欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

节能优化设计(合集7篇)

时间:2024-03-23 09:04:00
节能优化设计

节能优化设计第1篇

一、优化设计对建筑节能的影响

1、设计方案影响工程建造直接能源消耗

在工程设计中,其建筑和结构方案的选择对建筑的直接能耗有较大影响,如建筑方案中的平面布置为内廊式还是外廊式、进深与开间的确定、立面形式的选择、层高与层数的确定、基础类型选用、结构形式选择等都存在着技术经济分析问题。中国住宅建设用钢平均每平方米55公斤,比发达国家高出10%~25%,水泥用量为221.5公斤,每一立方米混凝土比发达国家要多消耗80公斤水泥。据统计,在满足同样功能的条件下,技术经济合理的设计,可降低工程建造直接能源消耗5%~10%,甚至可达10%~20%,如某无线电厂的多层框架结构厂房(4层),设计单位按常规设计为独立基础,由于多层厂房荷载较大,致使独立基础的单体尺寸较大,埋深较深(-3.2m),事后经其他设计人员分析如采用柱下条基,可节约大量的砼,并可降低埋深减少土方开挖所消耗的机械能耗;某综合办公楼,在优化设计中,因改变原先设计中的普通钢筋为带肋钢筋,单此一项优化设计,共节约钢筋1000T,钢筋总节约率达30%左右。

2、设计方案影响建成后使用的能耗

建筑是牵涉到很多专业的复合体,并且完整的建筑节能工作包括了从最初的规划、方案到设计、施工,以及多年的运营使用,直至最后拆除重建的全生命周期过程。但以往只注重直接建造成本的降低,轻运营阶段能耗的使用情况。从住宅使用过程中的资源消耗看,与发达国家相比,我国住宅使用能耗为相同技术条件下发达国家的两到三倍。2020年,中国的建筑能耗将达到29430亿度电,比三峡电站34年的发电量总和还要多。现在,我们必须用全寿命周期的节能理念对建筑进行优化设计,即以较低的寿命周期能耗实现必要的功能,获得丰厚的寿命周期经济效益。所谓寿命周期能耗是指整个寿命周期过程中发生的全部能源消耗,包括建设、使用、维修、残值及清理等阶段所发生的能源消耗。设计不仅影响项目建设的一次性能耗,而且还影响使用阶段的能源消耗,如暖通、照明的能源消耗、清洁、保养、维修等,一次性建造能耗与经常性使用能耗有一定的反比关系,但通过优化设计可努力寻求这两者的最佳结合,使项目建设的全寿命费用最低,全寿命能耗达到最佳经济合理状态。建筑节能优化设计的途径主要是通过围护结构保温和气密性能的提高,以及采暖空调设备能效的提高等等,来达到减少空调和采暖等能源的消耗。在方案设计当中,建筑师需要对建筑的方位、体型、朝向进行优化,必需要为充分利用自然风、阳光等自然资源创造条件。同时,也必须对建筑材料优化;外墙、楼板、分户墙、屋面、玻璃、窗框的设计等都需要量化与优化;窗墙比须要以节能和居住舒适度为前提进行优化。从方案设计开始到初步设计,工程师需要根据不断调整的设计方案模拟量化建筑的能耗情况、计算空调和采暖设备的装机功率,比对各种影响因素,最后向客户提供最佳的设计方案。例如,在空调与采暖设备的市场上,各种品牌各种型号使消费者眼花缭乱。空调设备有空气源热泵、地源热泵、风机盘管、地板采暖、辐射制冷、采暖系统、户室中央空调、变频机组、水系统、冷媒系统等等。这些空调系统的初投资和运行费用大不相同,那么通过模拟量化,计算出初投资的费用、每年的耗能量、能源费用,消费者或者项目开发者就可以很容易地作出正确的决定。例如北京的一些奥运场馆中,为减少能耗,设计者没有采用普通的新风系统和空调系统,而是经过多次优化设计,寻找最佳节能方案。为实现自然通风和改善室内环境,采用了智能电动窗,很好的解决了新风问题;在场馆空调设计中(包括“水立方”和“鸟巢”)都采用了由美国联合技术开利公司设计的节能空调系统。该系统通过热回收技术在空调系统中的应用,节能率为10%。该系统在冷水机组上加装了热回收装置,在空气处理机中采用了新型热管热回收装置,可以回收场馆排放总热量的50%,回收的热能一部分用于加热游泳池水和生活用水,另一部分用于加热新风。

二、现阶段推行优化设计运作困难的成因

1、政府主管部门对建筑节能优化设计监控不力

长期以来,主管部门对设计节能成果缺乏必要的考核与评价,有的仅靠图纸会审来发现一些简单问题,仅仅是一些新材料或空间布置的一些规定。缺乏对方案的节能性方面的系统审查要求。建筑节能设计首先是一个系统设计问题,它绝不是多项节能技术或者节能设备的简单累加,它需要定量化。例如,人们在市场上可以买到节能空调、节能玻璃、节能热水器、太阳能热水器、墙体保温材料等等,但是这些材料与设备如何使用、使用哪种型号、用量多少、所起到的作用是什么就需要通过量化整合来完成。集思广益,从多方面影响因素出发,以最低的投资、最佳的手段完成并达到节能设计目标。所以建设主管部门监管的同时,应增加人员配备和审查力度,对设计节能成果进行量化全面审查。

2、业主要求优化设计的意识不强

目前,业主往往把控制重心放在施工直接投资环节上,而对建成后使用运营成本及节能优化设计环节重视不够。其原因:一是对设计对投资影响的重要性认识不够,只看到搞施工招标,投标价要低于标底价、施工单位要让利等,殊不知选择一个优秀的设计单位进行设计方案的优化会带来更大的节约;二是对建筑节能的认识不到位,没有一个节能环保绿色建筑意识。

