欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

桥梁桩基施工总结(合集7篇)

时间:2022-11-01 10:14:52
桥梁桩基施工总结

桥梁桩基施工总结第1篇

关键词:铁路桥梁;桩基础;施工技术

中图分类号:TU74文献标识码: A

前言:随着生活节奏的日益加快,铁路不断提速,给人们的生活带来了极大的便利。同时,由于铁路机车自重的增加以及速动的提高,就要求铁路桥梁的设计要更加先进,质量要更加可靠,尤其是桩基础,作为铁路桥梁承重部位,更要引起重视。因此,研究桩基础施工技术对于提高铁路桥梁施工质量和缩短工期都具有十分重要的作用。

1、铁路桥梁桩基础施工概述

铁路桥梁桩基础在施工之前首先要从施工环境、桩基础的方位测定、护筒以及钻孔泥浆等几个方面入手,以确保桩基础施工的顺利进行。

1.1桩基础的施工环境

桩基础施工环境就是指施工现场的场地情况。在施工开始前,一定要做好调研工作,对施工现场的土质、水文等资料详细调查核实,根据场地的实际情况来制定施工方案。例如如果施工场地是旱地,则要清除场地的障碍物,以及需要相应的硬化工作;如果是软土,则需要夯实并硬化,如果是浅水,需要采用引桥法,深水时需要借助主桥法,即钢管桩施工平台法,对平台也有较高的要求,必须做好平整工作,确保其牢固性。

1.2桩基础的桩位测定

在完成桩基基础的现场施工环境调研之后,要在现场进行桩位测定。具体方法为:在旱地时,要使用木桩标示出桩位的中心和标高,然后埋设护桩,要保持护桩的桩顶与地面标高完全一致,再对其进行固定。在深水环境,为保证桩的稳定性,护桩的固定要借助钢护筒。

1.3桩基基础的护筒准备

桩基础的护筒最常用的是钢制护筒,高度一般在两米以上。一般来说,为保证施工的质量,钢护筒的顶部和底部的壁厚较中间部分要厚。在施工过程中,护筒需要用粘土来固定,通过夯实粘土使护筒得以稳固。在埋设护筒的过程中,要保证桩位的中心与护筒的中心相一致,并且保证护筒与护筒相连接之处的质量。

1.4桩基基础的钻孔泥浆

在桩基基础施工中,需要钻孔工作,而影响钻孔工作最重要的因素就是泥浆,因此一定要在桩基基础施工之前准备好造泥浆的土,同时科学布置泥浆循环系统以及泥浆处理系统,使整个钻孔工作得以顺利、高效的进行,同时又使泥浆在使用完毕后得到充分的沉降和过滤处理,以免污染环境。

2、铁路桥梁桩基础施工技术要点

由于铁路桥梁桩基础施工技术的效率较高,并且施工过程安全、可靠,有利于提高整个工程的施工质量。因此随着科技的发展以及人们对工程质量要求的日益提高,铁路桥桩基基础施工技术已经在铁路桥施工中得到广泛的应用。

2.1钻孔灌注桩施工技术的应用

钻孔灌注桩技术在铁路桥桩基基础中应用较多,在实际施工过程中,主要工序为:首先,要试成孔。这一步骤是建立在科学而详实的施工场地调查研究工作的基础之上的,试成孔的过程,也是检验现场环境调研工作是否有效,以及施工设备是否正常运作的有效手段。其次,要进行科学分析。在钻孔过程中,要通过十字交叉法来确定孔桩的中心位置,并测量基准点和基线,对数据进行分析,然后再设置龙门桩。整个的钻孔灌注桩技术中,一定要保证数据的准确性和施工过程的科学性,要全面统筹,不可马虎大意。例如在钻孔过程中,一定要保持护壁泥浆的厚度,对于施工过程中产生的蜂窝、麻面以及漏水现象要采取应急措施,防止发生安全事故。还要注意在钻孔结束后要及时清理管壁的泥浆和残渣,在成桩之前充分保证材料的质量以及配筋的科学,并在工程结束后及时验收。

2.2钢筋笼施工技术

在钢筋笼制作之前,首先要对制作钢筋笼的钢筋进行进场和施工过程中的检验。在钢筋进场时,首先要检查其合格证、质量保证书、批号以及其他证件。所需要进行的检验包括力学性能实验和成分检验,以及对其可焊性进行检验,要采用抽检的方式,保证每个批次钢筋的性能都能满足制作钢筋笼的各项要求。在制作钢筋笼时,要严格按照设计要求进行焊接,使主筋和箍筋的位置布置科学,并且将箍筋置于主筋的外侧,这样一方面使焊接工艺更加简单,另一方面也能实现钢筋笼的加固工艺要求。钢筋笼焊接完毕后,要从焊接现场转移至桩基基础施工现场,在这过程中要严格控制钢筋笼的变形,注意轻拿轻放。安装钢筋笼时,首先要对钻孔进行检查,在确保安全的情况下采用正确的施工方法,在不破坏孔壁的前提下完成对钢筋笼的安装。

2.3人工挖孔灌注桩施工技术

对于该项技术的应用,需要从以下几个方面着手:首先,要进行试成孔,这就需要在施工前对施工场地以及条件进行检查,对施工技术和工艺以及各种设备进行检验,对地质资料进行检查,确保获得信息的准确性和科学性。其次要以测量基准点以及测量基线,对数据进行分析,通常是用十字交叉法确定孔桩的中心,并且安排专门的人员对龙门桩进行设置。在灌注桩孔施工技术的实施中,必须确保数据以及施工的准确性,必须确保护壁的厚度、配筋以及混凝土强度都必须符合设计的要求,对于施工中的蜂窝、漏水现象要及时采取补救措施,防止事故的发生。同时保证孔底不能积水,钻孔结束后要对护壁的淤泥和残渣及时的清除,并进行工程的验收。

2.4混凝土灌注施工技术

灌注混凝土工作之前,要充分检查孔洞的质量,保证孔壁的坚固,并清理孔洞内的杂物,如果有地下水渗入孔洞中,要及时抽水,在一切准备就绪后尽快灌注混凝土。灌注混凝土要采用串筒的方法,并且在灌注的过程中不断地用插入式振捣器振捣,以保证混凝土快速并且充分灌注到孔洞中,并且增加混凝土的密实度,在振捣过程中,要充分掌握“快插慢拔”的工艺要求,防止混凝土在孔洞内下落不均产生离析现象。在混凝土材料中,要采用直径在5cm以内的碎石或者鹅卵石作为粗骨料,在搅拌之前要做塌落度检验,使其满足工艺的要求,确保混凝土的粘聚性和流动性。另外,如果在温度较高的环境下,要在混凝土中添加适量的缓凝剂避免混凝土过快凝结,而如果是在北方冬季施工,就要在混凝土中加入早强剂,以使混凝土能够按照工艺的要求时间初凝和终凝。另外,在利用桩基基础施工时应该注意施工场地的限制,因为桩基基础施工的水下混凝土施工具有较强的隐蔽性,就容易引发松散、离析和缩颈的问题,这就需要加强对混凝土浇筑质量的控制。对混凝土的浇筑主要从原材料的选择、比例的调控、施工工具的改进和操作流程的规范等多个方面入手,同时注意施工时间必须连贯,进而保证较高的浇筑质量。

3、结束语

总而言之,在国民经济的不断发展中,铁路桥梁扮演着越来越重要的角色,这就对桩基的基础施工提出了更高的要求,在保证施工进度的同时,还要确保施工的质量,为铁路桥梁的发展奠定坚实的基础,这就依赖于先进的施工技术。在未来的铁路桥梁施工中,认真分析和研究存在的诸多不利因素和技术问题,克服地质条件的不利影响。不断的吸取和总结经验,灵活地运用各种施工技术,进而确保路桥发展的高质量,最终实现我国交通运输事业的可持续发展。

参考文献:

[1]杨文宗.试论铁路桥梁桩基础施工技术要点[J].黑龙江科技信息,2012,(36):267-267.

