欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

植物学论文(合集7篇)

时间:2022-11-05 17:17:39
植物学论文

植物学论文第1篇

1认识绪论教学的重要性

俗话说“良好的开端是成功的一半”,教学和学习更是如此,每一个教师都有当学生的经验,回忆一下自己的学生时代,基本上每门课程,在前五六个学时之后就已经确定了这门课是划入“真心想学”的范围,还是归入“及格就好”的领域。由此可见,绪论的教学有多重要,但往往很多教师认为绪论中的内容和书中其他内容比较无关紧要,没有必要花心思去讲授。教师应该认识到课程绪论的重要性,认真备课,精心组织药用植物学绪论课的教学,让学生真正了解到该学科的发展历史、学习的内容、目的、方法。了解学科的发展历史能够提高学生的学习兴趣,提高知识面,了解学科的背景知识;了解学习的内容能够让学生对这门课程有一个整体、总体的认识;学习目的是应该重点讲解的部分,知道了学科的作用及重要性才能激发学生学习动力,主动地学习;教会学习方法是学好一门课的关键,授之于鱼,不如授之于渔,药用植物学有其特殊性,它是一门实践性很强的学科,应该教会学生如何理论联系实践,多利用身边大量现成的学习材料。总之,最重要的是能够通过绪论的教学激发学生学习药用植物学的兴趣和热情,并对药用植物学一见钟情。

2创造一个良好的校园学习环境

校园是进行药用植物学教学的一个重要并且方便的场所,大部分高校都有较大的绿化面积,可以建议学校在美化校园、绿化环境的同时,尽量栽种一些有利于教学的植物,特别是一些代表性的常见植物、具有药用价值的植物,并且给植物进行挂牌,标明植物的分类、名称、生活习性、特点、药用功效、药用部位等,让学生在平时的活动中便留下印象,在讲授到相关内容的时候教师及时的把“活体植物“介绍给学生,让学生有更加深刻、更加直观的认识,也为其他专业的学生开拓了视野,增加了知识面。当课程结束时,带着学生环校游,检验一下自己掌握了多少身边药用植物学的知识。

3采用灵活多变的理论教学方法药

用植物学本身的内容比较枯燥,记忆的内容较多,教师的任务在于将枯燥无味的描述性文字转化为生动绚丽的植物形象,让学生记住,记准[1]。当今多媒体设备、网络传媒及摄影技术飞速发展,已成为最重要的教学手段之一。通过网上搜索下载、购买植物图片光碟、自己拍摄制作图片等途径获得图片,用多媒体展示给学生,让学生对着图片和文字描述一起学习,能够取得很好的效果。著名教育学家陶行知认为:先生的责任不在教,而在教学,而在教学生学。根据笔者经验,让学生“教”比让学生“学”更加能够让学生印象深刻,甚至终生难忘。如当讲授到学生最难记忆的章节,把学生分成不同小组,各小组负责讲授不同部分知识点,最后以课堂小测试的形式检验各组教学效果,知识点平均得分高的说明教学质量高,则对该小组进行一定程度的表扬和鼓励。这能够大大调动学生的积极性,学生们自动自觉地课下充分准备、讨论,发挥集体的想象力和创造力去备课,尽最大努力让其他同学记住自己所负责的知识点,此时本组同学已经完全掌握了所负责的教学内容,而在别组同学讲授时,学生们更会本能地认真听讲,与本组的教学方法进行比较,此时别组同学所负责的知识点也很好地掌握了,最后,教师再进行归纳、总结、点评。这种教学方法常常能够得到意料之外的良好效果,年轻人思维活跃,具有创造性,还时常编出口诀和顺口溜帮助记忆。

