欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

桥梁结构论文(合集7篇)

时间:2023-03-27 16:46:32
桥梁结构论文

桥梁结构论文第1篇

关键词:系统桥梁分形

一、系统论

1945年贝塔郎菲提出了一般系统论的新思维,随后维纳、申农分别提出了控制论和信息论,从而使得人们对事物整体和部分的关系看法由机械整体性发展到系统整体性。60~70年代间,系统科学出现了耗散结构论(普里高津)、协同论(哈肯)、超循环论(艾根)和突变论(托姆),主要讨论系统的存在、发展和消亡,强调任何一个净化系统都能够自行组织,并且不同要素之间具有协调作用。70年代以来,对系统最核心的问题即系统机制的研究得到广泛关注,出现了对系统机制解释的混饨理论、分形理论、孤波理论等,构成了系统动力学理论,主要考察系统的非线性机制。

凡物皆系统,考察任何系统都要对其要素、结构、功能、环境等方面进行分析。系统具有以下主要特性:①加和性和非加和性;②整体不等于部分之和;③整体功能取决于要素、结构和环境;④结构决定了系统的功能。系统处于非平衡态,需要外加的能量(或信息)来维持,因此,能够产生新的结构的系统一定是开放的。系统远离平衡态失稳以至形成新的结构要依赖于非线性的反常涨落。涨落在远离平衡时起驱动作用,不可逆性会导致新的结构,产生新的质。

系统论已被应用于很多领域,本文旨在应用系统研究的思想来系统地理解桥梁结构的一些新领域,进而将系统机制理论引入桥梁系统的研究。

二、桥架结构系统

桥梁是由多种材料、不同结构组合而成的复杂系统。桥梁结构系统的要素、结构、功能及环境的简要示意图。桥梁结构系统是桥梁工程大系统的一个子系统,不同的桥梁结构体系又构成各个更低层次的子系统。要素中的各种基本构件也构成一个层面上的系统,有其自身的要素、结构、功能和环境。

桥梁结构系统整体不等于部分之和。单个基本构件,比如单个梁构件,是无法实现跨越峡谷甚至海峡的目的的,而多个构件按照一定的构造规则组成悬索桥或斜拉桥就可以实现。结构系统的整体功能取决于构件单元、结构体系和环境状况,其中起决定性的是系统的结构,通常只有大跨斜拉桥和悬索桥才能作为跨海大桥的候选桥型,对抗震性能要求较高的地区,应选用抗震性能较好的结构系统,如连续刚构、斜拉桥等,或对连续梁等桥型进行结构的改进,设计支座单元,达到减震目的。

耗散结构理论认为,在远离平衡状态的非平衡区内,在非线性的非平衡作用下系统演化方向是不确定的,系统的平衡可能失稳,发生突变或分又,系统呈现出新的结构稳定状态。这种结构是一种非平衡的结构,接受环境注入系统的负熵流才能稳定。桥梁的非线同样体现了这一思想,桥梁的失稳为系统突变所致,地震荷载作用下的桥梁系统的延性抗震性能也是结构非线性性能的体现。

三、桥架结构的系统研究思路

1.系统识别与健康监测

结构系统识别是通过试验和计算机来实现对结构的建模。桥梁结构可以看作一?quot;灰箱"系统,处于一定环境中的桥梁结构,一定的输入对应一定的输出,通过对系统输出和输入的分析,可以实现对结构系统的判断和识别。对这样一个灰箱的识别首先应确立一个由梁整体监测的许多困难,对桥梁在使用年限内工作特性的变化缺乏全面深入的研究,难以建立客观同一的桥梁状态评估标准。所以整个技术的成功开发乃至系统目标的最终实现有赖于更好地结合系统自身的要素、结构和系统工作环境。

具体实现桥梁结构系统的健康监测与状态评估,当前主要有以下几方面的工作【2】

(1)针对系统输出:开发和应用以无线通讯技术为手段的数据采集系统;开发能适用于交通荷载风荷载及定点测试荷载的传感器最优布设技术;

(2)针对系统输入和输出的反向分析:采用动态边界子结构原理,开发以结构模型修正法为基础的结构损伤识别技术;研究非线性结构模型的时域评估方法及系统识别技术;寻找更适合桥梁监测的新指纹;开发桥梁观察与监测收据管理系统及决策专家系统;综合良态建模技术,改善有限元模型修正方法;

(3)系统分析的终端应用:根据观察与监测的结果分析实桥的剩余承载能力;建立桥梁安全准则及能用于桥梁整个寿命过程经济评价的估价模型。

2.系统控制

古典控制理论起源于本世纪20年代,主要以单变量线性定常系统为研究对象,以频率法为主要方法研究控制系统的动态特性。50年代以来,逐渐出现了多变量系统、系统灵敏度分析、动态系统测试状态空间方法和Bellman动态规划等现代控制理论方法【5】。

在系统与控制理论中,主要研究动力学系统。桥梁结构在动力荷载作用下,表现为不确定性的随机系统,其非线受到越来越多的关注和研究。尤其在桥梁的抗震和抗风领域,近年来从传统的抗震抗风设计思路发展到结构控制思想。目前的结构控制方式主要有被动控制、主动控制和混合控制,被动控制是通过支座、阻尼器等装置来消耗输入系统的外部环境能量;主动控制的基本思想是通过主动施加外部能量来抵消和消耗环境输入能量,使偏高平衡状态的系统在新的注入能量流作用下找到平衡。

早在1890年,最早的隔震器就产生了,当前已应用的有叠层橡胶、旋转弹簧等多种支座和弹塑性、粘性、干摩擦等阻尼器用于对系统的被动控制。Constantinou在1991年提出了采用位移控制装置和滑动支座相结合的滑动隔震体系,最大限度地减少了输入能量向结构系统的传递[4].