[2]张立,文雨松.浅析铁路桥梁桩基础在环境劣化下的疲劳寿命[J].铁道建筑,2007,(8):13-15

桥梁桩基施工总结第2篇

【关键词】铁路桥梁;钻孔灌注桩;桩基础施工;技术要点

1 引言

在经济高速发展的今天,交通运输网在日益完善,铁路由于生产运输的需要而不断增多。与此同时,基于地形的要求,铁路桥梁获得了很大的发展,而要想提高铁路桥梁施工的质量,保证铁路桥梁施工的安全,我们需要运用好桩基础施工技术。铁路桥梁桩基础施工技术直接影响铁路桥梁的整体质量,直接关系到人民群众的生命财产安全问题。桩基础是一种基础类型,其工程运用主要是在地质条件较差或者建筑要求较高的地方。桩基具有承载力高、沉降量小的特点,在铁路桥梁工程应用,以对应软土地区地基上的重型建筑物。因此,在很多高速铁路的建设中桩基技术的应用十分的广泛。

2 目前铁路桥梁桩基础施工技术改进的必要性

(1)当工程载重量增加到一定值时,不仅是大型机车轴重的增加和速动的提高,还有建筑物荷载量的加大,地基土的软弱以及浅埋土扩大,安全和稳定的基础需要铁路桥梁桩基础施工技术的改善,以控制工程的变形的可能性,保障铁路桥梁的工程质量。

(2)桩基础的质量控制在复杂地形影响下是难以控制的,这样一难题对铁路桥梁桩基基础技术设计提出了更高的要求。桩基础是深埋在地表以下的,在地下水水位不稳定的施工区域,桩基础的实际控制需要技术质量足够强大。将在此基础之上提出技术质量控制的解决方案,以确保整个铁路工程的安全。

(3)当铁路建设过程中必须通过峡谷,山川、江流等沟壑时,就需要设计铁路桥梁,以便和连接路基。并要考虑到铁路运行过程中自身承受的负荷和铁路桥梁质量寿命建设要求,铁路桥梁在施工穿越河流时,常常设计为大直径钢筋混凝土桥梁桩基础来平衡桥梁上部的承载,所以铁路桥梁和大直径混凝土桩施工质量和桩基础施工工艺也就变得举足轻重。桩基础常用的桩型主要有预制钢筋混凝土桩、预应力钢筋混凝土桩、钻孔灌注桩、人工挖孔灌注桩、钢管桩等,是铁路桥梁结构的基础,其质量的好坏在很大程度上决定了桥梁的承载能力和使用年限的高低,影响着使用者的安全。因此我们必须确保铁路桥梁桩基础质量品质。

3 铁路桥梁桩基础施工技术要点改进方略

3.1 钻孔灌注桩的施工质量控制措施

(1)钻机工作平台即工作场地清理。工作平台失稳造成的最直接影响就是桩 的垂直度。用枕木、型钢等搭设陡坡工作平台;用筑岛围堰法施工方法在浅水中构筑平台;总之要因地制宜。

(2)为了满足地基承载力的要求, 现在对铁路桥梁桩基础都是用钻孔灌注桩加固基础。我国南方土质基本属于沙性土壤和软土,用钻孔灌注桩将土壤改良施工需要的强度,以增强地基承载力。

(3)地质沉降对工程有着重要的影响,地下水的流动度和流速比较大。所以地质钻探下钻深度要适宜,工程地质勘探要反映施工地区真实的土层性质。由于要根据设定的泥浆参数进行试桩的施工,所以泥浆参数的设定要准确,泥浆参数包括泥浆的比重、含沙量、稠度和压浆时的压力。一般都是采用的泥浆比重是1.15~1.20g/ml。其次是含沙量的控制要在5.6%左右,太大就会导致孔壁上附有的沙子太多导致塌孔的发生。钻孔灌注桩施工是必须合理配合水、石灰比等参数,混凝土浇筑要把好关,注意施工后对混凝土钻孔桩的保护措施。

(4)钻孔成孔是混凝土灌注桩施工中的重要部分,易发生塌孔、桩孔偏斜、缩径等问题,因而要采取隔孔施工,保证成孔垂直精度以及成孔深度。

(5)钻孔灌注混凝土的施工主要是采用导管灌注,良好的配合比可减少离析程度。因此,要适宜的调整水泥品种、砂、石料规格及含水率等,并复核配合比、校验计量的准确性,及时补充原始资料记录。

3.2 桩基础中事故的处理

(1)在桩基础向下部产生位移的过程中,桩基础的侧向摩擦阻力也会随之增大,桩基底部的阻力也进一步发展。当桩基础侧向摩阻力达到最大时,所有的荷载都会由桩基础端部承受,如果此时继续加大荷载,侧向摩阻力在这个时候就会转到桩基础端部,桩基础有因此崩溃的可能性。由此我们必须确定出桩基础的极限承载力与沉降量的关系,为工程的优化设计提供可靠依据,避免桩基础的崩溃以及二次施工的出现。

(2)漏浆、偏孔、坍孔等问题的解决。在冲桩过程中,漏浆会影响泥浆的护壁能力,较容易造成坍孔,因为孔底地质强度不一,导致锤冲击时重心不稳,孔底受力不均匀则使桩基孔底倾斜,桩基不垂直从而造成偏孔问题出现,如若排出的泥浆中不断出现气泡,或泥浆突然漏失,则表示有孔壁坍陷迹象。此时,使用回填粘性土弥补孔内地质有裂缝,用锤冲击,将大石冲击为碎块可以使孔底受力均匀从而修复偏孔,在松散易坍的土层中,适当埋深护筒,用粘土密实填封护筒四周,使用优质的泥浆,提高泥浆的比重和粘度,保持护筒内泥浆水位高于地下水位使得漏浆、偏孔、坍孔等问题得到初步处理。

(3)成孔后,是不宜放置太久的,搬运和吊装钢筋笼时,应防止变形,安置时一定要对准孔位,避免碰撞孔壁,需尽快灌注混凝土,在保证施工质量的情况下,尽量缩短灌注的时间。

4 结束语

随着科学技术进步,铁路桥梁桩基础施工技术的日益成熟,我国铁路交通运输之路将通向更复杂更偏僻的地区,带动各地经济不断发展。我们要坚持对桩基础技术的改进,注重钻孔灌注桩施工的方方面面,注重细节,对此工艺要有充分的了解,找到解决问题的方法,从而使桥梁桩基础得到质量的保证,从而使铁路桥梁的到安全高效的发展。

参考文献:

[1]张向阳.浅谈钻孔桩施工质量控制技术[J].中小企业管理与科技(上旬刊), 2011(07).