3、建筑节能优化设计的开展缺乏必要的压力和动力

由于缺少建筑节能优化设计与企业和公众的直接经济利益联系,使得节能工作缺少内在经济利益推动力,政府部门建筑节能管理工作还存在体制不顺、监管体系不健全,造成执法不严、监督不力,国家政策不配套,缺乏激励机制和工作力度。对一些国有投资建设项目,有关行政审批单位在审核初步方案时,只注重设计的建设规模和投资限额,对方案的经济合理性和节能性不做深入研究分析;另外,由于现在的设计收费是按面积或按造价的比例计取,几乎跟建筑节能和设计质量的优劣无关,导致对设计方案不认真进行节能分析,而是追求高标准,造成能源浪费。相反,设计单位即使花费了较多的人力、物力,优化了设计方案,给业主节约了投资,也不能得到应有的报酬,有时设计费反而变少了,从而挫伤了优化设计的积极性。

三、搞好优化设计的几点建议

1、主管部门应加强对建筑节能优化设计工作的监控

为保证建筑节能优化设计工作的进行,开始可由政府主管部门来强制执行,通过对设计节能成果进行全面审查后方可实施。政府主管部门不仅需在技术法规与标准相结合方面做出努力,而且还需要政府以技术法规的形式提出必须严格控制的最基本的技术指标、技术要求、功能要求,可以导则、指南、技术标准等标准类技术文件予以体现。利用主管部门的职能,总结推广标准规范、标准设计、公布合理的技术经济指标及考核指标,为优化设计的进行提供良好服务。建筑节能技术新规范逐步从控制单项建筑维护结构(如外墙、外窗和屋顶)的最低保温隔热指标,转化为控制建筑物的实际能耗。新建建筑必须出具建造耗材经济指标、采暖需要能量、建筑能耗核心值和建筑热损失计算结果,特别是建筑结构热损失计算结果。建筑能耗总量(包括供暖、通风和热水供应)和建造能耗值只有满足其对应的节能标准才被允许开工及竣工验收。在竣工时,建筑开发商必须出具相关部门的一份“能源消耗证明”,证明清楚地列出了该住宅每年的能耗,及节能等级。以上措施,必须逐步实施,特别是国有投资项目要先于执行。

2、以政策扶持拉动建筑节能优化设计

国家制定节能政策,并要求以多样化的经济激励等扶持举措,形成推动建筑节能的市场机制,推进建筑节能优化设计的推广。对建造节能建筑产品的要根据优化设计后节能程度给予政策和资金支持,减免税费等优惠措施,并可建立评价机制,对因建造节能建筑而超支部分资金,国家应给予无偿免息贷款或奖励机制,使建筑节能优化设计以行政手段为主转向以经济手段为主。

节能优化设计第2篇

关键词:建筑工程;建筑设计;节能设计;设计优化

中图分类号:TU198文献标识码: A

引言:面临能源危机和环境危机,世界各国提出了控制矿物能源用量的增长,提高用能效率,开发新能源和可再生能源,保护环境的目标,走可持续发展的道路。因此,建筑节能是近年来世界建筑发展的一个基本趋势,也是当代建筑科学技术的一个新生长点。而在我国,建筑能耗浪费相当严重,原因也是多方面的,如技术落后,设计不科学,管理不当,缺乏节能意识等。因而建筑节能势在必行。所谓建筑节能,就是在保证居室热舒适环境条件下,通过技术进步、合理利用、科学管理和经济结构合理化等途径,采用新型保温材料,把居住建筑在长期使用中的能耗降下来。

一、建筑节能设计的新概念

(一)建筑节能设计并不是一个单独和孤立的设计过程,对建筑节能设计的认识要从建筑设计的整个过程出发。建筑节能优化设计研究的一个重要内容就是对传统建筑设计过程进行分析,寻求有利于建筑节能设计的改进。以建筑围护结构的设计模式为例,传统的围护结构设计是一种序贯模式,也就是当一项工种完成后再开始下一项工种。事实上,有利于建筑节能设计的围护结构设计是一种存在先后顺序的交错模式。

(二)必须从系统全局优化的角度来认识建筑节能优化设计。由于建筑耗能的过程涉及多个子系统以及建筑设计的方方面面,因此建筑节能设计的对象就不能仅仅停留在围护结构的热工性能或者空调系统。为建筑提供各种能源需求的能源系统、空调及自控系统、建筑采光系统以及建筑内外的空气流动状况都与建筑节能设计有着千丝万缕的关系。在建筑节能优化设计的过程中,如何在考虑各子系统之间相互关联的基础上,实现总体的全局优化是问题的关键。

二、建筑节能设计的现状

自从我国实行改革开放政策以来,国家整体经济建设得到显著提高,人们生活水平的提升和建筑行业的快速发展,导致我国能源的使用量明显加大,虽然我国相继出台一些制度政策调控能源的浪费问题,但是由于执行力度不够。个人节约意识不强等因素影响,造成我国节能减排仍然处于初期阶段的现象,有效地减少建筑能耗和污染物的排放,实现能源有效利用,是我国经济增长的根本保障,通过对影响建筑节能设计的因素以及在建筑设计中存在的问题进行简要分析,我国如何通过有效的方法手段保障建筑设计中节能设计的实现,从而实现能源的节约,环境的保护,为我国发展成为资源节约型可持续发展的国家提供有力的保障。

三、影响我国建筑节能设计中的因素

(一)使用传统建筑材料。在建筑中材料的选择是影响建筑物能否体现节能效果最直接因素。过去我国建筑行业在进行施工时不注重材料的选择,部分墙体中大量采用实心粘土砖,并且在窗门上也采用传统密封性差的合金窗和单层玻璃,不仅生产能耗高,而且建筑本身的保温效果不好,这些因素都直接影响着我国建筑行业节能设计的执行,造成能源一定程度上的耗损浪费。

(二)使用传统建筑材料。在建筑中材料的选择是影响建筑物能否体现节能效果最直接因素。过去我国建筑行业在进行施工时不注重材料的选择,部分墙体中大量采用实心粘土砖,并且在窗门上也采用传统密封性差的合金窗和单层玻璃,不仅生产能耗高,而且建筑本身的保温效果不好。这些因素都直接影响着我国建筑行业节能设计的执行,造成能源一定程度上的耗损浪费。

