欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

气象灾害论文(合集7篇)

时间:2022-09-17 19:34:05
气象灾害论文

气象灾害论文第1篇

修文县地域面积1075平方公里,是个农业县,70%的人口分布在农村,靠天吃饭的状况一时还难以改变,每年突如其来的重大气象灾害事件——干旱、风雹、强雷击、下击暴流、暴雨、洪涝以及诱发的次生灾害带来的重大损失,让人们感受到了大自然的不可预知性是不变的真理。例如,1994年4月20日,风雹入侵造成严重的损失,作物受灾面积1.13h㎡,雷击死亡3人、伤6人,经济损失5574万元。又如,1996年7月1日,遭受百年不遇的大暴雨天气而形成的严重洪涝灾害,使县城东郊2座桥被淹,县城交通中断,近40名职高教师家属被洪水围困在2幢宿舍楼内;小箐乡全新村沦为泽国,水淹区域延绵5km,直抵息烽县边界,水最深处达6m,80余人被洪水围困;诱发二起滑波,造成死5人,重伤1人,经济损失6000余万元。这些气象灾害,打乱了群众的生产生活节奏,生产积极性受到影响;另一方面,造成重大经济损失和人员伤亡,带来较大的社会政治影响,也给政府灾害危机管理能力带来挑战,甚至对政府的执政能力提出考验。这也就是向我们敲响警钟,那就是必须建立起一套行之有效的气象灾害预警系统和处理应对机制。因此,在经济快速增长、社会稳定的同事,要居安思危,加强对突发性气象灾害危机管理的意识,建立一套完整有效的政府危机处理管理机制,提高预测、预防和应对危机的能力,将气象危害降到最低点。只有这样才能很好地建立“经济示范村”、“扶贫开发”;才能有效实施产业结构调整,发展特色农业、高效农业、城郊农业,使县“农业稳县”战略,农业增效、农民增收新突破的目标。

二、危机与危机管理的概念和特征

政府危机管理是政府针对各类突发危机事件的管理,其目的是通过提高政府对危机发生的预见和危机发生后的救治能力,及时有效地处理突发性重大气象灾害到来的影响,恢复灾后生产生活秩序,稳定群众情绪。为此,必须首先要清楚什么是危机。危机与微机管理的概念危机的多样性界定了微机管理的丰富内容。一般说来,危机管理中的“危机”,包括了紧急事态、风险等表述危险状态或者紧急事态的情形。危机相对于人类生活中正常的社会关系、秩序而言,它可以在一个地域发生并造成有限影响,也可以在一国或全球范围内发生,造成全球性影响。简言之,危机就是影响群众正常生产生活,导致社会偏离正常轨道的非均衡状态。危机影响群众正常生活、导致社会偏离正常轨道,对社会公共安全、稳定造成较大影响,政府有责任、有义务建立健全危机管理体系,并通过研究危机、危机预警和救治危机恢复社会的均衡状态。危机的特殊性质非预期性,即有关事态即状态的发生时不能或者难以预测的,是一种打乱既有体系或部门分体系运作,对于体系内变量的一种急遽而突然变化的状况。危机性,即该事态含有高度危险,可能构成对社会体制的人生命、身体、财产等要素和技能产生严重的影响,因而,排除这种危险性成为优于其他任何价值取向的行政目的。不确定性和多样性,即事态的未来发展推移具有不可叛定性,呈现出各具特色的多样性和变换性,因而要求危机管理的应对策略具有随机应变和具体应对性。紧迫性,即由于可供选择判断的时间有限,一旦放置,就有导致不均衡化、恶化,甚至引起社会不稳定因素,自然生态系统受到破坏,因而要求迅速实行救援策略、恢复策略等加以应对,在相当短的时间内作出政策选择。

三、分析危机发生的原因和政府危机管理的过程

⒈危机发生原因

分析危机发生的原因主要有三种:由自然产生的,如洪水、干旱等自然灾害由人为引起的,如美国9•11时间。由人为导致的自然危机。这种危机可能占有的比例最大,如由于大量排放二氧化碳导致气候变暖而导致冰川范围减小,海平面抬升,引起气候变化,形成各种气象灾害;人为大量砍伐森林破坏生态平衡,导致风雹、洪涝、干旱频繁发生,诱发地质地震灾害等等。自然危机具有周期性、规律性和不可抗拒性,科学技术发展的今天,人们对自然危机的认识、研究相对较早深入,对自然危机的管理机制也日渐增强。政府职能科技部门基本能够比较准确地预测自然危机,提前采取决策服务措施,而且能够在自然危机发生后采取积极、有效的救治行动,比如地震、洪水、台风等天灾能够通过应急系统提前预警和积极救治,把自然危机在城的损失降到最低。关键是政府在社会公共管理事务中,对这种自然灾害带来的非均衡状态的重视程度,对灾害应急管理系统的建设和保持该系统正常运转的投入程度,即具有足够的防灾减灾责任意识,监测预测系统、人工影响控制、就职应急预案系统建设的投入资金,等等。

⒉政府微机管理的过程

微机管理过程论将危机管理分解为如下两个层次:

⑴预防减灾和事前准备

①预防建在的措施和对策。为了避免、减少重大天气气象灾害发生危机时减少其负面影响,而采取的事前措施和对策。如:洪水灾害,其发生可能是无法避免的,但是,可以通过事前预测而采取相应的措施以减少损害。因此,观测体系的建立、发生危害现象的研究、生产自救和政府救灾,是有效预防灾害的措施和对策。②事前准备的措施和对策。为了提高危机等发生时的应对能力,通过危机是的应对体制和活动来减轻损害而进行准备的措施和对策。因为通过预防措施和对策并不能将灾害发生的可能性化为零,因而事前准备非常必要。认真准备气象灾害发生时的应对机制,为提高灾害对能力而采取措施和对策。对于预测到的再燃灾害,在组织人事甚至命令系统等方面,政府必须事前准备与日常工作化不同的非日常工作化的制度。

⑵快速应对和恢复平常

①快速应对。气象灾害来临之前和刚发生之后,为应对紧急情况而进行的一系列活动。有的时候,即使采取了预防减灾的措施和对策,即使做好了事前准备,由于气象灾害事态多样化,也难以穷尽具体细致的问题。一旦发生,与人民生命财产有关的重要价值受威胁,要求快速采取相应措施。②恢复平常。是灾后为恢复平常时期的状态而进行的一系列活动。由于灾害影响的程度和范围不同,所造成的损害也各不相同,因此。恢复平常的任务有轻重之分,对恢复平常阶段的任务和责任设定应该注重合理性。若气象灾害严重的活,要恢复灾前的状况就需要较长时间,甚至可能出现无法完全复原的损害,切不可笼统而抽象地谈责任机制。从恢复平常到复兴的时间轴应该尽可能地缩短。否则政府公共事务管理能力将受到质疑。

四、气象灾害政府危机应急管理的重点

气象灾害作为突发事件管理的重要组成部分,从我县气象灾害的时空分布规律和灾害特点、技术能力和财力物力来看,应重视从以下方面加快气象应急体系建设:

⒈提高重大灾害性天气和短期气候预测准确率,着力构建小型雷达、网络通讯为主体的短视灾害性天气预报监测平台。

⒉增强气象灾害监测预警能力,加快对强对流天气跟踪监测和快速反应能力,建立定点、定时、定量的灾害天气临近预报业务系统。

⒊完善我县监测体系的建设,加大政府投入,提高人工影响天气等防灾减灾能力建设,即开展人工增雨、消雨、消云、消雹等作业,进一步提高我县人工影响天气水平。“气象部门已经把‘安全气象’作为气象发展战略之一,其核心内容是位军事、生态、能源、粮食、水之源、人民生命财产安全提供全方位的气象预警服务。”“建立气象应急体系,防御重大气象灾害,这就是构建社会主义和谐社会的基本保障。”从国家层面上看,目前已建成了由地面观测、地面遥感到高空遥感的立体气象观测体系,分布于全国所有县以上城市的4600多个气象站,极大地提高了地面气象要素监测的时空密度。124个高空探测站点对地面至30公里高空大气的歌中气象要素进行探测,74部先进的多普勒雷达能够同时对200公里半径范围内的降水量分布和区域降水量进行较准确的估测,在防汛抗洪及城市积涝防御中发挥重大作用。

五、结论

⒈培养气象灾害危机意识。气象灾害危机意识是灾害预警的起点。人们“好了伤疤忘了痛”往往缺乏危机意识,所以要不断地通过宣传教育,并通过模拟气象灾害危机情势,不断完善危机发生的气象灾害预警与监测系统,能够使政府和公共培养良好的气象减灾意识,时刻做好防灾减灾的心理和物质准备。

⒉进行预见治理。政府气象灾害预防的目的除了对未来可能发生的气象灾害进行预警之外,还要预料一个气象灾害解决后的未来可能情势。为此,一方面构建明确的政府部门间气象灾害处理的管辖范围。有助于政府进行及时、有效的预警治理;另一方面加强战略规划、长期预算气象防灾减灾基金,以及时进行灾后重建和恢复生产,提高人民群众对政府的信赖程度。

⒊构建我县气象防灾减灾预测预警体系。政府危机管理的最理想状态时将危机消灭在潜伏时期或萌芽时期。这有赖于政府有干部们对气象灾害危机发生与程度、趋势和结果的预警预报能力。在经济社会飞速发展的今天,气象灾害影响、危害程度更大,势必要加强就见气象减灾危机管理体系,以降低危机发生的风险和预警成本。

⒋建立一个相对统一、系统的气象灾害突发事件应急机制。这样可以最大限度地减少减灾成本,实现气候资源、气象灾害信息共享。这里所谓的成本既包括预备的物质成本,也包括制度成本。同时可以保证决策的有效性和各部门之间的合作,逐步形成一套完整的灾害紧急状态急机制。⒌重大气象灾害的周期性规律,对我县各级政府带来挑战。要勇于面对这种挑战,积极采取措施,动员全社会参与,寻求危机根源,理性选择就职目标,进一步评估可能产生的后果,使整个社会保持了正常和稳定的发展局面,实现构建和谐社会的目标。

六、结束语

气象灾害论文第2篇

地质灾害时间分布地质灾害高发期为6~9月主汛期,灾害类型以滑坡、崩塌、泥石流为主[15](图2);2~5月冰雪冻融期次之,灾害类型以崩塌、滑坡为主;10月、11月、12月、1月为低发期,主要诱发因素为人类工程活动,灾害类型以崩塌、滑坡为主。

2降水引发地质灾害的特征

地质灾害的发生与气象因素有很大的关系,降水在甘肃引发的地质灾害具有以下特征。

2.1突发性特征局地强对流天气形成的短时强降水强度大,历时短,覆盖面积较小。可形成突发性崩塌、滑坡、泥石流灾害。尤其是泥石流灾害,往往形成严重的人员伤亡和经济损失。典型的如舟曲8.8特大泥石流灾害,距离县城15km的东山站记录的小时降水量达77.3mm,过程降水量达96.6mm,造成严重的人员伤亡和经济损失[14]。

2.2群发性特征区域性的暴雨往往是诱发滑坡、泥石流的主要因素。据调查和统计,5月下旬~9月上旬,为甘肃大暴雨或暴雨发生期,其中7月上旬~8月中旬,为大暴雨或特大暴雨集中期,同时也是崩滑流的集中发生期。如2013年陇东南部“7•25”群发性地质灾害,天水、平凉、庆阳等地区形成了滑坡、泥石流数量近千次。

2.3滞后性特征大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。典型的如天水珍珠沟滑坡,在经历了2013年4次强降水过程后在2013年12月21日发生大规模滑动。

3地质灾害预警模型研究

3.1研究思路从理论上讲,地质灾害气象预警指标应全面考虑前期岩土体含水量、未来降水以及实时降水情况。但目前准确获取前期岩土体含水量还不具备条件。因此要解决问题必须从宏观上结合地质环境条件和气象条件综合分析研究,建立适合的模型,得出有效的地质灾害气象预警指标。目前国内采用的地质灾害气象预警多是把崩滑流灾害考虑在一起,但实际情况是泥石流的激发雨量比滑坡小,且往往为短历时强降雨。因此考虑地质灾害预警的实际需求,本次将分别建立泥石流和滑坡的预警模型,并考虑如前期降水、新近强震、地面高程等关键影响因素。

3.2滑坡预警指标和模型

3.2.1滑坡与降水关系据统计降雨类型的滑坡约占滑坡总数的70%,同时调查表明95%的降雨型滑坡发生于雨季[17]。对1967~2010年80个气象站逐日降水量资料与滑坡灾害的关系分析表明,滑坡与雨型、前期降水等具有显著关系,根据甘肃实际降雨可归类为连阴雨型、暴雨(雷暴)、前期—暴雨型、持续暴雨型(表1)。根据对汶川地震、岷县漳县6.6级地震研究表明,地震烈度大于6度区时,各种雨型对应的滑坡临界雨量呈显著下降趋势,降幅可达20%~50%[18-19]。例如2013年7月25日,岷县漳县地震灾区烈度Ⅵ度区范围内降雨量仅30mm,就出现了大量的小型滑坡,对抢险救灾造成了严重的影响。

3.2.2滑坡预警模型构建前述分析表明,滑坡与雨型、过程等有着直接的关系。根据历史滑坡灾害资料、降雨资料和灾害易发度综合统计分析,并借鉴国内外研究应用成果,建立基于综合有效累积降雨量的滑坡24h趋势预警模型和基于实时雨量的滑坡实时预警模型。(1)滑坡24h趋势预警模型基于综合有效累积降雨量,并考虑地震影响,建立滑坡24h趋势预警模型。式中:RL为综合有效累计雨量,Ri为前i天实测雨量,包括当日最新实况雨量(i=0-4),RF为24h预报雨量。a为前期降雨影响时间衰减系数,一般取0.5~0.8,b为地震烈度修正系数,取1.25~2.0。对应不同的灾害预警等级和灾害易发度等级,两者共同确定某一综合有效累积雨量值为该易发区内该预警等级的指标临界值,具体数值可根据当地情况进行动态调整。(2)基于实时雨量的滑坡预警模型目前甘肃省气象、水利、国土等部门建设的雨量计接近4000处,网格密度5~30km2,基本可以满足滑坡实时监测预警。因此综合考虑不同雨型特征,建立基于实时监测的区域滑坡预警模型。采用临界雨量系数来表征。公式(6)适用于1h、3h、6h暴雨雨量计算;公式(7)适用于12h和24h暴雨雨量计算。