桥梁桩基施工总结第3篇

关键词:桥梁;钻孔桩;施工技术

Abstract: along with the highway and high speed railway infrastructure projects such as the rapid development of bridge engineering is more and more, because of the cast-in-place pile quality is reliable, the stratum strong adaptability, is widely applied in bridge engineering, and the bridge of bored piles with large in diameter, and the features of the over-filling. Therefore, in order to reduce the cost, improve the production efficiency and drilling pile of drilling, reinforced system, and concrete casting pile construction such as breaking and research of the technology is necessary.

Keywords: bridge; Drilling pile; Construction technology

中图分类号:TU74文献标识码:A 文章编号:

1概述

桥梁钻孔桩施工机械主要有旋挖钻、冲击钻等成孔方式,其中最常见者为冲击钻成孔;钢筋笼加工采用加工场集中制作,同时完成桩基础四电接口的施作;桩基浇筑采用水下混凝土浇筑方式;桩头的破除方式主要有人工风镐逐步凿除法和脱筒套法。

2钻孔桩施工技术

2.1冲击钻成孔技术

2.1.1适用地质条件和成孔原理

冲击钻成孔适用于各类地质条件,广泛应用于卵石、坚硬漂石、岩层及各种复杂地质等桥梁桩基施工中。其施工原理是将冲锤式钻头提升一定高度后自由下落而产生冲击力来破碎岩土,然后根据泥浆检测结果及时采用掏渣筒取出渣浆的方式逐渐成孔。

2.1.2泥浆池

根据不同的桩长和桩的数量,通常泥浆池容积为所成桩容积的1.5倍,具体尺寸根据施工场地条件进行设计,且应设置造浆池、循环池和沉淀池以便于泥浆循环使用和满足环保要求。

1).造浆材料以水化快、造浆能力强、粘度大的膨润土或接近地表经过冻融的粘土为宜。

2)..泥浆性能指标见表1

表1泥浆性能指标表

项目 相对密度 黏度(s) 含砂率(%) pH值 胶体率(%)

数值 1.03~1.10 18~22 <4% 8~10 >95

3).调制泥浆

制浆前,先把粘土块尽量打碎以便于搅拌成浆,提高施工效率和泥浆质量。搅拌成浆有机械搅拌和钻头搅拌两种方法。为了有效的控制施工成本,常采用将造浆材料加水放入造浆池内浸透再人工搅拌-人工搅拌成浆的方式。

2.1.3施工场地平整

平整施工场地,清除杂物,换填软土,夯打密实,以免产生不均匀沉降,场地较陡时需采用木枕搭设坚固稳定的工作平台,以确保场地稳固,避免发生钻机倾覆等安全事故。

2.1.4测量放样

根据设计单位移交的测量控制点,布设施工测量控制网,然后依据施工测量控制网先放出墩位中心线,再放出各桩位中心线,并根据经监理审批的放样结果在稳定的基础上设置护桩,以便于精确标识桩位中心点,确保桩位偏差满足施工规范和设计文件要求。

2.1.5护筒埋设

护筒主要作用为准确引导钻进方向,隔离地表水,保护孔口不坍塌,以及使孔内水位(泥浆)孔内水位宜高于护筒底脚0.5m以上或地下水位以上1.5~2.0m,形成静水压力(水头),保证钻进工程中孔壁不坍塌。

护筒埋设时,护筒中心轴线对正桩位中心,其偏差不得大于5cm,并保证护筒竖直。护筒埋设完成后,复测护筒中心位置和倾斜度,满足要求方可进行下道工序施工。

2.1.6钻机安装就位注意事项

钻机在施工平台上安装就位完成后,进行试运转,并检查下列各项,若不符合要求进行调整、加固。

1)钻机平台、钻机及钻架稳定牢固,确保不产生位移及沉降。

2)起吊滑轮组与转盘中心在同一铅垂线上。

3)钻头、钻杆中心与护筒中心的偏差不得大于5cm。

4)电力及机械系统运转正常。

5)钻机就位后,应测量护筒顶、平台标高,用于钻孔过程中进行孔深测量参考。

2.1.7钻孔

(1)待造浆池泥浆经检测在1.05以上后开始钻进。为了孔位准确和钻孔桩垂直度满足要求以及防止泥浆四溢污染环境,开孔速度应缓慢,待钻进一定距离后再以正常施工效率进行钻进。正常钻进工程中起、落钻头的速度宜均匀,不得过猛或骤然变速。

(2)在冲击钻进中取渣和停钻后,应及时向孔内补水或泥浆,保持孔内水头高度和泥浆比重及粘度,且孔内出土不得堆积在孔位周围。

(3)钻每隔2m或地层变化时,在泥浆槽中捞取钻渣样品,分析土质,并做好记录,与设计资料核对分析,以便于根据地质条件及时调整钻进速度和钻孔压力。当钻孔地质与设计明显不同时,及时向监理工程报告,并请设计单位派员进行现场核查或开展变更设计工作。

(4)钻进过程中随时测定孔深、孔径及斜度,若出现异常现象,应及时停钻并采取有效措施处理。

(5)经常观测泥浆面标高,保持孔内泥浆压力,定期测定泥浆的各项指标,并做好检测记录,根据实测情况对泥浆指标进行调整,确保钻进施工安全顺利。

2.1.8清孔及沉渣处理

清孔主要是为了抽换原钻孔内的泥浆,降低泥浆的相对密度、粘度含砂率等指标,清除钻渣,减少孔底的沉渣,防止桩底沉渣过厚影响桩基承载力,并为灌注水下混凝土创造良好的条件,保证混凝土的质量。

钻进终孔后,将钻锥稍提离孔底10~20cm,并保持泥浆的正常循环,对孔径、孔深、孔位、竖直度进行检查确认合格后,开始采用捞渣筒清孔,少量不能清除的沉渣采用专用钻头将其钻磨成粉末,通过调节泥浆比重使其悬浮的方式清理出孔。

当孔内排出或抽出的泥浆手摸无2~3mm颗粒,泥浆比重不大于1.1,含砂率小于2%,粘度17~20s,沉渣厚度柱桩不大于5cm和摩擦桩不大于20cm时,可以停止清孔。同时严禁采用加深钻孔深度的方法代替清孔。