四、加强建筑构造节能设计

(一)屋面节能。

屋面作为护结构的一部分,它的保温隔热也是不可或缺的。我们可以采用高效保温材料作为屋面的保温层,也可采用架空型保温屋面或倒置式屋面等方式来达到提高屋面保温隔热性能的目的。屋面节能措施的要点,其一是屋面保温层不宜选用密度较大、导热系数较高的保温材料,以免屋面重量、厚度过大;其二是屋面保温层不宜选用吸水率较大的保温材料以防屋面湿作业时因保温层大量吸水而降低保温效果,如选用吸水率较高的保温材料,屋面上应设置排气孔以排除保温层内不易排出的水分。现在,高效保温材料已经开始应用于屋面,一些建筑的屋面保温,采用膨胀珍珠岩保温芯板保温层代替常规的沥青珍珠岩或水泥珍珠岩做法,就克服了常规作法的诸多缺点。这种保温芯板施工方便、价格低廉、不污染环境;芯板为柔性制品,不仅适用于具有平面的屋面,也可用于带有曲面的屋面,其保温工程更可显示出它的优越性。

(二)墙体节能。墙体是建筑护结构的主体,我们可以采用保温性能好、蓄热能力强及强度较低的砌块墙体,如加气混凝土砌块。也可以采用复合墙体的形式,如内保温复合墙体、外保温复合墙体、夹芯复合墙体等。但内保温复合墙体由于热桥对保温的影响较大,国家已经开始限制使用内保温复合墙体使用。而且从长远来看,外墙外保温的效果明显高于内保温。由于复合墙体能满足围护结构各种功能的要求,因此这种采用高效保温材料与砖砌的复合墙体,有着更多的优越性。

(三)门窗的节能技术措施。门窗是建筑能耗最多的位置!在建筑设计过程中,根据实际情况,合理设计穿墙比例,控制门窗的占用面积!同时,在有太阳辐射的区域设计相应的遮阳设施或反射墙面,采用双层玻璃等材料对太阳辐射热进行适当的防护!在设计时也应注意选用新型具有节能效果的门窗,在提高门窗采光的同时不会造成热能的耗损,并且在一定程度上提高了门窗的气密性。

(四)节能建筑规划设计。在进行建筑节能规划设计过程时,应合理规划建筑朝向和平面形状!同时根据建筑功能要求和当地的气候参数,在进行总体规划和单体设计时,科学合理地确定空间布局"外观体型"间距"层高,在建筑材料选择时应注重节能型材料!并且根据实际情况合理规划空间布局以及有效地对系数进行控制,从而保证建筑外维护结构的保温隔热等热工特性及对建筑周围环境绿化设计,实现建筑物能源最低化消耗,减少无用废物的排放,充分发挥建筑物节能效果!这样能够有效地实现当代建筑整体资源的整合以及资源的有效利用,降低不必要的经济成本损失。

五、节能设计的优化和可再生能源利用

在住宅建筑节能设计中,科研创新是基础,规范制定是标准,节能设计是关键,节能材料及施工质量是保障。建筑节能是一个系统工程,只有将系统中的各个子系统优化集成定量分析,才能将系统节能最优化。目前建筑节能的方式方法很多,不同气候、不同经济发展水平地区建筑节能方法不一样,所以我国住宅建筑节能应走一条适合我国国情的可持续发展节能的道路。住宅节能要建立在数据量化基础上,节能设计的优化最重要在于系统节能数据的优化。住宅节能应充分考虑建筑节能的易操作性,使用的简捷性,维护的简便性,使用的长期性,保障投入产出比的最大化。住宅节能应从规划、单体设计、建筑构造等方面出发,将建筑与建筑节能设计一体化统筹考虑,制定出切实可行量化标准,综合选出优秀节能方案。

结束语:

建筑节能设计应是建筑设计的重要组成部分,不应将其割裂开来。在优化建筑设计的同时,应不断优化建筑节能设计,使两者能协调一致,在保障住宅居住舒适性的基础上,加大可再生能源利用,大力实施推广综合节能计算机辅助评价系统的开发和运用,用科学量化手段评价节能效果,促使建筑节能朝可持续方向发展。

参考文献:

[1] 任俊. 居住建筑节能设计计算与评价方法研究[D].西安建筑科技大学,2004.

节能优化设计第3篇

【关键词】建筑节能;室内照明;室内环境;场地优化

1.对建筑的节能设计评价

节能是绿色建筑的核心,特别是在中国现实的能源供应结构下,建筑节能既可以节约费用,也可以减少环境行染。建筑节能通常都采用开源和节流两种方式,开源是指采用无污染的清洁能源来代替传统能源的使用,如太阳能、风能、地热能、生物质能等等;节流可以分为建筑的被动式设计和主动式设计两方面,被动式设计主要从建筑的选址、朝向、遮阳、自然通风等方面优化建筑物理方面的特性来达到降低能耗的目的;主动式设计主要通过优化建筑的机电系统,提高建筑能耗运营管理效率等方式来降低能耗。为此,中国绿色建筑评价从开源和节流的两大方面对建筑节能进行了明确的规定。

实际上,在建筑节能方面除了对建筑的围护结构的保温性能、机电设备的效率、照明功率等提出最低要求外,还需要对建筑的综合能耗水平提出强制要求。中国绿色建筑评价标准提出了许多具体的技术措施,但是对整体的能耗水平无强制要求。因此,依据LEBD系统进行建筑的节能设计更加灵活,给设计团队留有充分的空间,而且不管什么样的技术整合,只要在总体能耗上能满足节能要求即可。而中国绿色建筑设计标准的条文限制了设计的发挥,条文并不能适用于任何地区、任何形式的建筑.且总体能耗水平无从计量。因此参考中国绿色建筑设计标准的同时,宜采用LEED系统的指导方式,用综合能耗作为检验技术可行性的标准。

在参考两套标准的基础上,我们可以归纳出一些适宜的具体节能技术,如:围护结构的保温方面,可考虑绿化屋顶、垂直绿化等;高效的机电系统和节能空调设计方面,可考虑地源热泵(浅层地热能在国标中算可再生能源的一种)结合区域的新风热回收、自然通风等技术;在照明方面,可考虑绿色照明设计,即在采用节能灯具的同时结合自然采光达到提高室内光环境的品质,同时降低照明能耗的目的;在可再生能源方面,除地源热泵外,考虑太阳能热水这种较经济实用的方式。