有些主动控制技术(如AMD)已经进入实用阶段,在日本已经建成了一批主动控制的建筑。通过主动控制,一方面可以用最有效的方法抵抗外部激励,另一方面可以直接减小输入到结构上的激励水平。当前有主动连杆控制技术和主动调质阻尼器系统(AMD)技术实现对系统的主动控制。混合控制系统当前主要有对振动控制系统、混合基础隔震系统和可变阻尼系统。当前的这些技术还处于发展之中,不但在桥梁抗震抗风领域,而且在房屋等建筑领域甚至是整个土木工程都有广阔的应用前景。

3.系统非线性机理

传统自然科学趋向于强调稳定、有序、单一、均匀与平衡,带有线性的色彩,到本世纪70年代前后,自然科学的锋芒开始转向现实世界的失稳、无序、多重性、不均匀和非平衡等方面。非线性系统已成为自然科学的主要研究对象,因为非线性是一切复杂现象的本源[5]。

1973年,费根包姆提出的混饨理论大大推进了非线性理论在系统科学中的应用,混饨理论、分形论、孤波理论共同构成系统动力学理论,探讨系统的非线性机制。桥梁结构系统也是一个混饨系统,具有不可预测性、不可分解性和存在规律性,而且这一混饨系统具有分形性质,即自相似性。这里重点讨论桥梁系统动力学行为特别是桥梁抗震系统中的分形特征。

(1)分形与分维

1977年,Mandelbrot出版了专著《分形、机遇和维数》(Fractal:Form,ChanceandDimension,Freemen,SanFrancisco,1977),标志着分形理论的诞生。分形是其组成部分以某种方式与整体相似的形,即分形是指一类无规则、混乱而复杂但其局部与整体有相似性的体系。

数学家按一定的规则构造出具有严格自相似性的规则分形集合。如康托尔三分集、谢尔宾斯基垫片、柯曲折线等。柯曲折线的结构,具有严格的自相似性。自然界中被认为是分形系统的海岸线、云层边缘、地球表面、断口表面以及液体湍流等,没有一个严格意义上的分形,其自相似性是近似的或统计意义上的相似,分形自然体在局部和整体的某种相似性通常只是在某些特定的尺度范围内才成立,这些尺度范围被称为"无标度区",这种只在无标度区内具有自相似性的分形也称随机分形。形态(结构)、信息、功能或时间上具有自相似性的客体称为广义分形[6]。

在实际问题中,为了考察一个事物是否存在局部和整体的相似性,只要检验该事物是否存在"无标度区"即可。以尺度r把事物分成N个相似的部分,对变化的r画出igr-lgN曲线,然后检验曲线上是否存在明显的直线段,直线段对应的r的区域即是无标度区。此方法的理论依据是自相似集的相似维数(一lgN/lgr)是不依赖于尺度r的一个常数。分维是描述分形特征的定量参数,因为所描述的具体对象不同,分维计算的具体形式也有多种,如相似维数、容量维数、信息维数、关联维数、集团分维和质量分维等。

地震学界已开始对地震的时、空、强度分维及其多分维进行了大量研究。普遍认为地震是多重分形的。分维值在地震前后的变化为探讨地震前兆场的复杂性提供了有效的分析工具。在桥梁抗震中,结构破坏与地震输入和结构反应特征有关。从弹性反应谱的三联谱中,很容易发现无论是岩石场地弹性反应谱还是结构的弹性反应谱均具有明显的分形特征。P.S.Symonds对一个具有两个自由度的梁构件模型在瞬时冲击荷载作用下的弹塑性反应进行了分维研究,计算得自相似维数为0.78,表明位移反应图对冲击荷载标度具有独立性[7]。

(2)桥梁抗震及分形特征

如同分形广泛存在于自然科学和社会科学的诸多领域中一样,分形同样存在于桥梁抗震领域[10]

①作为输入荷载的地震动,其能量具有分形特征,而且能量分维Dfe有可能成为地震预报的新参数。

②地震动反应谱,作为地震动特性与结构动力反应相互联系的纽带,也是统计意义上的分形结构,它也决定了结构反应的分形特征,特别是以周期为标度,结构反应应该与反应谱具有一致的无标度区。

③对墩柱破坏准则的研究发现,变形一能量双重破坏准则的破坏指数是划分桥梁域往不同破坏程度的合理指标,以输入地震动的峰值或以墩柱体积配箍率为标度,破坏指数具有近似分维特征。建立连续梁桥等代分析模型,代替复杂的结构有限元模式来分析结构的地震反应。通过理论分析与桥例计算可见,以刚度比为标度,结构周期、墩底弯矩和墩顶位移反应存在无标度区;以周期为标度.墩底弯矩和墩顶位移反应同样具有明显的分形特征.与反应谱所体现的分形特征一致【8】。

结合南京长江二桥南汉桥和杨浦大桥两个桥例,建立有限元模型,考虑边跨主跨跨径比、梁墩刚度、局部构件、支座单元等对结构动力反应的影响。通过分析可以发现,对于不同的标度,无论是跨度比、梁墩刚度比还是支座的刚度等等。动力反应都表现出近似多重分形特征,分维值可以反映动力反应对于不同标度的敏感程度【9】。

研究桥梁结构动力特性是否具有分形特征,是分形和分维概念应用于桥梁结构动力分析领域中的关键点。通过对国内外大量已有实桥动力特性资料的统计和桥例分析可见[10]:

①斜拉桥的纵飘基频对于跨径尺度,主塔侧弯基频对于塔高,体系坚弯基频对于跨径,侧弯基频对于跨宽比以及扭转基频对于跨径都具有统计意义上的分形特征。

②悬索桥竖弯基频、侧弯基频及扭转基频对于跨径或主缆垂度,具有统计分形特征,利用分数维,可以得到比常用估算公式更为接近实桥值的基频简化计算公式。

③对于梁桥动力特性的大量实测结果表明,简支梁桥基频对于跨径标度是分维为0.923~0.933的统计分形结构。以桥长为标度,小跨径桥梁的基本侧向周期分维为1.20。桥梁结构系统涉及参数多,统一的规律多存在于定性阶段。分维的概念使得对于性质的认识可以定量描述,正如在许多领域,分维对非线性、无规则现象的描述那样。显然,这还需要大量的工作和艰辛的努力。以上分析表明,混饨系统存在规律性,分形就是描述这种规律的一种理论,事实上,分形规律不仅仅在桥梁抗震领域存在,在桥梁大系统中乃至整个土木工程领域中都广泛存在着。

四、结论

通过以上分析可见:

(1)桥梁结构是一个要素和结构复杂、具有生存环境和结构功能的动力学系统;

(2)系统最关键的部分--结构是桥梁结构系统识别和健康监测的重点,特别是结构的指纹分析;

桥梁结构论文第2篇

就目前的发展来看,我国的桥梁结构设计的倾向如下:比较注重强度而忽视耐久性;重视强度极限而忽视使用极限;重视结构的建设而忽视结构的维护,这样的设计倾向直接导致了桥梁工程事故的不断发生,不利于和谐社会的发展。我国的桥梁设计理论和结构构造体系还有诸多需要完善的地方,在桥梁设计过程中,尤其在桥梁施工和使用期安全性上改进的空间还是比较大的。在结构设计中首先要选择科学合理、经济的方案,其次是结构分析与构件和连接的设计,还要运用规范的安全系数或可靠性指标给结构的安全性以最大的保障。

2我国现代桥梁结构设计的注意事项

2.1对于结构的耐久性问题要重视

在我国的桥梁建设过程中,很多时候都缺少建设前期所需要准备、视察及考证等工作,这是一大问题。周围的环境会在很大程度上影响到桥梁的建设和使用,不仅包括由于车辆超载而出现的疲劳情况,还包括桥梁结构本身的老化和损伤。我国从上世纪九十年代有些研究者就针对桥梁结构的耐久性进行了研究,但多集中在桥梁的材料及统计等方面,而对桥梁结构及设计的研究却是忽视的,还缺少以设计及施工人员为出发点改善桥梁的耐久性。设计人员所关注结构的计算方法比较多,而容易忽视总体构造的设计和一些细节处的把握。结构耐久性的设计应该有别于其他普通的结构设计,就现阶段而言,我国桥梁结构的耐久性研究应转变为定量分析而不是传统的定性分析。诸多研究实践表明一座桥梁是否能够安全使用,结构的耐久性发挥了很大的作用,经济性也包含在其中。

2.2充分重视桥梁的超载问题

超载会造成桥梁疲劳应力幅度加大、损伤加剧,严重的情况下还可能引发结构破坏事故。桥梁的超载不仅会引发疲劳问题,还可能造成桥梁内部损伤难以及时恢复,进而使得桥梁在正常荷载下的工作状态产生一定的变化,将威胁到桥梁的安全性和耐久性。所以设计人员应加强分析超载所带来的严重后果,最大限度的加强桥梁的稳定性。

2.3重视对疲劳损伤的研究

动荷载是桥梁结构所承受的车辆荷载和风荷载的主要方面,其会在结构内产生循环变化的应力,除了会引起结构的振动外,结构的累积疲劳损伤也是不可忽视的方面。在桥梁建设中所使用的材料实际上均匀性和连续性都不是很理想,诸多微小的缺陷夹杂其中,在循环荷载作用下,它们会不断发展、合并进而形成损伤,最终形成宏观裂纹。一旦宏观裂纹没有得到很好地控制,就会产生材料、结构的脆性断裂。疲劳损伤在初始阶段被察觉的可能性比较小,所产生的严重后果却是毁灭性的。所以应该加强疲劳损伤的研究工作。

2.4积极借鉴国外的经验和成果

我国桥梁设计中存在结构使用性能差、耐久性和安全性差等诸多问题,这和现阶段我国的施工质量和管理水平不高是分不开的,但问题已然存在,并且在短时间无法得到有效解决,设计人员对此问题要有一个清醒的认识,在设计时对上述问题充分考虑到,运用恰当的设计方法、恰当的安全系数使桥梁的使用性能达到要求的标准,这才是设计的关键。尤其是桥梁的耐久性和安全性问题与结构体系、使用材料选择不合理、结构细节处理不当有着千丝万缕的联系。针对我国设计中存在的问题应积极借鉴国外的有益经验,PBD就是其中之一。PBD即为性能设计,涵盖了结构设计的众多方面,如变形、裂缝、振动、耐久性等。PBD研究不仅保证了桥梁结构在使用中的安全性,还具有很多优良的使用性能,这其中包括寿命和耐久性、耐疲劳性、美观等。对此,我国应该积极借鉴其优良方面的性能,并结合我国桥梁设计的实际和使用过程中的具体情况来最终寻找适合我国的设计。