2.2钢筋笼制作

2.2.1钢筋笼加工

(1)钢筋笼采用加工场采用胎卡具集中制作,

主要的制作方式有人工制作和滚焊机制作两种方式,

桥梁桩基施工总结第4篇

关键词:高速铁路;桥梁深桩基;施工技术;探讨

世界在高速铁路上的建设已经成为潮流,高速铁路的发展前途很广阔,因为它可以提高速度、缩短路程时间,更方便快捷,高速铁路已然成为很多人出行的必然选择。鉴于此,为了保证高速铁路上行车的舒适以及安全,高速铁路的深桩基施工技术必须要达到技术标准。在修建铁路时,会遇到因高度的限制而阻碍铁路的修建,所以在高速铁路的修建中,如何做好桥梁的深桩基施工工作,保证高速铁路的整体质量,确保安全。

一、高速铁路桥梁的深桩基的简单介绍

高速铁路的桥梁总体设计由于要达到技术的要求标准,必须要与周边的实际情况协调,做到科学设计以及科学建构,减轻噪音污染。桥梁的深桩基作为高速铁路轨道的下半部分结构组织,必须要具有高稳定性、高安全性、高舒适性等优点,桥梁深桩基结合当地地形,会有不同的形式,要保证这些设计结构能够科学地建造,就必须要求非常高的桥梁技术,做好桥梁深桩基的施工工作是一切桥梁施工工作的基础, 下面将简单介绍高速铁路桥梁所具有的特点。 (一)以高架桥梁的深桩基为主,且采用混凝土材质。高速铁路桥梁一般分为低谷桥梁、高架桥梁以及特殊结构的桥梁三种结构形式,每一种结构的深桩基构造都是很重要的,但整体上仍以高架桥的深桩基构造为主,且在建造桥梁时一般采用混凝土材质,加强上身桥梁的刚度以及强度,增强桥梁的稳定性,提升抗压能力,保证高速铁路的安全。混凝土有好几种分类,例如高强度混凝土、轻质混凝土和流动性混凝土等,每种混凝土都有不同的作用,要根据不同的情况采用不一样的混凝土材质,以保证高速铁路的质量。

(二)桥梁数量多,且跨度较大,深桩基工作难度系数大。由于地理条件的限制,往往需要建造很多的桥梁以保证高速铁路的正常通行,例如日本高速铁路线路铁路总长3000km,桥梁就占到46%;我国京沪高速铁路总长1318km,桥梁数量占到61%。而且在建造桥梁时,桥梁的跨度较大,这无疑加大了高速铁路桥梁深桩基建设的难度系数。既要减少用地,也要保证施工质量。在挑战高速铁路的跨度时,很多国家还是很谨慎的。由于高速铁路桥梁施工难度系数大,下面将介绍几种高速铁路桥梁深桩基的施工技术。

二、高速铁路桥梁深桩基的施工技术

(一)对待复杂地形采取钻孔技术。桥桩基采用冲击式钻机成孔,一般用的是直径为2.5m质量为10.5t的十字型冲锥,根据成孔尺寸采用焊接方式来保证成孔的大小符合技术标准。在施工之前先要准确测量地形,制定好相关的数据方案,然后再说成孔的工作。成孔的第一步必须要做好孔口护筒的埋设放置工作,相关的施工人员还要检验埋设的程度,人工夯实以防渗漏,出现裂缝,不能达到质量标准。开钻的时候,一般采用1m的低冲程,并多次回填在护筒的底部1.5m左右的地方范围处,保证孔口护筒的稳定性和安全性,保持钻孔内部的水位高度。

(二)做好水下混凝土的控制工作。高速铁路桥梁深桩基的一项至关重要的工作就是灌注水下混凝土,这项工作直接影响到整个深桩基的施工质量。工作途中要运用到混凝土灌车,要注意到混凝土灌车会不会出现故障,避免延误施工进度。在每个桩基之间用混凝土的用量会超过65立方米,要计算好大概需要多少混凝土灌车,在混凝土灌料时要保障混凝土的灌输顺畅,断料的时间不要超过两个小时。在整项施工工作的过程中,检验人员要不断检测施工设备是否正常运行,施工的质量是否满足设计要求。在高速铁路的建设过程中,工作量大,对观测的准确性要求高,所用时间长,所以施工人员在施工的过程中要不断积累经验,加强改进施工设备,引进先进的科学技术,提高质量,降低人为因素对设备的影响。

(三)综合运用各种深桩基施工方法。高速铁路的桥梁深桩基建设技术,始终关系到桥梁的整体设计。综合国内外的架桥技术来看,有几种桥梁深桩基的方法以供参考。对于一般高速铁路桥梁的深桩基来说,钢筋笼的制作是一个不错的选择,钢筋笼可以给桥梁支撑的保障,要注意钢筋焊接工作。接下来可以安装导管,对于高速铁路的深桩基建设,导管的密封性是十分重要的,混凝土的灌注的成功与否与它有着直接的关系,此方法在国际上应用非常广泛,给高速铁路的未来发展建设开阔了前景。

结语:我国社会主义经济蓬勃发展,高速铁路的建设也如火如荼地进行,高速铁路桥梁的深桩基的施工技术的标准也会越来越高,为了满足经济发展的需要以及人们出行的要求,高速铁路桥梁深桩基的施工技术必须不断开拓创新,积极学习外国的先进技术,引进先进的科学设备,提高高速铁路桥梁深桩基建设的质量,符合预期的设计要求。我国是一个资源分配不均、人口密度存在很大差异的国家,高速铁路是沟通这一切以及解决这些矛盾问题的纽带,我国铁路正处于一个高速发展的时期,桥梁深桩基技术的应用有利于我国高速铁路的前景未来,也有利于其他相关领域的建设发展。

综上所述,本文对高速铁路桥梁的简单介绍以及高速铁路桥梁深桩基的施工技术两个方面进行了简单的阐释与介绍,使我们更加了解高速铁路桥梁深桩基,对深桩基施工技术也有了更深的理解,高速铁路的建设有助于加快我国的交通建设,也有助于缓解我国的交通压力。

参考文献:

[1] 陈强.浅谈我国高速铁路桥梁建设的设计特点[J]. 黑龙江科技信息. 2011(10)

[2] 李艳明. 先简支后连续桥梁的结构优势与施工工艺技术研究[J]. 四川建材. 2010(02)

桥梁桩基施工总结第5篇

关键词:铺架;打入桩;钢桥;式军用梁

1 工程概况

新建连云港至盐城铁路在引入盐城北站时右线占用既有新长铁路线位,由于现阶段正在运营的新长铁路还未能过渡出去,使得连盐铁路部分桥梁无法施工,引起正常铺架无法从桥尾开始。为尽快开始铺架,修筑钢便桥临时连接通榆河桥墩,实现运梁和轨排的有轨运输。

2 桥梁的布置与结构形式

根据梁场与铺轨基地的平面位置关系;梁场、铺轨基地与通榆河特大桥181#墩的高差;填筑路基不影响既有线的运营安全和通榆河剩余桥墩施工等因素,本着经济合理、简单适用、周期短等原则,钢便桥采用6孔24m式军用梁连接通榆河特大桥181#墩。