4利用丰富多样的实践教学手段

实验课是一种直观的实践教学手段,在药用植物学的教学中占很重要的比例。实验课能够验证课堂讲授的理论内容并且加深印象,使知识具体化、形象化[2]。此外,药用植物学实验培训也是掌握药用植物学研究所必须的操作方法和技术的必要手段。在每次实验过程中,教师全程跟踪,随时解答学生提出的问题,及时纠正学生错误的操作方法及绘图方法等。每次实验课结束后,教师认真地评阅学生的实验报告,一一指出不足。在下一次的实验中集中进行总结和讲评,使学生能够通过实验掌握教学内容的重点,并培养学生的实际操作能力。参观标本馆,亲自动手制作标本也是实践教学手段之一,药用植物标本区的腊叶标本大多是按照恩格勒系统分类,有序地排列在标本柜中,分类方法与教材一致,对照课本进行观察学习,非常方便直观。我校新校区正在筹划建设200亩左右的药用植物园,届时将有3大区域,14个亚区的药用植物,完全满足教学需求,使药用植物学的教学完全摆脱枯燥的宣讲、纸上谈兵的教学形式,在授课时,完全有条件可以将干、鲜标本同时摆上讲台直观教学,或是直接让学生走进药用植物园,在现场进行教学[3]。此外,常规的不少于一周的野外实习更是巩固和加深课堂教学的重要环节,它对每个学生来说都是十分必要、十分期盼以及终生难忘的一次学习经历。我校地处秦岭脚下,离秦岭主峰太白山仅两三个小时车程,极大的方便了药用植物学的野外实习,优美的自然环境和丰富的植物资源,激发了学生们浓厚的学习兴趣,学习热情高涨,教学效果让人十分满意。

5建立合理的课程考核评价体系

植物学论文第2篇

植物生理学是研究植物本身生命活动的一种科学,它所研究的内容范围很广,但是研究方向可大致分为三部分:一是植物的生长发育与形态的构建。二是植物间的信息传递及对信号的转导。三是植物自身存在的物质与能量之间的转换。这门课程是高等院校中农学系学生的一门必修课程,同时该课程也是一门极具应用性和具体实践性的课程。在该课程中,会了解很多人类遇到的难题。因此,这门课程对社会科学的发展及世界生产实践的发展有很大的影响。笔者在教授学生这门课程时,由于课程大纲及学校的安排,该门课程的授课时间越来越短,在现有的课时中,如果还使用传统的教学方式,完全无法完成课程的任务量。这门课程是以阐述生命的基本特征为主,课中内容知识点繁杂,要求学生具有较强的理论,存在很多难懂的专业术语,因此,该课程较为枯燥,由于该课程缺乏趣味性,使得学生的学习兴趣十分低。教师应放弃传统的教学方式,革新当前植物生理学的教学模式,采用最新的互动式教学,以师生互动为主,增强学生的求知欲,提高植物生理学的教学质量,提升该课程的教学效果。

2互动式教学模型具体含义及意义

互动式教学模式是以营造多边互动为基础的教学模型,在实际的教学过程中,要求师生之间、生生之间进行平等的交流,以各自不同的观点,通过不断的思维碰撞和探讨,分析出真正的科学内涵。在此其中,可以激发教学双方的探索性和积极性,从而活跃学生思维,提高教学质量。这种教学方法从本质上克服了传统教学的不足,它在本质上改变了课堂上教师“一言堂”的局面,但也没有形成学生自主学习的“放羊”式的教学方式。该教学方式不仅要求教师按照教学大纲,对学生进行系统的知识讲解,也要求教师按照学生具体的提问与感兴趣的话题进行深入讲解,实现有重点的因材施教。互动式教学模式的本质是通过提问的方式激发学生的学习兴趣,活跃学生的思维,进而形成师生间和生生间的互动。以设计的问题为主线,通过双方的交流,思想的碰撞,做到互相启发和互相激励,最终形成一个新的认识,培养出学生自己的知识架构。比如:在课堂上讲解植物光合作用这章时,为了使学生能够更为深入了解光合作用中三个阶段的联系,可以用2/3的时间进行知识讲解,然后利用1/3的时间进行讨论与问答。这样不仅将大纲知识进行了讲解,确保进度不耽误,又关注了学生关心的问题,对这些问题进行有重点的分析讲解,使学生能够深入了解每章重点,构建自身的知识架构。互动式教学可以充分发挥学生的主观能动性,激发学生的学习欲望,不仅使他们真正成为课堂的主人,也能高效完成教学任务。