3对我国现代桥梁结构设计的建议

总而言之,我们在对桥梁结构的耐久性、疲劳损伤以及桥梁超载问题进行必要研究的同时,还可以把研究面放得更宽一些,诸如结构系统的可靠度、模糊随机可靠度等,这样做的目的都是为了加强桥梁结构设计的使用性、安全性及耐久性。下面就选择几个方面就行分析,希望为研究人士提供参考。

3.1结构系统的可靠度分析

结构系统可靠度分析其实不是一项容易的研究课题,具有一定的复杂性,近年来不少研究者对其从不同方面进行了研究,并且取得了一定的研究成果。例如利用系统系数,主要针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛法应用重要抽样技术最终将结构系统的可靠度计算出来。另外还有研究者对系统可靠度界限进行深入的研究。总而言之,在进行系统可靠度的研究上难度系数比较大,内容也包罗万象。在研究上还是有一定的上升空间的。

3.2在役结构的可靠性评估与维修决策问题

对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它既包括结构力学、断裂力学、建筑材料科学、工程地质学等比较基础的理论,还离不开施工技术、检验手段、建筑物的维修使用状况等方面的内容。值得注意的一个方面是对于在役结构的可靠性评估的研究,经典的结构可靠性理论也可在此过程中得到更为广泛、更有深度的进步和发展。

3.3模糊随机可靠度的研究

模糊随机可靠度理论研究作为工程结构广义可靠度理论研究的重要内容,在不断健全的模糊数学理论与方法的推动下,会得到不断的完善和发展。

4结束语

桥梁结构论文第3篇

关键词:工程结构可靠度综述

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。

一、结构可靠性理论研究历史

长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:

1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。

2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。

3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。

除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:

(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。

(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。

因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:

1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。

6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。

五、结语

桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.

[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.

[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).

[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.

[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.

[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

桥梁结构论文第4篇

关键词:工程结构可靠度综述

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。

一、结构可靠性理论研究历史

长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:

1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。

2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。

3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。

除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:

(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。

(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。

因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:

1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。

6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。

五、结语

桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.

[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.

[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).

[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.

[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.

[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

桥梁结构论文第5篇

关键词:大跨径刚构一连续组合梁结构设计探讨

一、前言

在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构一连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁团结代之以设置支座的连续结构。在结构上又可分为在主跨跨中设铰、其余各跨梁连续和全联不设铰的组合梁桥两种形式,通常称后者为刚构一连续组合梁。在我国已建成的该桥型的比较典型的例子有东明黄河大侨,跨径比之更大的该类型桥现已初见尝试。

二、刚构一连续组合梁桥的结构受力特点及应用

1结构特征及受力特点

在连续梁桥中,将墩身与主梁团结而成为连续刚构桥。由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展[2]。具有一个主孔的单孔跨径已达270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用了,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束予以解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构一连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构一连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具有一定的优越性。

2.在我国的应用情况

东明黄河大桥开创了刚构一连续组合梁桥在我国应用的先例。

由于放松了多跨连续刚构桥对边主墩高度的要求,因此刚构一连续组合梁桥适用于不同的地形、地质条件、通航要求等。下面将介绍的武汉军山长江公路大桥初步设计刚构一连续组合梁桥方案就是一个典型的设计实例。目前国内在建的典型的大跨径刚构一连续组合梁有杭州饶城公路东段钱江六桥,其技术设计阶段主桥为127+3X232+127=950m的五跨预应力混凝土刚构一连续组合梁体系,中、边主墩均为双壁墩,中主墩墩身与主梁固接,边主墩墩身与主梁分离,分别设置4个65000kN的支应与主梁连接,悬臂施工中墩梁通过预应力粗钢筋临时固接。受地形影响解除边主墩墩身与主梁固结的刚构一连续组合梁桥还有黑河大桥,该桥布跨为6016+6×100+60=720m,墩身为单箱墩,最外边墩设支座。

刚构一连续组合梁桥还适合于某些特殊布跨情形。如厦门海沧大桥西航道桥,布跨为70+140十70十42+42(m),其中两孔42m跨锚碇,避免了设两孔连续或简支梁,并减少了伸缩缝。像这样将边墩设支座的小边跨与连续刚构主体相连而成为非典型的刚构一连续组合梁桥的桥还有很多。

三、设计实例

武汉军山长江公路大桥初步设计作了斜拉桥和连续刚构两个方案同等深度的经济技术比较。其中连续刚构方案最初的跨径布置为138+24O+240+240+138(m),三个主跨的四个主墩均为双薄壁墩,墩身与主梁固结。设计中发现两个边主墩由于高度较矮,受力很不合理,因此,将其与主梁的固结约束予以解除,桥型变为刚构一连续组合梁的结构形式(后出于总体布跨考虑,将跨径布置调整为138+240+240+240+138+56(m))。现以布跨138+240+240+240+138(m)的大跨径刚构一连续组合梁桥的设计为例对其结构设计加以介绍和探讨。其结构设计简介如下:

1.结构体系

桥梁分左右两幅,采用138+240+240+240+138(m)五跨一联三向预应力混凝土刚构一续梁组合梁桥型方案,双壁墩结构,中主墩墩身与主梁固结,边主墩及边墩墩顶设支座。边主跨比L边:L主=0.575:1,纵坡3%,纵曲线要素为T=5l0m,R=17000m,E=7.65m。横坡2%,由箱梁顶板坡度形成。桥面铺装为6cm钢纤维混凝土垫平层加6cm沥青混凝土。