钢便桥全长148.2m,桥面宽度4.7m,由7片军用梁组成。钢便桥设置有8‰的坡度且部分位于半径为400m的曲线上。

桥梁基础采用边长40cm的预制方桩;墩身采用直径为630mm壁厚13mm的钢管加工而成,钢管墩身之间采用直接为430mm壁厚8mm的钢管进行联结;钢管柱顶端分配梁采用45b工字钢焊接而成,分配梁采用H型钢,垫梁与分配梁之间采用螺栓联结;梁面采用24跨度式军用梁。

3 钢便桥结构强度检算

本桥梁设计参照《铁路桥涵钢结构设计规范》进行设计计算。按容许应力法设计原则进行,Q235钢材容许应力[σ]=135MPa,剪应力[τ]=80MPa。

钢便桥采用式军用梁,为市场定型产品,各方面性能均有保障,此处不在验算。

3.1 荷载计算

(1)线路荷载。主轨和护轨轨道采用P50钢轨,钢轨质量为G1=51.514kg/m,单孔跨度为24m,则均布荷载q1=4*G1=2.06KN/m。

(2)式军用梁荷载。式军用梁一孔7片总重量40t,跨度为24m,则其荷载q2=16.67KN/m。

(3)列车荷载。钢便桥上列车竖向静荷载采取“中-活载”。根据铁路桥涵设计基本规范将列车静活载换算成均布荷载q3=104.0KN/m。

(4)荷载组合。动力系数按照《铁路桥涵设计基本规范》公式4.3.5-1计算为1.4328;静力荷载系数取1.2,则单孔梁承受的荷载为q4=1.2*(q1+q2)+1.4328*q3=171.49KN/m。

3.2 钢构件检算

利用midas软件进行计算,结构均为梁单元,柱底固结荷载,梁体承受的总荷载Q=q4*24=4115.76KN

(1)反力计算。力组合下钢管柱最大竖向反力90t,最大水平力5t,最大弯矩10t.m。

(2)位移。主力组合下最大柱顶横向位移4mm,4/8000=1/2000

(3)应力。钢管柱自由长度按最不利情况考虑取8m,一端固结一端铰接,i=220,λ=8000*0.8/220=29

工45垫梁最大应力64MPa,H型钢最大应力52MPa,均小于容许应力[σ]=135MPa,满足要求。

3.3 地基承载力验算

桩在图层中的位置如表1。

根据《建筑桩基技术规范》(JGJ 94-94式5.3.3-1计算

当psk1?燮psk2时

当psk1>psk2时

psk=psk2

设计桩长L=22m,桩端阻力修正系数 ?琢=0.75+(22-15)×0.15/15=0.82

通过上述计算公式计算:Qsk=1064KN Qpk=28KN;

所以该类预制打入桩单桩竖向极限承载力为Quk=1092KN。钢管柱最大反力F=90*10=900KN,小于1092KN,其承载力满足要求。

4 钢便桥的施工

4.1 桩基础

(1)由于打入桩施工与既有线间距小于30m,属于临近营业线施工,为避免打入方桩时对既有线路基产生影响,施工前应在桩基础与既有线路基之间设置一排应力释放孔,释放孔用碎石回填。

(2)起吊堆放。方桩强度达到设计强度的70%后才能起吊,吊点位置应根据计算确定,吊运过程应平稳,避免损坏桩身。预制桩应根据不同长度进行分类堆放且堆码整齐,堆放高度不超过四层。

(3)打桩。本工程采用一台DD63柴油打桩进行方桩施打,打桩前应进行地质资料的复核,确保现场与设计地质情况一致。

施工前进行场地平整,清除地表杂物,填埋坑穴,确保地基承载力,避免打桩过程中出现地基不稳,产生桩机的倾斜。

方桩定位:首先应根据钢便桥的设计位置建立独立坐标系,计算出每根桩的设计坐标,直接放样施打。

方桩施打:由桩机自带的挂钩与方桩上的预留孔相连,自行喂入桩帽,进行桩的对位。

当桩尖插入桩位后,先利用桩自身重量及桩锤重量静压桩身,静压完毕后,再次调整桩机以及桩的轴线,确认无误后先采取低垂密集的方式施打,当方桩入土达到一定深度后在进行正常锤击。当前一截桩离地面0.5-1m进行接桩,焊接完毕后再次检查桩机的对位,然后进行第二截的施工。施工过程中以控制桩顶标高为主,贯入度为辅。

4.2 钢管柱

为保证钢管柱的焊接质量,采用厂内焊接。钢管柱的加工应严格按照设计图纸进行加工和焊接,并作除锈和防锈工作。

根据测量放样的点位,利用两台25T吊车同时进行吊装,吊装过程中严格控制钢管柱的平面位置和标高。

4.3 柱顶结构

柱顶结构为垫梁和分配梁两个结构,由于垫梁和分配梁之间用螺栓进行联结,垫梁与钢管柱上的钢板焊接,可在地面上先进行两者的联结,然后再整体进行吊装,吊装之前可在钢管柱顶根据轴线位置焊接几块定位角钢,吊装过程中直接将垫梁落至定位角钢内即可,这样既保证吊装的精度又增加施工过程中的安全性。

4.4 式军用梁

式军用梁由主桁(标准三角、端构架、标准弦杆、端弦杆)、联结系(钢销、套管螺栓、联结系槽钢、二号U型螺栓、三号U型螺栓)、钢枕桥面(钢枕、一号U型螺栓、压轨板、压轨螺栓)、支座(垫枕、定位角钢)组成。

梁的拼装应选择在平整、稳固的场地上进行,根据梁的结构依次进行拼接,端构件与标准三角之间采用端弦杆和钢销进行联结;标准三角与标准三角之间采用标准弦杆和钢销进行联结。

式军用梁利用一台25T吊车进行单片架设,架设顺序为向中间一片,然后进行对称架设,直至完成一孔。每片梁之间采用套管螺栓进行联结,待整孔架设完毕后安装联结系槽钢,使得7片之间连成一个整体。

钢枕为厂制直线梁标准件,扣轨槽已固定。由于本桥部分位于曲线上,为使铺设的轨道顺直,不产生折角,施工中采用调整钢枕横桥向的长度,使得钢枕中心与线路中心重合,从而满足线路的平顺。也可采用钢枕之间添加木枕,钢枕在桥面上正常布置,钢轨钉固在木枕上来达到线路平顺圆滑的目的。钢枕与式军用梁采用1号U型螺栓进行联结。

4.5 轨道施工

钢枕安装完毕后进行桥梁轨道施工,钢轨与钢枕之间采用压轨板螺栓进行联结。施工中需进行轨道的精调,精调采用1-3mm的轨下铁垫片进行高低和水平的调整,以保证轨道的几何尺寸,保证运输安全。

5 结束语

式军用梁具有载重等级高、杆件种类少便于拆装互换、结构轻便、构造简单、可用人工或小型机具拼组、架设迅速、运输方便、周转使用性高(可作为架桥机和大型现浇梁支架)等特点。本桥梁设计施工可做为同类施工的一种方案,为同类施工提供一定的借鉴。

参考文献

[1]中国铁道建筑总公司.式铁路军用梁手册[M].北京:中国铁道建筑总公司,1998.