3.2.3滑坡气象预警等级划分根据全国统一的地质灾害气象等级,将甘肃省地质灾害气象预警等级划分为4个等级(表2),当预报出现1~3级地质灾害时,对外预报或预警。

3.3泥石流预警指标和方法

3.3.1泥石流与降水的关系分析对甘肃东部武都北峪河、舟曲三眼峪沟、天水市桦林沟、罗峪沟等典型泥石流的22组成灾过程研究表明:泥石流发生时的10min雨强最小值为8.3mm,最大值为24mm,说明灾害性泥石流的暴雨初始雨强是非常大的;泥石流发生的时间大都集中在一场降雨的前期,主要集中于3h之内,3h雨量达到了过程雨量的45%~100%(表3)。进一步研究表明,降水量与降水历时呈指数相关(图3,表4),相关系数在0.89~0.99,说明引发泥石流的降水过程具备一定的规律性,四条典型泥石流发生的10min雨量差别不同,在图3上基本重复,而随着时间的增加则出现自南而北、自西向东雨量不断增大的趋势。

3.3.2泥石流临界雨量确定根据省内各地资料状况,选用历年积累的泥石流灾害调查资料、实测大暴雨资料和历史洪水调查资料,优先选择资料较为充足完善的地方,依据上述典型泥石流研究方法,采用内插法计算全省不同时段泥石流临界雨量值。

3.3.3泥石流实时预警模型泥石流的发生和雨强有很强的关联性,因此当预警判据中的临界雨量达到下限时,已开始产生泥石流,当30min降雨达到临界雨量时,则可能暴发大规模的泥石流;根据牛最荣[21]等研究,同一流域内各时段暴雨和高程具有密切关系,暴雨雨量随高程增高而增大,并呈直线相关。因此基于泥石流暴发的雨强特征,建立基于临界雨量和实时雨量为参照的泥石流预警模型,该模型考虑高程对暴雨雨量的影响。

3.3.4泥石流预警等级划分参照滑坡预警等级,泥石流预警等级仍设定为四级,当1/6h、1/2h、1h、3h临界雨量系数符合表8的规定时,分别对应于蓝色、黄色、橙色、红色预警(表8)。

4预警模型检验

2013年甘肃省连续遭受强降水、暴雨袭击,从5月14日开发预警信息,直到9月24日结束,省级地质灾害气象预警平台共122次地质灾害气象预警产品(因降雨范围、强度发生变化而有34个降雨日一天内了两次预警信息),其中红色预警信息(Ⅰ级)9次、橙色预警信息(Ⅱ级)37次,黄色预警信息(Ⅲ级)68次、蓝色预警信息(Ⅳ级)8次。成功预报367起地质灾害(图2),转移安置145868名群众,114363.9万元财产及时的进行了避让,有效的保护了人民群众生命财产安全。本年度是首次采用24h预报、临灾(2~6h)预报,预警信息量是多年平均量的150%,地质灾害区域成功预报率达22.82%。典型案例如天水6.20、甘肃东部7.25(包含岷县漳县地震灾区)(图4)、文县8.7等强降水过程引发的群发性地质灾害。

5结论

气象灾害论文第3篇

摘要:分析得出影响天水苹果正常生长的主要农综合评价z业气象灾害是前秋9月大气干旱、冬季12—2月暖冬高温、苹果花期4月下旬高温干旱和春季4月下旬低温危害。各灾害发生频率在53%~70%之间,以前秋9月干旱最多,春季4月下旬低温危害最少;前秋9月大气干旱以中—大灾为主;其他灾害均以轻、中灾最多,大灾居次;各种灾害因子重灾年份最少,仅在6%~15%之间。农业气象灾害综合评估除轻灾评估准确率略低,为89%外,中—重灾评估准确率均达100%,灾害评估效果比较理想,对农业防灾减灾有一定的指导意义。

关键词:气象;灾害;苹果生产;甘肃天水

我国是自然灾害频发国之一,年均灾害损失约510×108~640×108元。其中由气象灾害引起的损失占85%左右,仅干旱、洪涝、风暴潮、冰雹、低温冷害这几种气象灾害造成的粮食损失占所有自然灾害损失的97%左右,直接经济损失占总经济损失的76%以上[1]。天水地处黄土高原与西秦岭山地大陆性干旱半干旱气候区,海拔在750~3120m之间,年均气温7.0~11.1℃,年降水量430~600mm之间,平均日照总时数2000~2400h,无霜期156~188d,极适宜优质苹果生产,是甘肃省主要苹果产业发展基地,所产苹果以个大、色艳、硬度强、糖分高、品质佳、耐储存而深受广大客商和消费者青睐,“花牛苹果”已获得全国知名品牌类注册证明商标,是支撑天水市经济发展的四大支柱产业之一。天水市现有苹果面积约6.5×104hm2,总产量约54×104t。但由于境内山多川少,沟壑纵横,海拔高差大,气候差异显著,属全国气象灾害高发区域,干旱、洪涝、冰雹、低温冷害等气象灾害频繁发生,苹果产量、品质和优质率提高很慢,极大地限制了苹果产业化发展。

近年来,气象灾害评估技术研究已引起众多学者高度关注,但大多局限于单种气象灾害[2-5]的定性化研究。特别是针对多年生果树,在实况灾害资料极度缺乏的情况下,果树气象灾害风险评估的研究报道很少。为此,本文利用统计学方法,确定影响该地苹果生产的主要农业气象灾害因子,并将各农业气象灾害因子划分等级,进行天水主要农业气象灾害对果树作物量化评估影响研究,为有效防御农业气象灾害,最大限度减轻或减免农业损失提供参考。

1资料来源与研究方法

1·1资料来源苹果产量资料取自天水市统计年鉴1978—2007年;相关气象资料取自天水市关山区清水、渭北旱区秦安和河谷区麦积二县一区气象站1978—2007年气象观测资料。

1·2研究方法

1·2·1代表点的选取根据天水气候区划,选取渭北旱区、关山区和河谷川区苹果种植面积较大的秦安县、清水县和麦积区作为代表点。

1·2·2苹果产量资料的处理苹果气候产量资料分解的方法和准确性,会直接影响苹果农业气象灾害的分析评估研究。

在参照仅有的农业气象灾害观测调查资料的基础上,将天水市苹果总产量资料按3、5年滑动平均法、线性法、正交多项式法、指数法等多种函数分解方法[6]提取其趋势产量。统计分析表明:天水市苹果总产趋势产量的提取以指数法效果最佳(图1),趋势产量提取方程为y=8682·2e0·126t(y:趋势产量;t:时间序列,t=1,2,3,…;n=30;r=0·93)。用y′i=(Yi-yi)/yi×100%计算逐年苹果总产量动态相对偏差百分率[6-7](y′:苹果气候产量增减率;Yi:苹果实际产量;yi:逐年苹果趋势产量;i:年份)。