2.下部构造

主墩墩身为普通钢筋混凝土结构,采用50号混凝土,双壁墩结构。P2,P5号墩为边主墩,墩高28m,左右幅每片墩墩顶各设两个吨位为60000kN的球形钢支座,墩身为矩形实心断面,断面尺寸320cmX800cm,顺桥向外缘距12m;P3,P4号为中主墩,墩高39.9m,墩身与主梁固结,墩身为矩形实心断面,断面尺寸280cmX750cm。,顺桥向外缘距12m。承台采用30号混凝土,均为整体式,厚5m。P2~P5两号墩桩基础采用25号水下混凝土,均为18根直径2.5m的钻孔桩,桩长分别为55m,35m,40m,37.5m,均按支承桩设计。下部构造平面布置.P3,P4及P5号墩基础拟采用双壁钢围堰方案施工,P2号墩拟采用钢管桩平台加钢套箱方案施工。为有效抵抗偶发的巨大船撞荷载,各主墩均设计为整体式基础和承台。防撞构造立足于墩身自身防撞,因此墩身按实心断面设计。

3上部构造

主梁为分离式单箱单室直腹板箱梁,采用50号混凝土。根部梁高h根=13.2m,h根:L主=1:18.18;跨中梁高h中=4.0m,h中:L主=l:60;箱梁底线变化曲线y=4.0+(9.2/114)×X。箱梁拟采用对称悬臂现浇施工工艺,施工梁段长度分为3m,4m,5m三种类型,0号块现浇段17m,合龙段3m。1/2标准跨的分块布置为:(l/2)x17m+10x3m+10x4m+8x5m+(1/2)x3.0m=120m。最大悬臂施工长112.5m,共28对施工块件,块件重量在140.8~234.5t之间。箱梁顶宽16.45m,底宽7.5m,翼缘板悬臂长4.475m(含承托),外侧厚15cm,根部厚50cm。0号块顶板厚45cm,其他位置顶板厚28cm。0号块腹板厚100cm。向跨中分70cm,60cm,40cm三个梯段变化。根部底板厚130cm。;跨中底板厚28cm,中间按y=0.28+(1.02/114)×x变化。箱梁仅在墩项及梁端设横隔板,墩顶横隔板位置及厚度与每片墩身相对应。为增强箱梁整体性,还在墩顶设置了箱外横隔板。

箱梁纵向预应力体系采用15-22,控制张拉力4296.6kN,横向预应力体系采用15-4,控制张拉力781.2KN。纵、横向预应力均采用φ15.24mm预应力超强、低松弛钢绞线,极限抗拉强度为1860MPa,计算弹性模量E=1.95x10''''MPa。竖向预应力体系采用φ32mm轴轧螺纹粗钢筋,控制张拉力542.8kN.箱梁典型断面纵向预应力钢束布置。

4.结构分析

(1)计算模式

顺桥向总体结构静力分析采用平面杆系综合程序进行。接施工阶段将结构分为328个单元325个节点,共63个施工阶段。由于地质条件相对较好,因此未按等刚度原理将桩基础进行模拟,即不计桩基础的影响,近似按承台底固结考虑。中主墩与主梁固结,边墩为单向交承,计算中计入了边主墩。

(2)计算荷载

汽车:半幅桥横向按布置4个车队数考虑,横向折减系数为0.67,纵向折减系数为0.97,偏载系数1.15。

挂车:按全桥布置一辆考虑,偏载系数1.15。

满布人群:3.5KN/平方米

二部恒载:7t/m。

温度:结构体系温差考虑升温20℃,降温20℃;梁体温差考虑了由于太阳辐射和其他影响引起上部结构顶层温度增加时产生的正温差及由于再辐射和其他影响,热量由桥面顶层散失时产生的负温差,参照BS5400荷载规范取用;箱内外温差为5℃;桥墩墩体考虑日照不均匀温度差:升温时,两片墩身的一侧比另一侧和中间高5℃,降温时,两片墩身的一侧和中间比另一侧高5℃。温度效应考虑两种组合:体系升温十正温差十升温时墩体温差,体系降温十反温差十降温时墩体温差。

静风荷载:施工风速按30年一遇,成桥风速按100年一遇计。横桥向风力按规范公式计算。

船撞力:横桥向18400kN,顺桥向9200kN。作用点位置按规范或专题确定。

(3施工方法及主要工况

拟采用悬臂浇注法施工。为确保施工阶段单T的顺桥向抗弯及根桥向抗扭稳定性,将P2、P5号墩墩顶与主梁临时固结,在次边跨合龙施工完成后予以解除,完成体系转换。主要工况为;①施工基础及墩身,悬臂浇筑至最大悬臂状态,形成单T;②满堂支架浇筑边跨现浇段,配重施工;③边跨合龙,现浇段支架拆除;④次边跨合龙;⑤中跨合龙,形成结构体系对施加二部恒载;⑦运营。

(4)计算参数及荷载组合

混凝土:徐变特征终级值2.3,弹性继效系数0.3,徐变速度系数0.021,收缩特征终级值0.00015,收缩增长速度系数0.021。

预应力:松弛率0.03,管道摩阻系数0.22,管道偏差系数0.001,一端锚具变形及钢束回缩值0.006m。

考虑五种组合:①恒十汽;②恒十汽十温度;③恒十挂;④恒十满人;⑤恒十汽十温度+船撞力。

(5)计算结果

主梁次边跨跨中汽车活载挠度为0.111m,中跨跨中为0.096m。

主梁应力:成桥状态混凝土应力最大约155kg/平方厘米,最小约26kg/平方厘米,组合①混凝土应力最大约17Ikg/平方厘米,最小约10kg/平方厘米,组合②混凝土应力最大约215kg/平方厘米,最小约一6kg/平方厘米。