2.基于节能对建筑场地优化处理

在绿色建筑的理念中,建筑场地占有相当一部分的比重,因为建筑活动不仅在施工期间对场地有严重的干扰,甚至还会发生根本性的变化。例如,场地原有的自然水循环就因为不透水的建筑的屋顶和路面而被打破,场地内原有的微生态群落和平衡也不复存在。改变单个建筑场地的影响似乎很微小,但是无数的这样的场地集合起来的影响就没有办法忽视。以上海为例,大面积的场地硬化和相对落后的城市排水系统能力造成城市在雨水期的经常性内涝,同时却是城市低下水位的逐年下降大面积的传统屋顶造成了城市严重的热岛效应;城市夜空的光污染让人们很难再抬头看到星空,同时也改变了城市夜间的生态群落;如上等等的负面的结果都是因为我们在进行建筑设计的时候,很少或者从未考虑过如何对场地的自然特性进行保护和优化。

在绿色建筑的评价体系中,无一例外地都考虑到建筑场地的保护。通过全面考虑绿色建筑所有相关特性,还需对比LEED系统和国标对建筑场地优化方面的条款,通过对比分析,我们可以找出适合项目的相关措施。在场地方面,LEED系统的规定较全面,从施工过程到施工完成后,对场地的环境保护、雨水管理等都提出了一些解决办法。上海自然博物馆新馆可以在参考LEED条款的基础上,总结出适宜的技术和管理办法.例如:交通管理、生物多样性景观设计、减少热岛效应、减少光污染等。

3.室内环境节能优化

任何建筑最终都是要给人使用的,而室内环境的品质关系到使用者的舒适度,就建筑节能优化处理来说,对建筑室内环境的节能优化也有相应的规定。有些观点认为提高室内环境的品质和节约能源是矛盾的,因为要靠消耗更高的能源来提升室内的温湿度、声、光环境等,这样的观点不完全正确。首先,无沦是节能和舒适度都不能走向极端,两者之间要建立一种互相平衡的关系。其次,许多提升室内环境品质的做法并不与节能相冲突,反而有利于节约能源,比如自然采光在提供给舒适照明的同时减少了电力的消耗。合理的空调温度设计和控制也能降低制冷和采暖能耗。因此冲突的关键原因是设计和管理问题。许多失败的自然照明设计不是造成眩光就是使得太阳辐射量增加,粗糙的管理措施也造成许多室内不必要的能源浪费。

绿色建筑的室内环境品质要求主要体现在室内通风量、室内化学污染物排放量、室内温湿度控制和室内光环境这几个主要部分:现行国标的通风标准大于LEED的最小通风要求,甚至在按照LEED最低通风要求提高30%后,还是小于国标的要求,因此我国现行通风标淮的最低要求有些侗大,对节能不利。如果考虑节能,通风设计应参考LEED的条义如果考虑提供室内空气品质,那么应该按照国标的要求,考虑到提升好的环境,建议根据国标的要求进行大通风量的设计。在室内污染物排放方面,两套标准都规定了甲醛等常见污染物排放的限值,建议采用就高不就低的原则对室内化学污染源进行控制。在温湿度控制方面,国标的要求较简单,这样规定是由于在夏季和冬季所设的温度相应的偏高和偏低是为了节能的考虑,但是相应地就牺牲了室内人员的舒适度。因此,对于室内温湿度的设计参考国标即可。在自然采光方面,无论节能还是舒适度方面,都应该鼓励自然采光,或者可以考虑采用太阳光导照明技术对地下室进行采光。

4.基于节能的绿色照明

照明不单是建筑直接的电力消耗对象,它还对建筑中其他设备的电力消耗产生很大的影响。因为照明发热时直接在室内进行,会相应增加室内的负荷,这就会增加空调制冷设备的负荷。所以照明设备的节能对整个建筑的节能产生至关重要的影响。对室内空间实施有效的照明,应该尽可能地利用自然光。人工照明应该和自然光照明进行整合,并根据自然光线强度变化进行控制。人工照明用于补充白天自然光照明的不足,并在夜间提供照明。人工照明的节能可以通过高效节能灯具和高效照明控制器来获得。

自然光照明的历史和建筑本身一样悠久,但随着方便高效的电灯的出现,自然光逐渐为人们所忽视。在许多国家,包括我国,许多写字楼和大型商厦就存在这个问题:用人工照明取代自然光。不少现代建筑取消窗户,完全依靠人工照明和空调通风,导致在这种不透风,也不透光的建筑物中工作和购物的人们患上现代建筑综合征,出现种种不健康症状。自然光照明虽然有如上所述的优点,但是其不确定性制约了其在建筑领域的大范围利用。如何提供连续、稳定的照明是自然光照明设计中的重点。

5.结论

针对当前建筑节能环保问题已经成为社会各界活动的焦点话题,文章从住宅建筑的场地优化、室内环境优化以及建筑照明节能优化等方面对住宅建筑的节能优化设计进行分析和阐述,提高了建筑节能效果。

参考文献:

[1]赵红艳. 探讨住宅建筑节能设计的可控性[J]. 城市建筑. 2011(01):118~119.

节能优化设计第4篇

关键词:空调系统;节能优化;消耗

智能建筑节能是世界性的大潮流及大趋势,也是中国改革与发展的迫切要求,是21世纪中国建筑事业发展的一个重点。节能与环保是实现可持续发展的关键。从可持续发展理论出发,建筑节能的关键又在于提高能量效率,所以无论制订建筑节能标准还是从事具体工程项目的设计,都应把提高能量效率作为建筑节能的着眼点。

一、暖通空调概述

1.暖通空调的工作原理

暖通空调的主要工作原理是制冷剂在空调制冷机组内的蒸发器中与冷冻水进行热量交换发生气化,这一过程会使冷冻水的温度降低,被气化后的制冷剂在空压机的作用下,会形成高压、高温的气体,当气体流经制冷机组的冷凝器时,则会被来自冷却塔的冷却水所冷却,从而是气体转变为低压、低温的液体,与此同时,被降温后的冷冻水经由水泵被送至空气处理机的热交换器中,随后与混风进行冷热交换形成冷风源,最后经由送风管路送入到各个房间。通过这样的循环过程,在夏季房间内的热量会被冷却水带走,流经冷却塔后释放到空气当中。