1·2·3影响天水市苹果总产量的主要农业气象灾害因子的提取农业气象灾害对天水苹果生产的影响研究[8]中,通过分区统计分析,得出影响天水渭北旱区、关山区和河谷川区三区苹果正常生长的主要农业气象灾害均为上年秋季9月大气干燥度,冬季12月至2月负积温的光照条件订正值和苹果花期4月下旬平均最高气温的大气相对湿度订正值,春季低温晚霜冻出现频率和危害程度正在逐步减轻。

为了更进一步提取影响天水市苹果总产量的主要农业气象灾害因子,将3个气候区主要灾害因子与天水市苹果总产量动态相对偏差百分率进行逐步回归[9],建立如下影响苹果气候总产量的主要农业气象灾害因子提取方程:式中,y′i为苹果总产量动态相对偏差百分率;K′9秦安为渭北秦安上年秋季9月大气干燥度∑T≤0℃×Q12-2麦积为河谷区麦积冬季12—2月负积温的光照条件订正值;TM4月下旬/U麦积为河谷区麦积苹果花期4月下旬平均最高气温的大气相对湿度订正值;Tn4月下清水为关山区清水苹果花期4月下旬平均最低气温。12—2月暖冬高温虽然不属于气象学上定义的气象灾害因子,但随日益加剧的暖干气候[10],暖冬高温对苹果生长影响极大,仅次于前秋9月干旱灾害。

1·2·4气象灾情等级划分标准将渭北秦安上年秋季9月干旱(用大气干燥度表示)、河谷区麦积暖冬(用冬季12—月负积温的光照条件订正值表示)和花期高温危害(用苹果花期4月下旬平均最高气温的大气相对湿度订正值表示)、关山区清水春季低温危害(用4月下旬最低平均气温表示)4种标准化处理后的主要农业气象灾害标准值作为成灾变异值。再将1978—2007年30年成灾变异值中大于或等于0·1以上的成灾变异值(春季低温为小于或等于-0·1以下的成灾变异值),按变异值的离散程度[11]分成相等的4个组,从小到大将灾情等级依次划分为轻灾、中灾、大灾和重灾4个等级,并采用分级赋值和内插法依次赋以1~3、4~6、7~9、10~12。9月干燥度(秦安)、暖冬(麦积)和花期高温(麦积)成灾变异值小于0·1为无灾;春季低温(清水)成灾变异值Z大于0·1为无灾,无灾年份灾害等级分值ci按0分赋值(表1)。

1·2·5灾情指数的计算及综合评价方法式(1)得出影响天水市苹果总产量的主要农业气象灾害为渭北秦安上年秋季9月大气干旱、河谷区麦积12—2月暖冬和4月下旬花期高温干旱、关山区清水春季4月下旬苹果花期低温危害。

为此,本文将以上4种灾害作为影响天水市苹果总产量的主要农业气象灾害因子。用式(1)计算得出的相应站点灾害因子的贡献率(方程中相应灾害因子系数/4种灾害因子系数绝对值之和×100%)作为相应站各类灾害因子的影响权重(wij:其中渭北秦安9月干旱w1=37%;河谷区麦积暖冬w2=27%,花期高温危害w3=22%;关山区清水春季低温危害w4=14%),并与其对应站点相应灾害类型的等级分值相乘,4种灾害类型进行累加[式(2)]就得到农业气象灾情的灾情指数(Pk),并以此作为农业气象灾害危害评估指标,与苹果气候产量增减率实况分级进行对比分析(苹果气候产量增减率实况亦分为无、轻、中、大、重5级,分级方法同灾害成灾变异值分级)。

Pk=∑4j=1Cij×wij(2)式中,Pk为灾情指数;Cij为4种灾害等级分值(i:1978—2007年各年份,i=1,2,3,…,30;为4种农业气象灾害,j=1,2,3,4;下同);wij为相应灾害因子的影响权重。灾情指数(Pk)越大,表明农业气象灾害对农业生产的影响越大,灾情越重;反之,对农业生产的影响小,灾情越轻。

2综合评价

2·1主要农业气象灾害分布表2是影响天水苹果生产的前秋9月干旱、冬季12—2月高温、花期4月下旬高温干旱气候和春季4月下旬低温发生频率统计。1978—2007年30年中,前秋9月旱灾最多,发生频率70%,主要以中—大灾为主,占旱灾年份的52%;轻灾年份次之,占38%;重灾年份最少,占10%。暖冬和花期高温灾害次之,发生频率分别为63%和67%,均以轻灾为主,分别占灾害年份的47%和45%;中—大灾次之,分别占47%和40%;重灾年份最少,分别占5%和15%。春季低温危害最少,发生频率53%,仍以轻灾居多,占灾害年份的50%;中—大灾次之,占44%;重灾年份最少,占6%。

2·2综合评价将式(2)计算的逐年农业气象灾害综合灾情指数(Pk)分成1、2、3、4、5相等的5个组从小到大将灾情等级依次划分为无灾、轻灾、中灾、大灾和重灾5个等级与苹果总产量动态相对偏差百分率实况分级(表3)进行对比分析。

天水市1978—2007年30年逐年主要农业气象灾害对苹果生产的影响进行综合评估,并与实况(表4)进行对比分析。评估无灾11年,与实况相符10年,评估准确率91%。灾害年份中,评估轻灾9年,与实况相符8年,评估准确率89%。评估中灾5年,大灾5年,重灾1年,均与实况相符,评估准确率均为100%。灾害年份除轻灾评估准确率略低外,中—重灾评估准确率较高,特别是重灾的1991年、大灾的1984年、1987年、1989年、1992年和1997年,苹果均出现较大幅度减产,灾害评估效果比较理想。

3结论与讨论

(1)分析得出影响天水苹果正常生长的主要农业气象灾害是前秋9月大气干旱、冬季12—2月暖冬高温、苹果花期4月下旬高温干旱和春季4月下旬低温危害。各灾害发生频率在53%~70%之间,以前秋9月干旱最多,春季4月下旬低温危害最少;前秋9月大气干旱以中—大灾为主;其他灾害均以轻、中灾最多,大灾居次;各种灾害因子重灾年份最少,仅占6%~15%。

(2)综合评估表明:影响天水市苹果生产的农业气象灾害综合评估除轻灾评估准确率略低(89%)外,中—重灾评估准确率均达100%,灾害评估效果比较理想。

(3)由于苹果灾害实况调查观测资料极少,给苹果灾害的评估研究工作带来了极大不便。

为此,本文主要采用统计学方法,利用苹果产量资料,在参照仅有的农业气象灾害观测调查资料的基础上,将指数法分解后的苹果总产量动态相对偏差百分率,按其离散程度确定为无灾、轻灾、中灾、大灾和重灾5种灾害程度实况类型。影响天水市苹果总产量的主要农业气象灾害因子的提取,也是采用了统计分析方法,进行理论提取。研究结论除轻灾评估准确率略低外,中—重灾评估准确率较高,在缺乏农业气象灾害实况观测调查资料的情况下,可作为气象灾害评估的有效方法,对农业防灾减灾有一定的指导意义。但因苹果灾害实况灾情资料极少,现实生产中仍有待更进一步研究验证。

参考文献(References):

[1]李世奎,霍治国,王道龙,等.中国农业气象灾害风险评估与对策[M].北京:气象出版社,1999:

[2]刘濂,王卫,刘东都,等.河北省3种农作物气象受灾程度分级与灾害损失率分区的研究[J].生态农业研究,1997,5(4):

[3]徐良炎,高歌.近50年台风变化特征及灾害年景评估[J].气象,2005,31(3):41-45.