五、几个问题的探讨

1.结构方案比较

在维持主跨规模不变的前提下,为寻求一个受力合理、结构安全、适用美观的方案,对结构形式及主墩厚度作了计算比较。比较的方案有138+3X240+138(m)连续刚构方案,墩厚2.5m;138+3x240+138(m)连续刚构方案,墩厚2.1m;138+3x240+138(m)刚构一连续组合梁方案,固接墩厚2.5m;138+3x240+138(m)刚构一连续组合梁方案,固接墩厚2.lm。经过计算分析得出如下结论:

(1)相同布跨和墩厚的两种方案,主梁的内力和位移相差较小,中主墩由于高度较大,且距顺桥向变形零点较近,内力相差也不大,而边主墩受力则相差悬殊。在连续刚构方案中,由于高度较矮,且距变形零点很远,因此,尽管在设计上采取了措施,在恒载、活载及温降组合工况下,墩身两端仍产生了很大的弯矩,而且靠外侧的墩身轴力难以提高,而在刚构一连续组合梁方案中,墩底弯矩是由支座最大静摩阻力决定的,因此相对较小,另外墩顶轴力通过配重措施可以得到很好的解决。

(2)墩身厚度的降低,迅速降低了墩身刚度,从而迅速减小了温度产生的墩身的荷载效应,对边主墩效果更为明显。但墩身厚度同时受截面应力状态和稳定性的限制,存在一个低限。

2边主墩合理型式的选择

对于规模较小的桥梁,最不利组合下的墩顶竖向力相对较小,支座数量少且容易布置,而且最大悬臂状态下的稳定性问题显得次要的情况,采用单柱式墩是合适的。但对于大跨径刚构一连续组合梁桥,从以下几方面的研究可见,采用双柱式墩是边主墩的合理型式。

(1)结构受力比较

设单柱式墩的截面尺寸为BX2H,双柱式墩为BXH,中心距2r,墩高相同。在其他条件相同的前提下,经计算,边主墩若采用单位式墩,与采用双柱式墩相比较:

主梁内力:中跨跨中的M,Q,N略有减小,边跨跨中和次边跨跨中的M,Q,N均略有增大;边主墩顶和中主墩顶的N,Q均略有增大,变化值不大,但M却增大很多,对边主墩顶:成桥状态增大81%,最不利组合增大45%,对中主墩顶:成桥状态增大1.3%,最不利组合增大6.l%;

中主墩墩身内力:N,Q略有增大,M成桥状态增大9%,最不利组合增大8%;

主梁挠度;次边跨跨中汽车荷载挠度增大36%,中跨跨中汽车荷载增大8%。

可见,边土墩采用双柱式可减小上部结构的计算跨径,降低箱梁截面内力和挠度。

(2)采用双柱式墩有利于施工阶段最大悬臂状态下的安全性

施工阶段,由于墩身与箱梁临时固结,因此,采用双柱式墩的顺桥向抗弯惯性矩为

而采用单柱式墩的顺桥向抗弯惯性矩为

对于本桥,前者为后者的5.92倍。

(3)能保证桥梁横向抗风的要求

施工期间,桥梁处于悬臂状态,其横向抗风稳定性尤为重要。此时墩顶与主梁固接,对于单柱式墩,当其受到横桥向扭矩后,柱身产生扭转角,从而产生抵抗扭矩,对于双柱式墩,桥墩的抗扭能力由两部分组成:一是两片柱身扭转产生的抵抗扭矩,二是由于柱身产生横桥向水平力Q,从而产生抵抗扭矩,其值为Q与2r的乘积,它是双柱式墩的主要抵抗扭矩。从数值上看,后者远大于前者,因此能保证大跨径桥梁横向抗风稳定性的要求。

(4)构造和美观要求

最不利组合下墩顶的竖向力决定了支座的数量,大尺寸的大吨位支座的布置及在施工期间墩身与主梁的临时固结构造决定了墩身的最小平面尺寸。对本桥而言,若采用单柱式墩,其墩身厚度在6m以上,显得过于厚重,与轻巧的中主墩不协调,在材料用量上与双柱式墩相差很少。

3边主墩支座力的平衡措施

由于边主墩距桥梁中心线较远,加上特定的合龙顺序和边中跨比,在不采取措施的前提下,两片边主墩墩身的竖向力会相差较大,这样一会导致支座吨位很大且规格相差悬殊;二来增加基础的工程量。为解决此问题,在边跨合龙前在外侧悬臂端施加配重能较好的解决。

本桥的设计措施是在边跨合龙前在外侧悬臂端施加90t的永久配重,其与不配重计算结果。

可见,配重对平衡边墩墩顶轴力的效果是明显的。

最大悬臂状态下顺桥向施工稳定性取决于该状态下的最大不平衡荷载,其由箱梁已浇筑梁段的自重偏差、挂篮等机具的安装偏差、正浇筑梁段的自重偏差、浇筑时的动力系数偏差、两端挂篮装拆和移位的不平衡和墩身两侧的风压不平衡等其中的几种相组合得出,其值往往达100t以上。因此,配重施工前采取的有效措施并在良好的施工环境下,配重施工时顺桥向的施工稳定性是可以得到保证的。

4计算模式的处理

中主墩墩身与主梁固结,两者相连接的部位可用综合程序系统的带刚臂杆件单元来处理,能比较准确而简单地模拟构件交汇点的刚域效应。对于边墩,其对结构总体受力影响很小,一般不计入总体结构计算中,而从中分离出来,其对结构的效应用该处的约束(单向支承)来代替。而对于边主墩,其对结构总体受力影响较大,宜计人总体结构计算模型中。为此,综合程序增设了两个特殊杆件元,来解决实际结构中非刚性中间节点的约束模拟问题。

