,包括稀土,钠,钙及其他的氯化物则留在反应器中形成氯化物熔盐。还原剂的加入,可以使得氯化反应能有效的进行,并能提高反应速率,起着还原与活化的双重作用。工艺流程上一般分为团块氯化和熔盐氯化两种。团块氯化是将钽铌精矿和还原剂混合配料后,加入料浆或煤焦油进行压团成块,干燥之后置于700~800oC下进行焙烧,然后氯化。熔盐氯化是将磨细的铌钽精矿和石油焦一起加到熔融的氯化钠和氯化钾混合盐中,氯气由氯化器底部风嘴进入,氯气经过熔盐起到鼓泡的作用,使得精矿中各组分能发生氯化反应。与团块氯化相比,熔盐氯化具有氯化反应速度快并能连续化操作的优点。

2.4其他方法

值得注意的是,前述的方法大多适用于高品位的精矿。但对于难以富集的低品位矿来说,这些方法并不适用,尤其是对硅含量较高的铌钽矿,会引起大量的酸耗及碱耗,并造成分离纯化困难。相应地,其他方法,如硫酸氢钾法等也有了相应的研究。El-Hazek等[23]利用硫酸氢钾对埃及当地的铌钽原矿(Nb2O51.25%,Ta2O50.13%,SiO274%)进行了煅烧浸取,系统考察了矿/硫酸氢钾质量比、煅烧温度、煅烧时间等因素对铌钽提取率的影响,确定出较优的反应条件为:矿/硫酸氢钾=1:3,反应温度650oC,煅烧时间为3h,此时铌钽的提取率分别达到了98.0%和99.3%。虽然该法在铌钽浸取率上几乎达到100%,但其工业价值及应用前景还有待验证。另外KHF2熔融法主要用于化学分析,这些试剂价格比较高,工业应用价值并不高。

3.技术分析

处理铌钽矿常用的冶金方法及技术特点见于表1中。从表1可以看出,工业上目前最常用的方法仍是氢氟酸法。对于氢氟酸法来说,该工艺流程简单,分解温度较低(90~100oC)且浸取率高(98~99%),适于浸取高品位的精矿。不过,在精矿分解过程中,会有6~7%的HF挥发造成物料损失并会引起操作环境的危害。此外,该法对设备的材质要求很高,增大了成本投入。硫酸法应用范围较窄,只能用于易于分解的钛钽铌复合精矿,对于其他铌钽矿来说并不具有普遍性。硫酸法对反应器材质要求较氢氟酸法低,不过也存在着操作复杂,酸耗量大等问题。碱熔法是铌钽冶金工业上最早采用的方法之一,但也存在着碱消耗量大(约为理论碱矿比的6~8倍)、对设备要求高、碱性熔体操作困难、铌钽的单程回收率较低(仅为80%)等问题,目前该法在工业应用上已经面临淘汰。氯化法适于处理复杂的铌钽精矿或锡渣,不过也存在着设备腐蚀严重,对环境不友好,操作条件严苛等缺点,不符合当前节能减排的方针政策,目前在工业上的应用已经很少。

4.结语