2.空调供水系统

通常情况下,冷冻水系统内的冷冻水管道均为循环式系统;变流量系统按照组成装置的不同,可分为相对变流量和真正变流量两种,其中真正变流量可以充分发挥变流量系统的节能潜力。

3.空气处理单元

在空气处理单元中,新风与部分回风经混合后形成混风,当混风经由热交换器冷冻水进行热交换后则形成送风。冬季时,混风能够吸收能量,从而是温度升高,夏季时,随着混风温度降低,送风进入室内后会与室内的空气进行热量的传递,最终将温度调节至房间所需的设定值。此时房间内的气体在排风机的作用下与新风混合后,重复上诉过程进行循环。由于混风和冷冻水的热交换过程是在热交换器中进行的,因此,热交换器属于暖通空调空气处理单元中较为重要的组成部分。当热交换器的工作状况处于部分负荷时,与设计工况是不同的,而在实际使用中,大部分时间热交换器都是处于部分负荷状态,也就是说其基本都处在非设计工况下工作,所以在进行设计时应尽量了解热交换器的这一特点。

二、暖通空调工程设计优化的重要性

其一,对暖通空调工程进行优化设计,不仅可以满足人们对工作和生活环境舒适性的要求,而且还可以使工作效率和生活质量有所提高;其二,由于暖通空调工程属于整个建筑中能耗较高的部分,所以对其进行优化设计,可以起到节约能源、提高能源利用率的作用;其三,随着直接数字控制器(DDC)、变频技术以及能源管理控制系统等的广泛应用,使暖通空调工程的优化设计策略和控制技术相辅相成,在节能降耗的同时,能够更好的对暖通空调系统进行指导和控制;其四,基于大部分暖通空调工程在设计之初,没能很好考虑季节变化、时间以及房屋的朝向等问题引起的冷负荷变化,致使这样的设计难免会造成能源的浪费,而对暖通空调工程进行优化设计后,可以从根本弥补这一缺陷,并且还能降低事故的发生几率;其五,由于在进行暖通空调设备选型时,通常都是按照设备的最大负荷进行计算的,并采用固定工作时间的方式运行。但是在大多数情况下,暖通空调都不是处于满负荷运行的,同时由于多种因素的影响,如阳光照射、建筑外部环境的温湿度、房间内部的负荷变化等,一旦采用固定工作时间运行,必然会导致设备的使用效率低下,使能源大量浪费。因此,为了调整空调系统的运行时间,作为施工单位,对暖通空调的运行比较了解,就必须配合设计人员对暖通空调工程进行优化设计,从而确保空调系统的运行效率,达到节约能源的目的。

三、暖通空调工程的优化设计方法

1.控制策略的优化

由于空气处理机的直接数字控制器(DDC)基本都是采用PTD进行控制的,所以选用一个较为合适的PTD参数能够起到促进空调系统稳定运行的作用。PTD的系数高,可以使室内温度较快的达到预定值,反之这一过程会较慢,但也并不是说PTD的系数越高就越好,一旦系数太高时很容易引起DDC控制器失稳。虽然PTD可以解决大多数场所的空调控制问题,但是有些特殊场所仅靠较高的PTD系数提高空调系统对负荷变化的响应速度是很难解决问题的,比如影剧院等大热惯性场所,对于这样场所可采用双级控制,即将温度传感器分别安装在室内和送风道上,由主DDC控制器完成室内温度的设定,而水阀的驱动则可由副DDC按照主DDC以及风道传感器的指令来完成,基于风道温度变化的速度要快于房间内温度的变化,采用这样的控制方式可以加速空调系统对温度波动的响应。在实际工程设计中,可以根据不同情况的需要,选择不同的优化控制,从而达到最优的效果。如,写字楼、大型商场等场所,夏、秋季在清晨时通过控制程序启动空气处理机,并利用室外的凉风对室内进行全面换气预冷,这样做不进可以节约能源消耗,而且还可以提高室内空气的质量。

2.控制权的优化设计

在某些特定的场合,如会议室,如果可以将空调或是通风系统的参数设定功能放置在现场,那么则能够更加符合用户的需要。然而DDC本身却并具备这样的功能,必须添设专门的部件才能实现。为了实现这一功能必要时可以添设VRV控制面板的设定器,它可以给用户带来极大的方便和舒适性。

3.DDC的优化

由于DDC控制系统的处理能力是不同的,所以应根据各个场合不同的需要,选择合适处理能力的DDC,如热力站监控点、冷冻机房等密集场合应优先考虑采用大型的DDC控制器,以减少控制器间的通讯和故障发生的频率;对于通风机、新风机、空气处理机等通常采用中型或小型的DDC即可满足使用需要。目前,可编程逻辑控制器(PLC)的发展速度较快,其应用范围也越来越广泛,因此,在暖通空调现场设备优化控制工程中,可适当加以采用,优化效果也是比较明显的。

4.控制网络的优化设计

在满足灵活性和可扩展性的基础上,空调系统控制网络的拓扑结构应尽量清晰、简化,无论是采用RS485总线或是LonTalk总线的控制网络都应如此。由于分级多、分支多的网络管理较为复杂,而且可靠性也比较低,虽然LonTalk总线在理论上能够组成任意的网络拓扑结构,但是这种设计具有很大的随意性,一旦运用不当,在工程实践中可能会有一定的技术风险,从而使空调系统的成本增加。因此,在没有特殊要求的工程中英尽可能使用RS485总线的控制网络,并采用手拉手环网的布线方式。

5.BAS监控中心

BAS监控中心主要负责的是监控整个空调、通风以及动力系统的工作状态,通常与安保监控和消防控制等系统共用一间机房,而该机房一般都离冷冻机房、锅炉房较远,在这里对空调系统中的关键设备进行远程操作显然是不合适的,因此,建议在冷冻机房和锅炉房现场控制室另设一台监控分站,并由该分站负责监冷冻机、锅炉监控功能,同时该分站授权局限为冷热源设备。

五、结论

能源目前显得比较短缺,特别是现在使用空调的人逐年增多。空调自身的含氟制冷剂本身就会导致臭氧空洞的形成,而且空调工程的高能耗问题还会产生更多的二氧化碳,引发一系列的环境问题。这就更要求我们去寻求一条节能的道路,来适应社会的发展。因此,研究空调的节能问题显得尤为迫切且重要。

参考文献

[1] 孙亚林.空调用冷水机组部分负荷性能与空调系统的匹配分析[J].科技资讯,2010(11).