在本桥计算中,将P2,P5号墩与主梁间的支座连接约束用两端铰接刚性杆(А∞,I0)来处理,使计算图式归为全部刚结的形式。

5其他方面

由于主梁受力状态同连续刚构相差不大,因此三向预应力设计基本相同。但由于施工过程中的配重措施,必然使得在各合龙阶段施工时,合龙段两端的高程会有所差值,这可以通过设置预拱度或采取加卸载措施进行施工挠度控制于以解决。另外,由于0号块同连续刚构相比,其边界条件有了变化,应作相应的空间有限元分析。

桥梁结构论文第6篇

随着经济社会的逐步发展,我国道路交通问题日益突显出来,我国也加大了对于桥梁建设的投入力度,道路桥梁设计是交通部门工作的重点。我国现阶段道路桥梁结构设计常见问题主要有以下几个方面。

1.1设计标准不高

我国道路桥梁设计对规范标准的要求并不高,进行施工就会对道路交通产生诸多不便或产生安全隐患,还会对桥型的美观程度造成一定的负面效应。所以设计时应充分的考虑这个方面,结合现场环境,很多时候都需要在桥梁的主梁或梁侧部分预留一定空间,为日后的施工打下良好的基础。

1.2管道预留空间不足

专用桥梁管道是每一座桥梁设计中必须要考虑到的方面,但在具体的设计和施工中往往是忽略这一点的。产生的原因主要是城市化所带来的人口压力过大或城市改造工程。城市改造工程很有可能产生管道预留空间不足的情况,而在很多时候我们只能采用少量的扩容处理,将桥梁管道在桥体之外,这样做的直接后果就是会对交通线产生不利影响,还可能影响到桥体的美观。遇到桥梁管道预留空间不足的情况时,再次开挖是比较适宜的方法,但一大弊端就是会加大工程的资金投入力度,同时也不利于交通情况。

1.3绿化带专项防水设计缺陷

桥梁工程必须具有一定的使用功能,除此之外还要有一定的美观性。所以桥梁绿化带专项防水设计应运而生。在设计桥梁结构的过程中,绿化美观需要在设计的考虑范畴内。通盘考量了所有的影响因素后,必须要保证桥梁结构使用性和美观性。

1.4结构设计选型问题

桥梁工程结构选型问题在设计中是比较重要的一个方面,满足视距和净空的要求的同时,还要具有美观的外形和科学合理的结构,这也视为桥梁结构设计的基本标准和原则,尽可能的打造出功能和美观于一体的桥梁工程,为城市平添一抹亮色。但在具体的设计时,关注实用功能的比较多,而忽视结构选型,结构选型不合理也就不足为怪了。

1.5装饰结构设计问题

我国的桥梁工程结构设计中安全材料不合标准的情况是比较常见的。一项工程要想成为精品,所使用的材料可以说是最为关键的,其是保障桥梁结构的安全运行根本。所以必须要保证装饰材料的可靠性,可以采用材料取样试验的方式来严把材料的质量关,为桥梁工程的安全运行保驾护航。

2道路桥梁结构设计要点

2.1主梁设计

不同于整体式简支梁结构,装配式简支梁结构最为重要的特点是可将预制独立构件进行运输与吊装,并且通过现场安装、拼接制梁。对于自动化、机械化施工技术的应用在设计中就可以完成,这样就大幅度的节省了施工成本,劳动生产力也有显著的提高,季节变化也无法对施工造成实质上的威胁。桥梁上部结构的主要承重构件就是主梁,一般的设计型式有T型和箱型,箱型结构主梁大多在预应力混凝土结构梁中应用。设计采用箱型结构主梁需要对主梁结构的间距与片数作要求,主梁间距与片数两者相互制约,即间距小则片数多、间距大则片数少。而主梁的高度及细部尺寸是以荷载的计算方法加以确定的,若主梁对称布置,梁身的荷载也是呈对称分布,此时要用杠杆法来计算,如若不然就要以偏心受压来计算。上述两种情况的相同之处是控制设计的标准是内力的最大值,要注意的是此标准不可作为主梁结构各个截面的最不利状况的受力计算,主要是因为很多不安全的因素夹杂在计算结构中。

2.2型式的选择应为桥台设计桥台结构设计的重点

在桥台结构的选择上,装配式简支桥梁主要有轻型桥台、钢筋混凝土薄壁桥台、埋置式桥台三种。轻型桥台结构型式体积较小,比较适合挡土的翼墙结构设计。钢筋混凝土薄壁桥台可设计将台身埋置于桥梁护坡中,这样不仅能够降低桥台结构受上部荷载的作用力,还能够使桥台留有足够的空间。但护坡容易受到洪水的侵袭使台身,所以设计时不可缺少的是对强度和稳定性的计算。

2.3桥墩型式选择

双柱式墩、十字墩或矩形薄壁墩是装配式简支桥梁结构设计的主要型式,单幅双柱式是最为常见的。鉴于以往的经验教训,设计时应谨慎选择桥墩结构型式,在岩溶性地质、桩基础施工难度比较大的地方应以实际情况为前提,减少桩基的设计,单柱单桩的设计是比较适合的。而在施工在河谷或容易受滚石威胁的地方时,设计的重点应该放在如何加强桥墩结构的整体抗撞击能力上,也比较适合单柱单桩设计。对于高位墩柱长桥,设计时应重点考量桥梁上部结构荷载累积变位的问题,这是双幅两柱整体下部构造设计是比较理想的。