3植物生理学教学正确使用互动式教学模型

正确使用互动式教学不是让学生彻底的自主学习,形成“放羊”的现象,也不是传统的“一言堂”,而是通过师生双方平等的交流,得到最大的收益。随着我国现代化教育的不断发展,多媒体已经普及到教学中,多媒体教学手段的使用极大提高了学生学习的积极性,教师在讲解知识时,可以将文字、图像、视频等进行有机结合,以形象、生动的效果吸引学生的注意力,将抽象的知识点变得形象,将枯燥的公式变得有趣,在播放多媒体时,适当融入些问题,吸引学生的眼球,让学生的思维紧跟教师的步伐,以获得最佳的教学效果。比如:在讲解光合磷酸中ATP形成的机理时,传统的板书和图片进行结合,往往让学生感觉苦涩难懂,通过多媒体教学,可以让学生直观了解其中的原理,使原本难懂的知识变得简单易懂,之后再结合双方的讨论,对其中存在的疑虑进行分析,从而使学生深入了解,记忆更加深刻。在使用多媒体教学时,教师应精心设计课件,将有用的资源进行分类整理,然后根据自身的教学理念,设计出适合自身和学生的教学方法,从而增加课堂的趣味性,提高学生的积极性,提高教学质量。

4对互动式教学的评价

互动式教学是一种双向的活动,它更体现学生的主体作用。在教学过程中,教师可以根据课程章节的重难点对学生进行提问,然后根据这些重难点,学生再进行分析,然后提出自己不同的见解,教师可以对这些见解进行分析,对其中存在的问题进行渐进式引导,从而使学生了解正确的观点和知识。这种教学方式是通过师生间平等的“对话”来完成的,这种教学方式不仅可以传授学生知识,发挥学生潜在能力,在交流中,思想碰撞中,也会让教师完善自己的知识建构,使双方受益,发挥课堂最大的价值。

5结语

互动式教学模式是一种师生间、生生间平等的“对话”模式,它从本质上彻底摒弃了传统教学模式的弊端,改变了教师“一言堂”的局面,使课堂上由“以教师为中心”变为“以学生为中心”。这种教学模式在植物生理学教学中的使用,不仅活跃了课堂,还提高了学生的积极性,活跃了学生的思维,使学生能够更好的构建自己的知识体系,发挥自身的潜能。对教师而言,这种教学方法降低了教师的压力,还能及时了解学生的困惑。在交流与思想的碰撞中,教师也可以发现自己的知识盲点,完善自身知识结构,共同提高。

参考文献:

[1]沈晓如,来鸣.互动式教学模式在健康体检导检人员规范化培训中的应用研究[C]//浙江省医学会健康管理学分会成立大会暨首届学术年会论文集,2008.

[2]班凤梅.互动式教学模式在专业英语教学中的应用[C]//经济发展与管理创新———全国经济管理院校工业技术学研究会第十届学术年会论文集,2010.

[3]丁慧.互动式教学模式在英语专业教学中的应用[C]//吉林省第二届中小学教师优秀科研成果评选获奖论文汇编(特等奖),2011.

[4]李振喜.重视病理生理学实验教学,提高实验教学质量[C]//中国病理生理学会中专教育委员会会议论文集,2003.

[5]吴其夏.2020年中国病理生理学发展规划纲要[C]//2020年中国科学和技术发展研究(下),2004.

[6]姜德才.机能实验学———涵盖生理学、药理学、病理生理学的实验教材[C]//第八届全国生理学教学研讨会论文摘要汇编,2005.

[7]殷莲华,钱睿哲,金惠铭.培养适应21世纪需要的医学卫生人才———复旦大学病理生理学的教学改革[C]//2005年中国病理生理学教学研讨会论文集,2005.

[8]吴立玲,王程,徐海,等.PBL教学方法在病理生理学教学中的实践[C]//2005年中国病理生理学教学研讨会论文集,2005.