节能优化设计第5篇

【关键词】冷库;节能技术;围护结构;制冷设备

随着综合国力的增强和人民生活水平的不断提高,我国冷库总容量和单库规模显著提升,食品冷藏行业进入快速发展时期。然而,建设冷库是一种投资较大、建设和使用期较长、资金回收相对较慢的项目。实现冷库最大经济效益的途径主要有两个方面,一是提高冷库周转利用率,二是通过节能降耗降低经营成本。

1.冷库围护结构设计中的节能

冷库是冷加工和食品保鲜行业中的高能耗行业,其中冷库围护结构的耗能约占整个冷库的30%,某些低温冷库围护结构的耗冷量高达制冷设备总负荷的50%左右。减少冷库围护结构的冷量损耗,重点是围护结构隔热层的合理设置。

1.1合理设计冷库围护结构的隔热层

隔热层所用材料及其厚度是影响传入热量的最重要因素,隔热工程的设计又是影响土建费用的关键。尽管冷库隔热层的设计要通过技术和经济两个角度来分析确定,但是实践证明,必须优先考虑隔热材料的“质优”,然后再考虑“价廉”,不能只看节省初期投资的眼前利益,要从长远的节能降耗考虑。近年来设计建造的组装式冷库,多数采用硬质聚氨酯(PUR)和挤塑聚苯乙烯(XPS)作隔热层。结合PUR和XPS隔热性能优越及砖混结构热惰性指标D值高的优点,采用土建式单面彩钢板复合内保温隔热层结构,是一种值得推荐的冷库围护结构隔热层的建造方式。

其具体做法是:采用砖混结构外墙,水泥砂浆抹平后作隔汽防潮层,然后内侧做聚氨酯隔热层。对于老冷库的大修改造,这是一种值得优选的建筑节能方案。

1.2冷库建设工艺管线的设计布局

制冷管道及照明动力管线等穿过隔热外墙是不可避免的,每多一处穿越点就等于在隔热外墙上多开一个缺口,而且处理复杂,施工操作困难,甚至可能留下工程质量的隐患。因此管道设计布置方案上,应尽可能减少穿越隔热外墙的孔数,并对穿墙处的隔热构造进行细致处理。

1.3冷库门设计及管理方面的节能

冷库门是冷库的配套设施之一,是冷库围护结构中最容易跑冷的部位。据相关资料介绍,低温贮藏库的库门在库外温度34 ℃,库内温度-20℃条件下开启1h,耗冷量就达1088kcal/h。

冷库内常年处于低温高湿以及温度、湿度频繁变化的环境中,低温库的内外温差通常在40~60 ℃之间。当库门开启时,由于库外空气温度较高,水蒸气压力大,而库内空气温度较低,水蒸气压力小,库外空气就会向库内流动。当库外高温、高湿的热空气通过冷库门进入库内后,大量的热湿交换会加剧冷风机或蒸发排管的结霜,导致蒸发效率的降低,从而引起库温波动,影响贮藏产品的质量。有文献表明,冷库门的性能不良可使能耗增加15%甚至更多。

2.冷库制冷设备的节能

2.1制冷压缩机的选择

制冷压缩机是制冷设备的心脏,它消耗的能量在整个制冷系统中占很大的比例。对于特定的制冷量,选择不同的压缩机直接关系到运行的能耗。在大中型冷库的建设中,液氨冷却螺杆制冷压缩机已有取代活塞式压缩机的趋势。

因此,必须正确估计冷库实际耗冷量的变化,掌握冷藏过程中放热量及外界气温、冷却水温和日常操作热量等耗冷量的变化规律,合理调整压缩机的开启台数,或通过卸载装置减少压缩机的工作缸数。

2.2冷凝器的选型

冷凝器是制冷工艺系统中的主要设备之一,在制冷循环中起着把压缩机排出的过热蒸气冷凝成液体的作用。冷凝器选型的合理与否,直接关系到制冷装置的经济性和能否正常使用。冷凝器选型过大,将使设备闲置,设备初期投资增大,配套费用增加;选型过小,又不能满足正常冷凝作用的需要。

蒸发式冷凝器充分利用水的汽化潜热带走更多的冷凝热,是一种高效节能的换热设备,具有传热效率高、结构紧凑和安装方便等优点。针对当前节水、节电在国民经济发展中的紧迫性和重要性,因地制宜地推广蒸发式冷凝器的使用已势在必行。

2.3蒸发器的选型

建设大中型低温冷库的蒸发器选型,应尽量采用传统排管式蒸发器。冷库使用冷排管可实现温度易控,同时又没有电机能耗的双重效果。

压缩机停机时,冷排管内的低温氨液可以蓄冷,库温和蒸发温度波动较小且保持温度延续时间长。由于冷排管的蒸发面积比冷风机蒸发管组的蒸发面积大得多,所以增大传热面积是最有效的强化传热途径之一。虽然冷排管与冷风机相比一次性投资大一些,但运行费用却相对减小。同时使用冷排管可简化制冷系统,便于系统的维护和管理。

3.冷库运行管理中的节能

3.1准确及时调节制冷系统

制冷系统在实际运行中,由于工况条件是不断变化的,只有依靠冷库管理人员的精心操作并准确地调节制冷设备的运行,才能使制冷系统始终处在最理想的工作状态,达到高效节能的效果。

3.2合理利用库房,节能减耗

冷藏间的耗电量是按冷藏间耗冷量的多少来计算的,通常包括两部分:一是货物冷却和冷藏时的耗冷量;二是冷藏间本身(即围护结构)及操作管理的耗冷量。节约用电的关键在于冷藏间的利用率,利用率低的冷藏间耗冷多,耗电也就多。在实际操作中,由于压缩机所配备的电动机功率是按该机制冷能力选定的,也就是库房的耗冷量小于制冷机的制冷能力。冷库在淡季运行时,由于冷藏间存放的货物较少,压缩机运转是“大马拉小车”,浪费了电能。因此,在淡季时可将几个冷藏间内的货物按贮藏温度及时并库,以减少能耗。