[2]中国人民铁道兵司令部.铁路桥梁抢修[M].北京:中国人民战士出版社,1973.

[3]中华人民共和国住房和城乡建设部.JGJ94-2008.建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.

桥梁桩基施工总结第6篇

【关键词】钢管桩支架人字架 轨道梁

中图分类号:U656.1+14 文献标识码:A 文章编号:

1、工程概况

曹妃甸1#桥是跨越曹妃甸纳潮河的一座特大型桥梁,工程全长约2.35km,桥梁工程范围长约2.02km。(桩号K3+637.917---K5+991.480)。主桥为独塔单索面钢箱叠合箱梁斜拉桥,主桥跨径布置为138m+138m。塔梁分离体系,扇形索布置,主塔两侧各16对索。引桥为分离式预应力混凝土连续箱梁,河中标准段跨径为48m,陆上标准段跨径为30m,基础均采用钻孔灌注桩基础。由于现场的施工情况较复杂,主桥钢箱梁采用搭设临时钢管支架来进行施工。

图11#桥主桥总体布置图

2、主桥叠合梁支架总体设计目的及说明

2.1主桥叠合梁支架总体设计目的

为了加快曹妃甸1#桥的建设,根据现场的运输条件、施工环境及施工工期、工程地理区域气候及原设计工艺等各种因素考虑,主桥叠合梁施工采用现场搭设安装施工支架来完成,在支架上部安装钢梁拼装胎架来进行钢梁板单元拼装施工,支架是为上部钢梁拼装而设计的临时支架。

2.2主桥叠合梁支架总体设计说明

主桥叠合梁支架主要采用φ630×8mm钢管(北侧深水区)与φ529×8mm钢管(南侧浅水区)、φ325×6mm及各种型钢为主要支撑材料进行设计与施工,下部结构插打钢管桩作为承重结构支架,钢管桩插打完成后在+3m处割除桩头焊接桩帽及预制好的分配梁,横桥向分配梁为3根I40a型钢﹙单根长度5m﹚。顺桥向分配梁为4根I40a型钢﹙单根长度3.3m﹚。钢管桩之间采用[25进行桩间连接。

图2 横、顺桥向分配梁布置图

两组钢管桩之间的分配梁用2根7米长的I40a加工的路基箱进行连接,路基箱作为50T履带吊插打钢管桩时行走平台。下部结构完成后,在4根I40a型钢的分配梁上部安装预制好的人字架﹙人字架之间用剪刀撑进行连接﹚。在人字架顶部的2m小梁顶设置用16㎜钢板预制成的工字型钢组合钢轨道梁,钢梁板单元拼装在支架上部施工平台的胎架上完成,采用龙门吊配合的方式进行拼装,拼装好的梁段采用大吨位移位器移到待安装的位置,放置在轨道梁顶面的临时支点上,并对梁段进行精确定位。

图3主桥叠合梁支架及板单元拼装布置图

3、主桥叠合梁支架施工流程图

主桥叠合梁支架施工工艺流程图见下:

图4主桥叠合梁支架施工工艺流程图

4、主桥叠合梁支架施工及注意事项

4.1下部结构的施工

下部基础钢管桩采用50T履带吊配45型电动振动锤进行插打,插打前进行桩位放样及倾斜度观测,符合要求后启动电动振动锤进行插打,插打过程中严密监控基础钢管桩的桩位和倾斜度,要求桩位偏差小于10cm,倾斜度不超过1%。桩位布置图如下:

图5叠合梁支架钢管桩平面布置图

4.1.1钢管桩及I40a工字钢分配梁的施工

主桥叠合梁支架下部结构均采用φ630×8mm、φ529×8mm钢管,左右幅各17组钢管桩,每组四根钢管桩,深水区必要时按六根一组进行插打,考虑到支架的整体稳定性加打斜桩。钢管桩均在后场接为24米,用板船运至施工现场进行插打,(承载力不足时在水中进行接桩,接桩长度根据现场实际地质情况确定),钢管桩插打严格按照钢管桩的施工技术要求来进行施工。钢管的插打采用50T履带吊来完成。从主塔的两侧依次向边墩开始施工,钢管桩在 +3m处割除桩头焊接桩帽及预制好的分配梁及路基箱。

4.1.2下部结构现场施工示意图

图6 钢管桩、分配梁施工示意图

4.2 上部结构的施工

下部基础钢管及分配梁施工完成后,进行人字架搭设、轨道梁及管间剪刀撑安装。人字架搭设及轨道梁及施工平台安装逐段进行,由边墩向主塔方向推进。人字架长度约15m,采用ø630厚度8mm钢管;人字架顶小梁长度2m,采用4根I40a型钢,剪刀撑采用型钢。轨道梁采用16㎜钢板加工而成,轨道梁安装前用全站仪放样,确保轨道梁顺直和标高准确。

图7 叠合梁支架顺桥向布置图

4.2.1 人字架的安装

人字架的安装从第17组开始依次向主塔方向安装,采用50T履带吊来配合安装。所有人字架和剪刀支撑均在后场预制,现场直接吊装、焊接、加固即可。

4.2.2 人字架顶部小梁及轨道梁的安装

人字架安装结束,将2m的小梁进行安装及焊接。然后对轨道梁进行定位安装,轨道梁的定位必须准确,且焊接、对接、平整度要求较高,确保移位器能够正常将钢梁移动。

4.2.3 龙门轨道及上部施工平台的安装

安装人字架轨道梁的同时,要依次对钢梁龙门轨道及上部施工平台进行施工,施工平台在后场预制成整体框架结构﹙施工平台主要利用I40a与φ25钢筋加工﹚,现场直接吊装、焊接即可。

4.2.4 上部结构现场施工示意图

图8 人支架搭设及轨道梁施工示意图

4.3 主桥叠合梁支架施工注意事项

4.3.1 下部钢管桩的施工要严格控制好钢管桩的焊接及插打深度、垂直度。必要时设置倒向架及加打斜桩(钢管桩施工的时候全部进行防腐处理)。

4.3.2I40a工字钢预制分配梁的定位及焊接质量控制,确保上部人字架的定位准确。

4.3.3 人字架的安装、定位及人字架上部顶面标高的控制。

4.3.4 人字架与下部结构施工平台焊接的时候要保证接触面的清洁,不得有泥巴、铁锈。

4.3.5 轨道梁的定位、对接平整度的控制,轨道梁要互相平行,且与桥梁中心线保持平行。

4.3.6 龙门轨道的定位要准确及连接要平缓、连接牢固,确保龙门行走安全。

4.3.7 支架所有焊缝强度必须满足设计要求。

5.主桥叠合梁支架施工一些技术参数及技术要求

5.1 钢管桩承载力计算

钢箱梁重量:1060kN(NB1、SB1梁段)