2.4定线原则

(1)在1:10000比例尺的地形图上在起、终控制点间研究路线的总体布局,找出中间控制点。根据相邻控制点间的地形、地貌分布情况,尽量选择地势平缓地带,确定各种路线方案。

(2)山岭重丘地形,定线时应以纵坡度为主;而平原微丘地区地面自然坡度较小,纵坡度不受控制的地带,选线以路线平面线形为主,最终合理确定出公路中线的位置。

3结束语

桥梁结构论文第7篇

桥梁结构应具有足够的强度,以承受作用于其上的重力和附加力;结构各部必须具有足够的刚度,以使其在荷载作用下不产生过大的挠曲和变形;结构各部尺寸必须具有适当大小,以使其承受轴向压力时的构件不发生屈曲,丧失稳定性。同时结构也要具有较高的耐久性。由于作用荷载的随机性、材料强度的离散性、制造与施工质量的分散性、计算假定的近似性,致使在长期使用过程中桥梁结构产生病害,其具体原因如下:

1.原设计荷载偏低,交通发展后车辆荷载增大,桥梁因承载能力不足而产生病害。

2.结构设计中存在缺陷,如采用桥型结构不当、设计假定不尽合理。

3.桥梁施工质量差,未按设计要求和施工规程实施。

4.不重视桥梁后期养护工作,没有及时消除己产生的病害。

5.洪水等自然灾害使桥梁产生损坏。

6.地质条件差,如滑坡、软基等导致桥梁产生病害。

二、桥梁加固的一般流程

在桥梁结构发生病害后,需要采取措施进行加固维修或者更换。桥梁加固工程一般应遵循以下工作程序:

结构可靠性鉴定—加固方案确定—加固设计—施丁组织设计—施工—验收。

结构可靠性鉴定,主要是对病害结构的病情诊断。加固方案好比处方,加固设计是现行规范及有关标准对加固方案的深化过程。加固施工是对被加固结构按加固设计进行加固的施工过程,对于大型结构加固,为确保质量和安全,施工前应编制施工组织设计。

三、桥梁加固增强技术

桥梁的增强改造可以分为裂缝修补和对桥梁结构的加固增强,下面介绍其特点及其适用的场合。

(一)裂缝修补技术

裂缝修补的目的在于恢复结构物的防水性和耐久性,主要技术有:

1.表面处理法,在微裂缝的表面涂抹填料及防水材料,以提高其防水性和耐久性。对于宽度发生变化的裂缝,要设法使用有伸缩性的材料。

2.注浆法,在裂缝中注入树脂或水泥类材料,以提高其防水性及耐久性。主要注浆材料是环氧树脂,多采用低压低速注入法。环氧树脂注入法与钢钉并用,可以增强裂缝部位的整体性,是一种防止裂缝继续发展的好办法。

3.充填法,这是一种适合于修补较宽裂缝的方法,具体做法是沿裂缝凿一条深槽,然后在槽内嵌补各种粘结材料,如水泥砂浆、环氧砂浆、膨胀水泥砂浆、环氧树脂硅、沥青及各种化学补强剂等。4.表面喷涂法,喷浆修补是一种在经凿毛处理的裂缝表面,喷射一层密实而且粘度高的水泥砂浆保护层,来封闭裂缝的修补方法。喷浆前,需要把结构表面的剥离部分除去,再用水冲洗清洁,并在开始喷浆之前把基层湿润,然后再开始喷浆。

5.粘结钢板封闭法,当钢筋硂构件产生主拉应力裂缝时,可对裂缝先进行处理之后,再在裂缝处粘结钢板,并用膨胀螺栓对钢板加压。钢板粘结方向应和裂缝方向垂直。

(二)桥梁加固增强技术

本文以最常见的桥梁结构形式的上部结构及其常见的加固方法进行说明。

梁式桥上部结构加固增强技术主要有加大截面加固法、外部粘贴加固法、外部预应力加固法、改变结构体系加固法、增设纵梁加固法。

加大截面加固法采用增大构件的截面面积,根据荷载大小和净空条件不同,可分为以加大截面面积为主和加配钢筋为主两种加固方案。

外部粘贴加固法系用型钢、玻璃钢等材料通过环氧树脂等粘合剂粘贴在结构外部,以提高结构承载能力的一种方法。适用于构件尺寸受限制但又必须大幅度提高结构承载能力的场合,必须保证粘和剂的质量

外部预应力加固法指运用预应力原理,在增设的构件或原有构件上施加一定初始应力的一种加固方法。采用对受拉区施加预加压力,可以抵消部分自重应力,起到卸载、减小跨中挠度、减小裂缝宽度或闭合裂缝的作用。

改变结构体系加固法通过增设支撑或桥墩,把简支变为连续、在梁下增设如钢架等加劲梁或叠合梁,以减小梁内控制截面峰值弯矩,提高承载能力的一种加固方法。

增设纵梁加固法在桥梁墩、台基础稳定,并具有足够承载能力的情况下,可采用增设承载能力高和刚度大的新纵梁,这些新梁与旧梁连接在一起共同受力。由于应运中的车辆荷载在新增主梁后的桥梁结构中重新分布,使原梁中所受荷载得以减少,加固后的桥梁承载能力和刚度得以提高。当增设的纵梁位于主梁的一侧或两侧时,兼有拓宽的作用。此法适用于梁体结构基础完好,而承载能力不能满足要求的场合。

(三)桥梁结构加固新技术——锚喷