3.3冷库内照明系统的节能冷库照明应在安全、科学、合理的基础上,从节能和环保的角度出发

根据冷库间的面积、高度及库房温度等综合考虑。冷库内的照明一般集中在工作区域内。应在保证操作人员安全的情况下做到及时关灯,以减少库房的热负荷及电能消耗。同时要尽量采用高效低耗耐压的照明灯具以减少灯具的更换频率。LED照明系统具有环保省电、照度均匀、低温时发光效率良好及供电效率高的优势,是一种极有前景的新型光源,也是今后冷库内照明系统的发展方向。

3.4定期放油、除垢和放空气,确保良好热交换效果

资料显示,当蒸发器盘管内有0.1mm厚的油膜时,为保持设定的温度要求,蒸发温度就要下降2.5℃,耗电量增加10%以上;当冷凝器内的水管壁结垢达1.5mm时,冷凝温度就要比原来的温度上升2.8 ℃,耗电量增加9.7%;当制冷系统中混有不凝结气体,其分压力值达到0.196MPa时,耗电量将增加约18%。由此可保鲜与加工见冷库制冷系统定期放油、除垢和放空气的重要性。

4.结束语

冷库的节能是一项系统工程且具有很大的潜力,从大的方面来讲,一是冷库的合理设计,二是冷库的科学管理。在工作实践中,冷库的设计要周密严谨,运行管理要科学合理,严格把关,通过多种节能途径,即可取得良好的综合节能效果。

【参考文献】

节能优化设计第6篇

1保温隔热

1.1现状分析建筑墙体主要为240黏土砖砌筑墙体,外墙面层为水泥砂浆抹面涂料。墙体较薄且无任何保温层,在夏季白天难以阻挡该地区强烈的太阳光,导致大量热量透射而入;到夜间获取的热量难以消散,形成对室内的二次辐射,使得室内温度持高不下。冬季轻薄的墙体又成为热传递的最佳通道,将热量由室内传递到室外,导致室内热量的严重损失。屋顶为普通水泥板架空隔热屋面,此种做法相对老套,保温、隔热效果无法满足现在住宅建筑的使用要求。调查建筑中的门窗及阳台窗基本上都为低档铝合金作为骨架材料的单玻窗,所用玻璃为蓝色透明玻璃,开启方式为推拉,此种方式增加了该建筑的能源消耗。

1.2相关案例西安首创国际城北区采用的保温隔热技术:1)选用AJ聚苯颗粒保温砂浆和聚苯保温板,墙体穿上“衣服”。2)采用塑钢中空双层玻璃窗,达到隔热、隔音和保温效果。3)选用名牌厂家生产的保温隔音防盗门。4)在屋顶和阳台使用聚苯颗粒保温砂浆。由此,节能效果达到节能50%的国家标准。

2改造优化设计

针对调查建筑当前存在的问题,结合对国内外相关案例的分析,运用生态住宅的设计方法,提出相应的改造设计措施,达到节能的目的。

2.1通风改造优化设计自然通风是住宅建筑的重要影响因素之一,在住宅设计领域中结合环境,达到自然通风节能的效果尤为重要。结合建筑单体设计,巧妙设置门窗,门窗对开,形成穿堂风,有效地调节了室内通风效果。丰富窗户形式,设置多向调节窗户加大其通风能力,自然通风量则通过竖向空间的窗户面积大小来控制。屋顶安装利用风力的简单机械装置,抽低楼层的凉风至高楼层降低室内温度,加强竖向空间的拔风作用,提高室内60%的通风能力。加强各楼层之间风的流动,在竖向空间顶端设置蓄热墙吸收房间热能,排除室内浊气。

2.2遮阳改造优化设计窗的遮阳是必不可少的,在闭窗情况下有无遮阳,室温最大差值达2℃,平均差值达1~4℃。理论上讲,室外遮阳效果比单层玻璃窗的透过能量下降88%。但针对该地区来讲,如果用遮阳板固然可抵挡一部分夏季强烈的日光,但进入漫长的低日照时期时,室外的遮阳设置使室内不得不只采用灯光照明,特别是在阴雨天或冬季这种需要大量阳光进入的季节,遮阳反而变成了一种障碍。在建筑中设置百叶遮阳构件,并将百叶遮阳构件一分为二,利用上部的百叶作为反射构件,通过室内顶棚进行漫反射增加室内照度;下部挡掉过量的太阳光。这种方式作为朝南建筑的遮阳方式,朝西建筑由于太阳高度角较低,可采用垂直遮阳来解决此问题。

2.3隔热改造优化设计

2.3.1墙体与屋顶围护结构传热的热损失占整个建筑物热损失的70%~80%,外墙是建筑物围护结构的重要组成部分。加强调查建筑的薄弱围护结构(外墙)的保温隔热能力尤为重要。在改造中,建筑物的主要围护结构、屋顶的保温节能材料采用AJ建筑保温隔热聚合物砂浆。隔热效果好、导热系数低的AJ建筑保温隔热聚合物砂浆含有陶瓷空心微粒,从而有效地阻止了能量的传递,起到节能的作用。在外墙外保温时该材料还设置防裂防漏层,既防裂纹又防漏水。屋顶的保温设计可选用AJD—Ⅱ型聚苯颗粒保温材料为保温隔热材料,同时可种植绿化来改善保温隔热的效果。

2.3.2门、窗由于空气渗透和门窗的使用带来了门窗的热损耗,为减少能耗,则需:1)合理窗墙比:以建筑规范为准则,以该地区的实际条件为依据,合理地调整窗户和墙体的比例。2)强化密封性:合理选择门窗的类型和其他相关配套材料。3)提高保温性:门窗框料可采用PVC型材与钢衬料制成,玻璃采用中空双层玻璃,门芯填充复合保温材料,既防盗又保温隔热。

2.4有效利用太阳能生态住宅设计方法在遵循高效率、低造价、易控制、好维修原则的前提条件下,合理地利用太阳能,降低住宅建筑的人工能耗。结合该地区的气候条件,选取适合调查建筑的改造方式,最大程度地利用自然能源,降低住宅建筑能耗,太阳能的利用方式见图1。