[9]姜志胜,冯大明,涂玉林,等.病理生理学双语教学的思考[C]//2005年中国病理生理学教学研讨会论文集,2005.

植物学论文第3篇

关键词:药用植物;代谢组学;功能基因组学

代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础。

图1系统生物学研究的四个层次略

目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。

1代谢组学研究的技术步骤

代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。

1.1植物栽培

对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考

表1代谢组学的分类及定义略

虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,FukusakiE[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。

1.2样本制备

为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。MaharjanRP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱质谱联用(GCMS)和毛细管电泳质谱(CEMS)联用都是分析亲水小分子的重要技术。FiehnO等[6]使用GCMS对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。

1.3衍生化处理

对目标代谢产物的衍生化处理取决于所使用的分析设备,GCMS系统只适合对挥发性成分进行分析,高效液相色谱法(HPLC)一般则使用紫外或荧光标记的方法对样本进行衍生处理,BlauK[7]对酯化、酰化、烷基化、硅烷化、硼烷化、环化和离子化等衍生方法进行了详细的说明。然而离子化抑制常使得质谱分析过程中目标代谢产物的离子化效率降低,这主要是由于分离过程中污染物与目标代谢物难以完全分离开所引起的,优化色谱分离时间可有效缓解离子化抑制,然而在实际操作中不可能对上百种代谢产物的分离时间进行优化,利用非放射性同位素稀释法进行相对定量可以很好的解决该问题。HanDK等[8]应用同位素编码的亲和标记(ICAT),根据经诱导分化的微粒蛋白及其同位素标记物的峰面积比,对该蛋白的相对含量进行分析。ZhangR等[9]发现同位素标记技术也可用于代谢组学的研究,但是却存在许多困难。活体的同位素标记方法对于同位素的洗脱是一种非常有潜力的技术,目前关于使用34s的研究已有报道[10]。

图2代谢组学研究技术步骤略

1.4分离和定量

分离是代谢组学研究中的重要步骤,与质谱联用的色谱和电泳分析技术都是使用紫外或电化学检测的方法进行定量,其对代谢组数据的分辨率与定量能力都有一定的影响。TomitaM等[11]总结了各种色谱分离法中经常遇到的技术问题,认为毛细管电泳和气相色谱法由于具有较高的分辨率,已成为代谢组学研究的常规技术手段之一,液相色谱因其适用范围广,应用也相当广泛。

TanakaN等[12]用高效液相色谱对样品进行分离,认为使用硅胶基质填充毛细管整体柱的高效液相色谱系统具有用量少、灵敏性高、低压降高速分离等优势;同时,TolstikovV等[13]也使用硅胶填充的毛细管液相色谱方法对聚戊烯醇类异构体进行了有效分离,获得了很好的分辨率。TanakaN等[14]发现二维毛细管液相色谱法的分辨率比传统的高效液相法高10倍。相对于其他色谱方法而言,超临界流体色谱(SFC)是分离疏水代谢物最具潜力的技术之一,特别适用于分离那些传统HPLC难以分析的疏水聚合物,BambaT等[15]通过SFC对聚戊烯醇进行分析,证明其具有较好的分离能力。针对质谱中存在的共洗脱现象,HalketJM等[16]发明了一种适用于GCMS的反褶积系统,对共洗脱的代谢产物进行分离与识别。AharoniA等[17]使用傅立叶变换离子回旋共振质谱(FTICRMS)对非目标代谢物进行分析,快速扫描植物突变样品,获得了一定量的代谢成分。

与分离一样,定量能力也是代谢组学研究中的重要因素,其取决于各分析系统的线性范围。傅立叶转换核磁共振(FTNMR)、傅立叶红外光谱(FTIR)以及近场红外光谱法(NIR)等技术由于敏感性低,重复性受共洗脱现象影响较小也被用于检测中。近年来,FTNMR技术常被用于植物代谢组的指纹图谱研究[18],但由于NMR分析需要样品量较大,分析结果易受污染,GriffinJL[19]发现将统计模式识别与FTNMR相结合可以对代谢物进行全面分析。除FTNMR之外,FTIR通过对有机成分的结构进行常规光谱测定,也可适用于代谢组学的研究,特别是应用于构建代谢组学的指纹图谱。尽管它不能对代谢物进行全面分析,但对具有特定功能的组分却有很好的定量效果,对从工业及食品原材料中分离的代谢混合物也可以进行全面分析,目前,已有学者将其成功地应用于拟南芥[20]和番茄[21]代谢产物指纹图谱的研究中。