[4]山义昌.冬小麦风雹灾害的等级划分与灾情评估[J].气象,1998,24(2):49-51.

[5]魏丽,王保生.江西省区域性洪涝灾害模糊综合评判方法的研究[J].中国农业气象,1998,19

气象灾害论文第4篇

1.干旱。

干旱是指由于水分的收支及供求失衡而造成的水分短缺。我国位于亚洲东部,受到季风气候的影响极为显著。我国的干旱情况具有极大的普遍性、季节性与区域性。我国的干旱平均两三年就会发生一次,自上世纪90年代至今,我国特大旱灾发生次数至少十余次。我国的干旱横跨四季,春季集中在华北、东北、云南、四川等地,夏季在东北、华北、西北、黄淮地区,秋季在东北西南、黄淮、长江中下游、黄淮、华南等地,冬季则主要集中在南方。

2.洪涝。

洪涝灾害的形成与降水量、土壤结构、地理位置、植被、季节等密切相关。自古以来,洪涝灾害都是一种较为严重的气象灾害,我国江河众多,每年汛期都会有一定的洪涝灾害发生。尤其是在河流的中下游地区,耕地密集,洪灾频发必会影响到农作物的生长。主要特点分为:一是普遍性。我国有三分之二以上的地区都曾遭受过不同程度的洪涝灾害侵蚀。二是高损失性。根据1991年到2007年的中国历年洪涝灾害损失官方数据,其中损失中重度以上的年份个数有八个,损失金额都在1000亿元人民币以上。三是突发性。以我国东部地区为例,洪涝灾害时有发生,然而防洪能力较弱,经常是洪涝灾害突袭来临,造成损失较大,突发性较强。

3.台风。

台风源自于热带海洋上产生的低气压,当近地最大风速超过17.2km/s时就称之为“台风”。我国在气候上受到了北太平洋西部热带气旋的影响,主要在浙江、福建、广东等沿海地区受灾严重,台风也被人们称为全球上最严重的气象灾害之一。台风具有影响范围广、季节性强、受灾程度大、出现频率高、以及灾区较为集中等特点。台风一般发生在5月到11月之间,由于受到西北太平洋与热带季风的影响,我国沿海地区成为台风的高发区,间接影响达到32个省市。

4.冰雹。

在农业气象灾害范畴内,冰雹是一种区域性较强的气象灾害,它对农作物的危害主要集中在果实、枝叶以及杆茎上,属于机械性损伤。冰雹灾害产生于强对流天气中发生,与地理位置、外部环境以及气象条件所形成较为常见的自然现象。它在山区、平原、内陆、沿海均由分布,可以说一种比较常见的气象灾害。近年来,在不经常发生冰雹灾害的湖南、江西等省也遭受了冰雹的袭击。我国的北方山区地带是冰雹灾害的高发区,导致农业生产受到极大的危害。

5.冷冻。

冷冻灾害主要指由于温度较低而引起的霜冻、寒冻等气象灾害,根据冷冻灾害程度的不同,又可以分为冻害与低温冷害。冻害产生于冬季期间,一般气温在零摄氏度以下,冻害分为霜冻害和寒潮冻害两种,在此种条件下。农作物较易产生冻害,严重时农作物则会死亡。低温冷害则指的是由于温度偏低而使农作物的生长过程发生障碍的情况,导致农作物的减产的气象灾害。

6.其它气象灾害。

除了上述五种气象灾害以外,还有低温连阴雨、雪灾等也对我国的农业生产,乃至农业经济都受到一定影响。根据报道,2007年,我国华北、西北、东北等地区遭受了连续十几天的低温阴雨天气,导致了很多农作物产生霉变,有的已长出的农作物也产生的烂果现象,致使农民受到巨大的经济损失。2008年,我国湖南、广西等地遭遇了前所未有的雪灾侵害,直接影响到冬季农作物的生长,农作物减产,农业经济稳定性失衡。

二、我国气象灾害对农业生产的影响

1.对农作物生长发育的影响。

气象灾害的产生,它对农业的不良影响,首先体现在对农作物生长发育的影响。我国疆土辽阔,包括多种气象灾害,干旱、洪涝、台风、冰雹、冷冻等等,不同种气象灾害都对农作物的生长有着不同程度的损害。以洪涝灾害为例,每年七八月份是洪涝灾害的高发期,此时也是长江流域玉米的生长盛期,此时,如果发生洪涝灾害,容易造成大片玉米的绝收。

2.对农作物种植时间的影响。

如果时值农作物的生长旺盛期,却发生了气象灾害会导致推迟农作物的种植,如果继续提前播种,甚至有可能会影响到该农作物的整体产量与质量。以山东省冬小麦的种植为例,到了小麦的生长发育期却恰逢冷冻气象灾害,为了能够使冬小麦的生长发育进程与诸多外界因素相适应,势必要延迟播种时间。如果提前播种,就会出现小麦在入冬前长势过旺,造成小麦过冬时遭受冷冻灾害侵蚀,从而引起冬小麦的产量下降。

3.对设施农业发展的影响。

所谓设施农业是指人们为了抵御气象灾害或者是不良气候条件而进行的工程农业,如保温、加光、人工建筑等,主要以花卉果蔬、田间作物以及水产畜牧营造一个小型的气候环境。气象灾害的发生,在很大程度上促进了设施农业的发展与进步。然而,气象灾害也会对设施农业造成破坏,如暴雨、冰雹、冷冻等,都会造成相关设施的毁坏。

三、我国气象灾害对农业经济的影响

1.农业经济损失呈上升趋势。

我国的农业经济因气象灾害而造成的经济损失呈现显著的上升走势,从上世纪五十年代开始至今,气象灾害对我国农业经济产生的直接经济损失分为十五个阶段,其中,1988年到1991年的农田受灾面积达到了全国农田面积的一半以上,平均每年的经济损失达到750亿元以上,而受灾面积则达到47952万平方公顷。根据2007年的有关数据显示,我国因气象灾害造成的农业受灾面积达到5000万公顷,直接经济损失占我国整个国民生产总值的1%到3%。2008年,同样尤其气象灾害导致我国农业经济损失超过4100亿元,占GDP总值的4.5%。