3结语

节能优化设计第7篇

1EPS板性能分析

EPS板的原材料是聚苯乙烯树脂,加入发泡剂、阻燃剂等添加剂,经过加热预发泡,在模具中加热而制成具有不同表观密度的闭孔结构的硬质EPS板[8-9]。EPS板具有显著的节能保温优点:质轻、导热系数低(保温效果好)、抗潮湿、密度低、易加工、价格便宜、施工性较好、隔声效果良好,环保和可再循环利用等,因此成为目前使用最多的建筑保温材料。(1)吸水性。EPS特有的内部结构致使其具有较强的抗潮湿能力。研究表明:EPS即使被埋在地下饱水层几年其吸水量也不会超过10%;除汽油外,绝大多数溶剂对EPS影响不大[10]。因此,EPS具有较好的抗老化能力。(2)密度。EPS材料的密度低,具有质量轻的优点,这对于建筑保温节能具有重要意义。EPS的密度一般为18~30kg/m3(表1),其密度大小取决于树脂的膨胀倍数[11],相比较而言,PF泡沫板、PU硬质泡沫的密度更低。(3)保温隔热性(导热系数)。由于EPS内部空腔结构,使得这种材料具有低的导热系数。研究表明:EPS的导热系数与含水率存在正相关关系,当EPS含水率为1%时,导热系数大约增大5%;当含水率为5%时,导热系数最大可增大75%[12]。但由于EPS吸水率低,具有较好的抗潮湿能力,因此,EPS仍具有较好的保温隔热性。(4)热稳定性。EPS板的最高工作温度可达80℃,一般情况下,EPS性能比较稳定;但当温度达到150℃时EPS板开始熔融;若温度持续升高,EPS板将会发生分解,并产生可燃气体,但由于EPS板中添加有阻燃剂,因此火焰不会扩散,几秒钟之内会自动熄灭[13]。(5)回收性和环保性。EPS能够回收再利用,具有良好的环保性。有多种途径回收利用EPS:(1)通过机械回收EPS重新制成XPS,或者将其热熔再生制成新的EPS使用;(2)化学回收利用,制成纸箱防水涂料、建筑涂料等[14]。

2建筑节能优化设计

2.1EPS板厚度设计

导热系数K值是指在稳定传热条件下,当墙体内外两侧温差为1℃时,单位时间内通过单位面积所传递的热量值[15]。导热系数和材料密切相关。保温节能材料的厚度变化对墙体导热系数具有差别。不同厚度的保温层EPS对同一个墙体的导热系数K和热惰性指数D值具有一定的影响。据孙海萍[15]研究,随着EPS保温材料厚度的增加,墙体导热系数K值的下降速率减低,见表2和表3[16]。从表2和表3可以看出,随着保温材料厚度的增加,热惰性指数值稳步上升(几乎恒定为0.085),而墙体导热系数值下降速率不断减小。当保温材料厚度由45mm增加至50mm时,墙体导热系数降幅不到0.05。当保温材料EPS厚度达到一定限值之后,即使厚度继续增加,不仅其表现出的保温效果也不会很明显,而且投资额度将会上升。根据我国建设部的《中国建筑技术政策》中关于建筑节能应达到65%的要求,结合上述分析,当EPS保温节能材料厚度为40mm时,墙体导热系数为0.635W/(m2•K),满足建筑节能的要求,并且节省了保温材料过厚造成的不必要投资。

2.2EPS板防火设计

建筑节能是当前建筑行业关注的热点课题,在节能的同时建筑材料的防火安全性也十分重要。在国内外由于建筑保温节能材料防火安全性问题引发的火灾事件并不在少数。因此,节能与防火安全应该“一手抓”,二者并重。EPS板的阻燃性为B2级,但是综合性能上仍存在一定的安全隐患。发生火灾时火焰从建筑窗口涌出,直接接触保温系统,未直接接触的地方受到热传递,最后内部空气发生膨胀[17]。针对火灾发生时的建筑保温系统的这些状态,提出关于提高建筑保温材料防火性能的优化设计。(1)从EPS板本体角度,在制备过程中添加阻燃剂,从而提高材料本身的防火安全性,EPS所用阻燃剂有如下种类:卤系阻燃剂,具有强的阻燃能力,种类多样,包括:十溴二苯醚、氯化石蜡、四溴邻苯二甲酰亚胺等等,目前通过一些学者的研究已经取得较好的效果[18];无机阻燃剂,阻燃效率不高,常常要和其他阻燃剂配合才能达到较好的效果;膨胀阻燃剂,包括三类组成物质:酸源、气源和碳源,郑宝明等[19]研究表明,膨胀阻燃剂具有较好的阻燃效率;黏土类阻燃剂为最近使用的新型阻燃剂,包括:斑脱石、蒙脱石等等层状黏土矿物。这些阻燃剂的添加使得EPS具有较强的阻燃能力,提高了保温系统的防火安全性能。(2)从保温系统的构造体系角度,通过对保温节能系统进行优化,从而达到提高防火安全的目的。具体采取什么措施取决于火灾时保温节能系统的稳固性和减缓或阻碍火灾扩散的能力。具体可采用的措施:防火隔离带,在墙体外部设置呈条带状的防火构造物,起到阻止火焰扩散的作用;挡火梁,在窗口设置隔火装置,起到将火焰与内部EPS板隔离的效果;采用金属固件固定,起到稳固保温层外的保护层作用。在EPS板的表层涂抹具有良好阻燃性的材料(图1),比如涂抹水泥灰或用石膏板包覆等。RalphMatalon[20]提出用一种具有特殊性质的材料,将其涂抹在EPS上形成隔热甚至到达绝热效果的保护层,从而达到阻燃的效果。与此同时,在EPS板外层涂覆这种特殊性质的材料,能阻碍热量和气流发生交换,进而达到保温节能的效果。有关实验表明:在厚度为120mm的EPS板上涂抹1mm厚的绝热材料后,其被破坏的时间由原先的1min延长至5min,在EPS板表层形成了隔热炭层[21]。

3结语