桥面板混凝土:96m3×25kN/m3=2400kN(NB1、SB1梁段)

2400×6/7=2060kN(首次浇筑)

桥面板模板支架:((40-2.8-1.6)×6-14.2×0.6×4)m2×200kg/m3=360kN

支撑钢管重量:2×53m×122.7kg/m=130kN

连接型钢:(4×2+14×4)×31.4kg/m+16×4×43.2kg/m=48kN

轨道:7×12×73.8kg/m=62kN

承载力计算值:1060+2060+360+65+48+62=3720kN(未加安全系数,安全系数为1.2时,值为4464kN。)

钢管桩承载力表 表1

桥梁桩基施工总结第7篇

关键词:钢栈桥 黄河 施工技术 总结

Abstract: with the development of the national railway construction, more and more of a bridge across the river, the role of pier in bridge construction is becoming more and more important. The author nakagawa railway west of solid steel trestle of the Yellow River super major bridge engineering, focus on construction technology of steel trestle has carried on the comprehensive summary.

Keywords:Steel trestleThe Yellow RiverThe construction technology conclusion

中途分类号:U655.4 文献标识码:A

一、工程概况

1、地理位置及地质条件

新建兰州至中川机场铁路ZCTL-SG1标段西固黄河特大桥位于兰州市西固区和安宁区境内,全长5837.89延米。

桥址处主要为黄河河床,河漫滩及一级阶地,河床宽约350米。黄河北岸陡立,相对高差约30米,南岸地势狭窄,紧邻南路滨河。西固黄河特大桥在165#~168#墩之间跨越黄河,跨黄河段为半径800米的曲线桥,中心里程DK21+283.62,线路与黄河夹角为10~25度,其中165#、168#墩位于黄河两岸岸边,166#、167#墩位于黄河中央。上部结构采用(80+2×120+80)m连续刚构形式跨越。为修建水中墩及上部连续梁提供物资运输通道,拟在桥梁墩身上游沿线路方向修建一座临时施工栈桥,栈桥设计全长198米。

根据调查及钻探揭示,桥址处分布地层主要为第四系全新统人工填土、冲积黏质黄土、砂类土、细圆砾土、卵石土、漂石土、上更新统冲积黄砂黄土、黏质黄土、卵石土、下伏第三系泥岩、砂岩(强度σ0=400kpa)。

2、水文条件

径流主要来源于上游流域内的降雨和冰雪融水,年径流量随降雨和气温的变化而异,自黄河上游相继建成多座水电站后,对下游河段洪峰流量的消减作用尤为明显,其百年一遇洪水流量为6500立方米/秒,十年一遇通航流量为4780立方米/秒。百年一遇洪水水位标高1540.20米,设计栈桥上部结构底标高确定为1539.55米。

二、栈桥搭设总体方案

西固黄河特大桥的166#、167#墩位于黄河中央,根据现场实际情况,目前实测黄河水位1535.37米,水深约6-8米,设计栈桥上部结构底标高1539.55米,桥面标高为1541.20米。栈桥由黄河北岸搭设至166#墩位置(165#墩-166#墩之间净距还有100米,可满足通航需求),设置在主桥的右侧、黄河的上游。栈桥宽度设计为6米,为直线桥,栈桥桥中心距主桥主墩中心距离为21米,并在墩身位置搭设作业平台。平台设计采用钢管桩平台方案,结构形式与栈桥相同,其平面尺寸166#墩为36m×32m、167#墩尺寸为36m×36m。平台上设置钻孔桩施工区、吊车及混凝土罐车行走通道,导管、钻头等堆放场地。

栈桥采用钢栈桥,下部结构采用钢管桩基础,上部结构采用连续梁结构。栈桥桩基采用D630×10mm螺旋钢管,桩中心间距4.5米,每墩设桩基4根,钢管桩间采用[22a做剪刀撑、φ429x8mm的钢管或[22a槽钢做平联,使之形成板凳桩结构。桩顶设工字钢横梁,横梁由两根I45b工字钢拼制而成。横梁上方延桥向铺设纵梁,纵梁采用单层6排贝雷梁不加强,横向中心间距90cm,桥跨形式采用2-(6m+3m)+15-(9m+3m)。桥面采用自制桥面板,桥面板每块宽度为1.26米,长6米,沿桥向横向铺设,每块桥面板纵向设3根[14a槽钢,横向设[14a槽钢@300mm,和纵横槽钢焊为整体,上铺10mm厚螺纹钢板。桥面横向在栏杆外侧设置电缆管线的槽口,栈桥两侧设1.4米高的钢管栏杆。同时,在黄河北岸栈桥起始处设C30钢筋混凝土桥台一个。

栈桥顶面每跨只允许一台机械通过或停留,通行标准为:汽-20级车辆;满载的混凝土罐车;50T履带吊+20T吊装物。最大行车速度为15km/h。

三、主要施工工艺

钢栈桥施工采用逐孔架设法施工,从168#墩向166#墩方向推进,先进行桥台施工,同时开始施工栈桥的前两根钢管桩基础,钢管桩基础采用50t履带吊悬吊DZ-120型振动锤直接沉桩就位,前两个桩基插打结束后开始焊接剪刀撑及平联,利用50t履带吊吊装横梁工字钢、纵梁贝雷片及桥面板,然后开始施工下一处钢管桩基础,循环施工直至结束。

(一)桩基础施工

1、钢管桩基础施工

(1)钢管桩基础的详细结构

钢管桩基础采用板凳桩结构,每个板凳桩由4根D630×10mm的螺旋钢管组成,钢管桩横向中心间距距4.5米;钢管桩间采用[22a做剪刀撑、φ429×8mm的钢管或[22a槽钢做平联,使之形成板凳桩结构。并在每个桩顶设置由D650×10mm螺旋管(经过现场加工制作)与20mm×750mm×750mm钢板焊接而成的高0.5m的桩帽。

(2)钢管桩基础施工概况

钢管桩基础施工从168#墩向166#墩方向推进,由50t履带吊悬吊DZ-120型振动锤直接沉桩就位,当震动锤控制台频率表读数大于50HZ、电压表电压大于370V,且振动锤压力表达到150kpa以上时停止振动(经设计检算,此时钢管桩嵌入砂岩1.0m以上,满足钢管桩的稳定性要求),此时根据振动锤的激振力可确定钢管桩的承载力为大于775KN。采用水准仪对桩顶标高进行测量,然后对钢管桩进行接桩或截桩。然后在每根钢管桩顶安装桩帽,桩帽外套在钢管桩上。如钢管桩插打造成倾斜,需要在安装桩帽前对钢管桩顶面进行切割整平,使所有钢管桩顶标高相同。