2.农业经济影响频率加快。

根据有关统计数据显示,我国从50年代、60年代、70年代、80年代、90年代至今,其发生气象灾害的频率分别为12.5%、42.9%、60%、70%、100%,从中不难看出,我国气象灾害对农业经济的影响频率不断加快,危害随之增加。平均每年国民生长总值的4%都被气象灾害造成的损失所抵消,损失严重。

3.农业经济市场稳定性的影响。

气象灾害的发生,不仅对农业经济造成直接经济损失,还对其市场的稳定性造成一定的不利影响。一旦气象灾害产生,将会极大地降低农业产量,而产量的降低将会直接影响到当季农作物的市场价格,由于受到市场供求关系的作用,农产品市场价格将会增涨,气象灾害在一定程度上加大了短期通胀压力,不利于我国市场的稳定。

四、我国气象灾害的防御对策

1.构建气象灾害防御工作体系。

各地政府应加强对气象灾害的重视程度,将其纳入到农业发展以及社会经济发展的范畴内,由政府牵头对气象防灾减灾进行通盘部署,其构建完善的防御工作体系。其主要内容包括:构建气象灾害应急响应工作系统,以统一领导、联合进行的方式,有规律组织气象灾害的防御指挥、预报警报、防御实施;构建气象灾害防御基础设施建设系统,从而保障各项工程的进度和质量;开展大型农业设施气象灾害的风险评估系统,减低灾害的破坏率。

2.掌握气象规律,调整农业布局。

气象灾害的产生与当前的环境有着密切的联系,这要求相关政府与防灾减灾工作人员了解环境变化、掌握气象规律,提高农业对气象变化的防御性,进而调整农业布局,以达到农业发展与气象资源充分利用的可持续发展状态,进而实现农业高产、高质,农业经济高效的目的。

3.树立防灾减灾意识,提高气象灾害的防御能力。

首先,建立农村气象灾害防灾减灾宣传教育系统,将减灾教育纳入各类农村教育体系中,通过该宣传教育,通过宣传教育,使气象灾害易发区人群了解灾害的起因及防御措施。其次,提高从事农业气象灾害防御相关工作人员专业素质和技能,充分发挥气象灾害监测预警与应急系统的建设效益,从而减少农业生产损失,提高农业经济效益。

4.逐步建立农业灾害保险与补贴机制。

研究建立适合我国国情的灾害天气农业保险模式,建立由政府牵头,商业保险公司参与,补贴与政策扶持相结合的农业保险新模式,有效化解农业灾害风险,稳定农业生产。

5.增强生态意识,农业生产与气象资源利用可持续发展。

气象灾害的发生与环境有密切关系,在新农村建设中,要加以对水资源污染控制与保护,人居环境改善与防灾减灾进行统筹考虑,比如对山、水、林等合理开局,统筹考虑村镇小气候形成,避免发生气象灾害。

五、结语

气象灾害论文第5篇

晋城市气象灾害预警公共服务系统的总体结构包括逻辑结构和物理结构。其中,逻辑结构表示软件的整体结构;物理结构表示软件部署时的总体结构。网站设计采用Web四层结构,自顶部向下依次为表示层、逻辑层、数据持久化层和数据库层。上述各个层级的功能和作用具体表现在以下4方面:①表示层。表示层是指网站用户和管理员在浏览器中能看到的所有页面,包括网站所有的页面展示部分,且与逻辑层分离,这有利于网站的制作、维护和扩展。②逻辑层。逻辑层包括用户和管理员的业务逻辑,定义了业务流程和用户交互的过程。单独划分逻辑层有利于重新定义网站和升级业务逻辑,且不会影响其他层次。③数据持久化层。数据持久化层负责所有信息集和信息项的数据持久化操作和增删改查,可接受其他模块的调用和逻辑组织,并具有执行相应的持久化功能。④数据库层。数据库层负责管理系统中的oracle数据库或其他数据库。晋城市气象灾害预警公共服务系统采用了当下比较流行的四层用户/服务器模式。这种模式在逻辑上将应用功能分为用户显示层、业务逻辑层、数据持久化层和数据层。用户显示层可为用户提供应用服务的图形界面,有助于用户理解和高效定位应用服务;业务逻辑层位于显示层与数据持久化层之间,是专门为实现气象局提供明确的业务逻辑的层次,该层次封装了与系统关联的应用模型,主要负责业务逻辑的封装,并分离用户表示层与数据库持久化代码;数据持久化层可确保用户应用程序和数据服务之间的联系,主要功能是执行用户数据的持久化工作,将封装的模式呈现给用户应用的程序,并提供固定的持久化接口;数据层是上述模式中最底层也是最关键的一层,用来定义、维护、访问和更新数据并管理和满足应用服务对数据的请求。晋城市气象灾害预警公共服务系统四层结构具有以下4个特点:①任何系统都须具有良好的灵活性和可扩展性。对于环境和应用条件经常变动的情况,只要对应用层实施相应的改变,就能达到适应环境的目的。②增强了气象对象的重复可用性。气象对象是指封装了企业逻辑程序代码、能够执行特定功能的对象。③随着组件技术的发展,这种可重用的组件模式会被越来越多的网站开发商接受。④该系统的四层模式具备很高的稳定性、延展性,可集中管理服务,并将服务统一于用户端。网站在web设计四层结构中各个模块的部署位置。其中,包括1台数据库服务器、2台应用服务器和1台流媒体服务器。数据库服务器用于部署数据库管理系统,比如MySql和oracle;1台应用服务器分别部署管理员功能模块和普通用户模块;流媒体服务器可播放视频天气预报。Web四层结构中的表示层、逻辑层和数据持久化层均部署在应用服务器上,数据层部署在数据库服务器上。采用数据库服务器和应用服务器分离的方式可提高数据库的安全性,同时还能提高网站的性能。此外,采用2台应用服务器分离管理员和普通用户有助于提高网站的整体性能。

2关键技术

该系统中的关键技术有以下6种:①信息中插入图片。采用FCKEditor中的html编辑器,在信息中插入图片后可直接看到效果,从而简化了图片信息的录入过程。②系统安全性。建立了严格的用户校验机制,采用基于角色的访问控制模型实现了对后台管理系统用户访问权限的管理,以保证系统的安全性;建立了日志管理机制,可记录系统的登录、退出、编辑和删除等行为。③并发访问。选择了性能较好的Web服务器tomcat,并采用静态页面等方式减少并发访问时数据库连接对资源的消耗。在信息时,可生成静态页面,用户访问时直接读取静态页面,无需从数据库中动态读取数据,大大减少了数据库的连接次数,解决了并发访问时数据库连接耗尽的问题。④气象站与地理信息的结合。选择了WebGIS提供的MapABC,可将气象信息与地理信息有机结合,并展示于互联网中,使相关用户能自主获得更多的气象信息,且具有良好的并发性。⑤气象探测信息的互联网展示通过统一的编程接口发出,整合了零散的气象探测信息,且能够有效地在互联网上展示,使相关用户能够在气象产品中获取更多的收益,进而给人们的日常生活、农业活动和广大科研机构提供了更有效的信息展示方式。⑥在流媒体气象视频展示中,采用了视频压缩技术和多种流媒体服务方式,可向相关用户展示立体的图像和音频信息。