(3)接桩和截桩

a.接桩:钢管桩的接桩采用钢板连接方式,即在D630×10mm的钢管桩内先焊3块30cm长、10mm厚的钢板,设置内外两道焊缝,钢板平分在两个钢管中,履带吊起吊钢管桩至所需接桩的钢管桩上口,慢慢下沉,使钢板插入需接桩的钢管内,下沉至两根钢管桩管口相对,然后采用人工焊接。焊接牢固、密实后,并在外侧采用10mm厚的钢板搭接焊进行加强,然后继续振动使钢管下沉至下沉缓慢,且振动锤频率表大于50HZ、电压表大于370V,压力表达到150kpa以上时停止振动。

b.截桩:在钢管桩上以四点法定出设计标高线,然后用气割将设计标高线以上的钢管桩割去。

在接桩及截桩过程中,人员及机械可通过吊篮或租用小型船只进行作业。

2、钢管桩定位

为了保证第一排钢管桩平面位置准确、垂直度好。采用全站仪进行定位测量,人工用倒链配合吊车进行作业。待第一个板凳桩的四根桩插打结束后,进行钢管桩间的加固措施施工,并进行上部结构的拼装作业。

后面的桩基采用导向架定位施工,导向架主梁采用两根I40b工字钢,上面铺设8mm厚波纹钢板形成工作平台,最前端焊接两个桩位限制器,控制钢管桩的移动。平台四周焊接护栏,防止操作平台由于各种原因滑下工字钢造成安全事故。施工时,导向架前段悬挑至准备施工的钢管桩位置,后端用倒链或螺栓固定在以铺设的贝雷梁上,测量班用全站仪进行放线定位,根据放线位置移动操作平台上的桩位限制器至准确位置,然后把履带吊吊钢管在限位框缓慢下沉,待进入河床后,进行进一步的调直,对钢管桩的垂直度进行进一步调整,符合倾斜度〈1%后开始插打。

3、施工技术要点

(1)测量放样

栈桥基础施工采用全站仪放样,水准仪全程跟踪观测高程。

(2)钢管桩插打注意事项

①钢管桩施打时要注意桩顶标高的控制,桩顶标高应控制在正误差10mm以内。当钢管桩进尺极为缓慢或施沉困难时,则不能强行施沉,以免钢管偏位或变形,要分析其原因。

②钢管桩施打时,若桩顶有损坏或局部压屈,则对该部分予以割除并接长至设计标高。

③钢管桩施工的平面位置及倾斜度满足以下要求:平面位置偏差〈20cm;倾斜度〈1%。

(3)施加钢管联结

钢管桩施打结束后,立即进行平联及剪刀撑焊接施工。此连接采用吊车配合吊运连接杆件,人工站在吊篮或小船内进行。连接杆件采用[22a的槽钢进行连接。连接杆件在岸上加工成型,由四块连接板与钢管桩连接。连接设置的目的在于保证每个板凳桩的钢管桩形成整体稳定性,因此必须保证连接处的焊接质量,所有焊口必须确保满焊。

钢管连接施工过程中应及时进行钢管桩牛腿放样及焊接。若由于钢管桩偏位造成牛腿的安装位置无法与设计位置吻合时,采取措施进行加固。

在施工平联及剪刀撑过程中,人员、机械、材料可通过吊车吊吊篮及租用小型运输配合施工。

(三)上部结构施工

1、概述

上部结构的施工主要采用50t履带吊组拼。上部结构的铺设主要包括2I45b工字钢桩顶横梁安装、贝雷架安装和桥面板铺设。在上部结构的铺设过程中,着重控制结构件相互间的栓结以及焊接质量。

2、安装桩顶横梁

在每两个横桥向的钢管桩顶部设置横梁,每个横梁由2根45b工字钢组拼而成,长6m,在岸上进行加工,采用人工配合履带吊将横梁放在桩帽上,位置放好后将横梁及肋板与桩帽钢板进行焊接形成整体。

3、安装贝雷片

横桥向贝雷片为6排,间距90cm,采用标准90撑架进行联结。贝雷片分跨、分组在加工场地组拼成形,运输至现场。采用履带吊整体吊装至指定位置,与既有贝雷梁进行栓接。然后将每片贝雷梁与横梁采用型钢限位器固定,每排桁架梁之间采用标准支撑架连接,将6排贝雷片连成整体。

4、安装桥面板

桥面采用自制桥面板,铺设在纵梁上,与纵梁均采用螺栓连接。桥面板每块宽1.26米、长6米,横桥向逐块铺设,每块桥面板纵向设3根[14a槽钢,横向设[14a槽钢@300mm,纵、横向槽钢焊接为整体,上铺10mm厚的波纹钢板。

桥面板在岸上加工成型,平板车运至施工现场进行安装。采用履带吊逐块吊装至指定位置进行拼装,桥面板与贝雷梁桁架以螺栓连接。进行桥面板铺设时,桥面钢板之间的间距控制在2-4cm。

5、钢栈桥动态测量

为了能够充分掌握施工过程中栈桥的平面位移及高程变化,在钢栈桥每个板凳桩处设置测点,每天早晚各进行一次测量,钢栈桥成桥后一周之内每天测量一次,一周后每周进行一次测量,并形成记录报告。

6、钢栈桥拆除

在主桥的下部结构施工结束后,对钢栈桥进行拆除作业。钢栈桥的拆除采用逐孔拆除法。拆除顺序为解除桥面板螺栓,拆除桥面板;气焊割除贝雷梁与横梁的连接卡扣,解除贝雷梁连接处螺栓,将每孔贝雷梁整体拆除;横梁采用吊车直接连带桩帽一同拆除;电焊切割钢管桩间的平联及斜撑的连接板,将平联及斜撑拆除;最后钢管桩基础采用振动锤先向下振动,然后上拔的方式取出。循环施工至整个钢栈桥拆除结束。

7、附属工程

钢栈桥顺桥向两侧设置高1.4米的防护栏杆,由于考虑履带吊转身高度的影响,先设置0.8米高。栏杆立柱采用φ40mm的钢管,间距2.5米,焊接在桥面板[14a槽钢上。立杆顶端设置φ40mm的钢管,下面采用φ16mm钢筋焊接一道,等履带吊打桩作业完成后立杆设置两道φ40mm的钢管,上面采用φ20mm钢筋焊接,并在内侧设置栅栏往。为了确保车辆行车安全,在距离栏杆0.75m处应用[10a设置限位器。栈桥栏杆和[10a限位器上涂刷红、白相间的反光涂料。栈桥栏杆上设置夜间行走路灯并每隔5米两侧交错悬挂一个救生圈。

8、结束

通过对钢栈桥从下部结构到上部结构进行施工技术总结。栈桥具有构造简单、施工方便灵活、结构稳定安全可靠、具有一定的刚度、操作方便,自重轻、整体变形小等特点。对今后在黄河中栈桥施工起了一定的指导意义,为主桥高质量地提前完工提供了技术保障,从而创造了良好的社会和经济效益。

参考文献:

1、《公路桥涵设计通用规范》JTG D60-2004。

2、《公路桥涵地基与基础设计规范》JTG D63-2007。

3、《钢结构设计规范》(GB500017-2003)。