3安全防范措施

3.1数据的安全保护措施

在业务内网的数据收发过程中,需要在数据收发、身份识别和网络系统等方面具备特别的保护措施,具体可以采用以下4种措施保护数据的安全:①全套接层协议(SSL)是在Internet的基础上提供的一种保证私密性的安全协议,它能使用户与服务器应用之间的通信不被攻击者窃听,并始终对服务器和用户进行认证。因此,采用SSL协议可有效加密和认证网络服务。②采用SSH协议实现Internet的加密访问。③后台数据文件的安全是该系统最为关键的部分。因此,应采用信息加密工具PGPi实现窗口信息加密、签名文件加密、传统档案加密、文件和磁盘的安全清除等功能。④应独立为系统安装硬件身份识别工具,可保证与第三方CA认证机构单位认证和数字签名系统的良好连接,以确保终端用户身份的真实性。

3.2病毒和恶意代码的防范措施

应安装先进的病毒防治软件。晋城市气象局从2008年起,购买了正版的卡巴斯基杀毒软件,并实现了业务内网病毒库的自动更新,实施监视和判断系统中是否有病毒存在,从而阻止了计算机病毒的进入。杀毒软件可识别计算机病毒具有的特征,并提出处理策略,比如删除可疑病毒、恶意代码和恢复文件。

3.3黑客的防范措施

黑客的防范措施由以下3部分组成:①安全检测网络、系统、数据库和前台应用程序;②对网络、系统和数据库、前台应用程序进行安全漏洞修补服务;③全天候实时扫描和监控入侵行为。

3.4系统的备份和恢复

近年来,晋城市气象局为拓展气象服务领域,新增了5套应用服务系统,根据这些系统的运行状况,任何应用系统随着时间的推移,难免出现整体或部分的异常情况。因此,系统软、硬件的备份和恢复是十分关键的。晋城市气象实施了不同的备份和恢复措施,目的是尽可能快地恢复运行计算机系统所需的数据和系统信息。备份不仅在硬件故障或人为失误时可起到保护作用,还能在入侵者非法访问或对网络攻击时起到保护作用。根据系统中不同信息的安全需求,采用的备份机制为场地内高速度、大容量、全自动的数据存储、备份和恢复;场地外的数据存储、备份和恢复;系统设备的备份和恢复。为了备份该系统,采用了2套完全相同的服务器备份数据。如果系统出现异常,则启动另一台备份服务器即可。

4结束语

气象灾害论文第6篇

1.1加强监测预警能力建设

不断加强灾害监测预警能力建设。建设了六要素自动气象站,乡镇加密自动气象站,酸雨观测站、土壤观测站和卫星接收站;建设了雷电监测仪和紫外线观测仪。宜春风廓线雷达和宜春新一代多普勒天气雷达已投入业务使用。这些监测项目的建成对提高气象灾害预警能力发挥了重要作用。

1.2加大防灾、减灾、避灾知识宣传

通过多种手段加大防灾减灾避灾知识宣传,让防灾避灾方法家喻户晓。积极利用下乡、上街、培训、广播、电视、报刊、电子显示屏、黑板报、手机短信、“2121”电话和互联网送防灾抗灾知识进农村、进学校、进社区、进企业。同时通过这些有效手段及时将各种灾害发生的信息及时传送到广大群众手中,使各级党政领导指挥能力和群众自身防灾能力普遍提高。建立中小学校、乡镇场、村、企业、小II型以上水库气象信息员队伍,他们既是气象信息的传递员又是各种灾害的收集员和报告员。

1.3制定灾害应急预案

制定了气象灾害应急预案。明确了人员和职责,一旦出现灾害可以随时启动相关应急预案,做到快速反应,指挥有序,抗灾及时得力,有备少患。

1.4加强研究做到科学减灾

减灾手段和方法需要不断创新。我市高度重视减灾研究工作。一是成立了综合减灾专家组,定期会商预测灾害出现的时间、地点和强度,提出防范建议和措施。二是每年给出一定的经费用于减灾研究,近几年多项研究成果获得省市政府和有关部门的奖励。

2持之以恒做好气象防灾减灾工作

不断总结经验,加强科学研究,千方百计提高预准确率,提高灾害性天气的预警预报水平,为各级党政领导指挥防灾抗灾提供优质的决策服务。同时将气象灾害信息及其防范措施通过各种有效手段迅速传播到广大群众手中。将气象灾害损失减小到最低取限度。加快各涉灾部门的信息共享机制和平台的建立。提高气象防灾减灾效率。不遗余力地加强监测预警能力建设。加强综合气象观测系统建设,加强人工影响天气工作。加强应对气候变化研究。做好气象灾害防御规划编制工作。科学制定新农村建设规划,避开雷电、地质灾害易发区。

3不断提高个人避灾能力

3.1学习掌握雷电知识

雷电分为直击雷、球形雷、感应雷和雷电波侵入。直击雷是直接击打到建筑物或人体身上的雷;球形雷是指出现不规则的球状雷,也是目前的防雷难点;感应雷是巨大雷电流沿着附近突出物或导体向周围传播;雷电波侵入是由于雷击架空线路上或空中金属管道上产生的冲击电压沿线或管道迅速传播的雷电波。全球每年因雷击造成数十万以上人员伤亡,几十亿美元的经济损失。随着全球变暧气候异常,雷电强度愈来愈强,加上经济社会的快速发展,雷电灾害愈来愈多,损失愈来愈大。

3.2注意个人防雷,确保安全

气象灾害论文第7篇

通过对发生的地质灾害、降雨等资料的分析,崩塌滑坡泥石流灾害发生的原因是地质环境条件、降雨、人类工程活动等因素的相互交织,自然与社会因素相互叠加的结果。地质灾害系统是一个复杂的开放系统和耗散体系,具有高度非线性和复杂性,其系统行为具有非确定性和突发性[9]。在诸多因素中,地形、岩土体类型、活动断裂等为控制性因素,对地质灾害的分布、形成、发展起着控制性作用。降雨、人类工程活动、地震为诱发因素。本文将影响地质灾害的因素归纳为控制因素和诱发因素。控制因素有表征地质环境条件的地形、岩土体类型、活动断裂、水网密度、构造及人类工程活动;云南省降雨诱发型地质灾害约占90%,因此将降雨作为诱发因素来考虑。

1.1滑坡泥石流灾害与地质环境的关系本文在总结前人研究成果的基础上进一步深入研究,提出以下几点看法。

1.1.1滑坡泥石流与地形地貌(1)崩塌滑坡泥石流主要发育于海拔500~2500m区域,3000m以上分布数量少;其中1000~2500m区域内滑坡最为集中,占滑坡总数的86%。(2)云南省地貌以元阳河谷和云岭山脉一线为界,可将全省分为滇东高原盆地区、滇西山地峡谷区,根据地貌特征细分地貌亚区。不同地貌区灾害发育分布特征不同。

1.1.2崩塌滑坡泥石流与岩土体类型岩土体作为地质灾害的活动主体,是地质灾害产生的物质基础,岩土体类型、性质、结构及构造特征对地质灾害的形成发育产生重要影响。薄-中层状极软-较硬含煤砂岩、泥岩岩组易发生塑性变形破坏导致滑坡泥石流灾害;块状坚硬片麻岩、混合岩、变粒岩岩组由于风化层厚,容易沿强/弱风化界面产生滑动;中-厚层状强岩溶化较硬-坚硬灰岩、白云岩岩组中滑坡泥石流地质灾害很少发生。

1.1.3崩塌滑坡泥石流与地质构造构造控制着地形地貌及大地构造分区并进一步影响微地貌和岩土体类型,从而影响地质灾害的发育。活动性断裂构造密集的区域,岩土体破碎,斜坡较为陡峻,较易发生地质灾害。

1.1.4崩塌滑坡泥石流与地震云南省地震活动频繁,地震发生的同时,常常诱发滑坡、崩塌和地裂缝等次生地质灾害,同时导致岩土体破碎,斜坡物质失稳,为泥石流提供大量物质来源。

1.1.5崩塌滑坡泥石流与水系密度云南省地质灾害与水系关系比较密切,地质灾害沿河流两侧呈带状分布,山区河流两侧一般为交通要道,人类工程活动对岩土体产生扰动,加剧地质灾害的形成。

1.2降雨与崩塌滑坡泥石流灾害的关系云南具有“一山分四季、十里不同天”的气候特征,小尺度单点性强降水经常发生[8]。依据最新的气候区划,云南大致可分为北热带、南亚热带、中亚热带、北亚热带、温带和高原气候带等6个气候带。因气候类型不同,不同区域降雨时空分布特征差异明显,对地质灾害的诱发作用不同。云南省降雨与地质灾害关系具有以下几个特点:(1)降雨对地质灾害发育发生具有明显的分带特征,不同区域诱发地质灾害的临界雨量差异明显。(2)在降雨发生当天及前几天,大部分地质灾害的发生都会伴随有降雨的发生,并且规律性非常明显。因此,短时强降雨对地质灾害具有明显的诱发效应。(3)将滑坡、崩塌和泥石流灾害发生当天、前3d、前5d、前7d、前10d、前15d的累计有效降雨情况进行统计分析,结果表明累计有效降雨量随时间推移与地质灾害相关性逐渐减弱,前7d累计有效降雨量与地质灾害相关性较明显。

1.3地质灾害预警区划通过对地质环境条件、气候特征、地质灾害发育特征等分析,对云南省进行预警区域划分,将全省划分为11个预警区:哀牢山地区、大理丽江地区、大盈江地区、滇东北地区、滇南地区、滇西北地区、滇中高原湖盆区、滇中红层地区、金沙江中下游地区、临沧地区、文山岩溶地区。不同预警区域,对降雨量诱发地质灾害的敏感程度不同,因此根据预警区特征设置不同的降雨阈值;不同预警区,地质环境条件因子对地质灾害敏感性不同,因此根据预警区特征设置因子权值。

1.4地质灾害气象风险预警模型(1)地质灾害敏感性指数在不同的地质环境背景条件下,由控制因素影响发生地质灾害的可能性差异用地质灾害敏感性指数(Z)表示,根据云南省滑坡泥石流形成机理及特点,选取与崩滑流地质灾害密切相关的地形地貌、地震、水网密度、岩土体类型、构造、人类工程活动共6个因子,用信息量模型[10]来计算地质灾害敏感性指数。(2)降雨诱发指数本文引用了岳建伟[4]等在地质灾害预警预报及信息管理系统应用研究中提出的前期累计降雨量对地质灾害影响的降雨诱发指数计算方法。根据云南省降雨与地质灾害关系特征,将有效累计降雨天数修正为7d,选取当日降雨量,1d、3d、5d、7d累计有效降雨量为特征值,设置降雨阈值。参考李铁峰等在哀牢山地区的研究成果,α取值0.75。(3)地质灾害气象风险预警单元按云南省气象局预报雨量网格划分方法将全省划分为0.5°×0.5°网格单元。(4)气象风险预警指数气象风险预警指数(H)=地质灾害敏感性指数(Z)×降雨诱发指数(R)。(5)地质灾害气象预报预警等级划分地质灾害气象预报预警级别按全国统一要求划分为5级,根据预警指数计算结果,进行预警级别划分。

2地质灾害气象风险预警系统实现

2.1基于WebGIS的地质灾害预警系统的设计云南省地质灾害气象风险预警系统基于GIS空间分析技术和WebGIS技术,实现对地质灾害数据、雨量数据、地图数据进行存储与集成管理、预警分析等,系统包含预警分析子系统、雨量管理子系统、灾害数据管理子系统、地图管理子系统。预警分析流程:首先导入地质环境背景因子,设置各预警区因子权值,通过GIS空间分析计算地质环境敏感指数;然后对各预警区设置降雨量临界值雨量,导入前7d及预报降雨量,计算出当日地质灾害降雨诱发指数,再计算预警指数并按划分的预警等级,对预警结果进行分析,最后预警产品(图1)。

2.2地质灾害气象风险预警系统特点云南省人民政府确定的地质灾害防治“以预防滑坡泥石流为主、以预测预报为主、以灾前避让为主”的“三为主”方针,突出了地质灾害预报预警对地质灾害防治的重要性。2011年8月26日,云南省国土资源厅与云南省气象局签订了《深化地质灾害气象预警预报工作合作协议》。从如何利用好现有资源为地质灾害防灾减灾服务为出发点,研发了云南省地质灾害气象风险预警系统。该系统具有以下特点:(1)系统预警单元为0.5°×0.5°网格,精度可达乡镇级,且预警精度可以随气象局雨量站加密而提高,提升了云南省地质灾害气象风险预警水平。(2)系统模型中因子权值、降雨阈值等参数可根据预警结果反馈情况和地质灾害发生机理研究结果进行调整,预警方法具有可优化性。为后期雨量数据加密后分析地质灾害与降雨量、地质环境条件的关系提供模型优化接口,提高模型的实用性和可靠性。(3)系统应用关系数据库SQLServer管理属性数据,用MAPGISK9的空间数据库管理空间数据,数据管理方式更加安全、高效。(4)通过对州(市)级行政区划内地质环境条件对地质灾害的控制作用特征、降雨对地质灾害的诱发特征研究,构建适合各州、市的预警区划及降雨阈值,本模型方法及预警系统具有可推广性。随着气象部门雨量监测站网及监测手段迅速提高,州(市)国土资源部门承担辖区内地质灾害气象风险预警预报将成为新的发展方向。

3地质灾害气象风险预警成果检验

系统于2013年汛期试运行,通过新老系统预警结果对比、地质灾害灾情信息反馈,不断调整、修正模型因子权值及降雨阈值。2014年系统投入正式运行。对2014年汛期大型以上地质灾害灾情所在预警区域进行统计,在3级预警区的地质灾害约占60%、在2级预警区的约占30%、另外10%大型以上地质灾害未在预警区内。新系统在缩小预警面积、减少空报的同时提高了成功预警率。

4结语