1.5数据转换

为阐明代谢物复杂的线性或非线性关系,需要进行多变量分析,将原始的色谱图数据转换为数字化的矩阵数据,通过对色谱峰鉴定和整合从而进行多变量分析。由于环境等因素的干扰,光谱数据需要通过适当的数据加工方法进行校正,包括:①降低噪声;②校正基线;③提高分辨率;④数据标准化。JonssonP等[22]报道了一种关于GCMS色谱图数据处理的方法,可以对大量代谢产物样品进行有效的识别。

2代谢组学中的数据分析方法

2.1主成分分析法(PCA)

主成分分析法,将实测的多个指标用少数几个潜在的相互独立的主成分指标线性组合来表示,反映原始测量指标的主要信息。使得分析与评价指标变量时能够找出主导因素,切断其他相关因素的干扰,作出更为准确的估量与评价。PCA数据矩阵通常来自于GCMS,LCMS或CEMS,因此将目标代谢产物作为自变量,而相应的代谢产物含量作为因变量,定义与最大特征值方向一致的特征向量为第一主成分,依此类推,PCA便能通过对几个主要成分的分析,从代谢组中识别出有效信息。主成分分析有助于简化分析和多维数据的可视化,但是该方法可能导致一部分有用信息的丢失。

2.2层次聚类分析法(HCA)

层次聚类分析法也常用于代谢组学的研究中,它是将n个样品分类,计算两两之间的距离,构成距离矩阵,合并距离最近的两类为一新类,计算新类与当前各类的距离。再合并、计算,直至只有一类为止。进行层次聚类前首先要计算相似度(similarity),然后使用最短距离法(NearestNeighbor)、最长距离法(FurthestNeighbor)、类间平均链锁法(BetweengroupsLinkage)或类内平均链锁法(WithingroupsLinkage)四种方法计算类与类之间的距离。该方法虽然精确,但计算机数据密集,对大量数据点进行分析时,更适合选用K均值聚类法(KMC)或批次自组织映射图法(BLSOM),而HCA适合将数据转换为主成分后使用。2.3自组织映射图法(SOM)

神经网络中邻近的各个神经元通过侧向交互作用相互竞争,发展成检测不同信号的特殊检测器,这就是自组织特征映射的含义。其基本原理是将多维数据输入为几何学节点,相似的数据模式聚成节点,相隔较近的节点组成相邻的类,从而使多维的数据模式聚成二维节点的自组织映射图。除PCA和HCA外,SOM同样也可应用于包括基因组和转录组等组学研究中[23]。最初SOM计算时间长,依靠数据输入顺序决定聚类结果,近年来SOM逐渐发展成为不受数据录入顺序影响的批次自组织映射图法(BLSOM)。由于BLSOM可以对类进行调整,且有明确的分类标准,优化次序优于其他聚类法,已在基因组学和转录组学数据分析中得到广泛的应用。

2.4其他数据采矿方法

除PCA、HCA和SOM外,很多变量分析方法都可用于植物代谢组学的分析。软独立建模分类法(SIMCA)是利用主成分模型对未知样品进行分类和预测,适合对大量样本进行分析;近邻分类法(KNN)和K平均值聚类分析法(KMN)也可用于样品分类;主成分回归法(PCR)或偏最小二乘回归法(PLS)在某些情况下也可使用。然而到目前为止由于还没有建立一个标准的数据分析方法,代谢组学仍然是一门有待完善的学科。

3代谢组学在药用植物中的实践

植物药材来源于药用植物体,而药用植物体的形态建成是其体内一系列生理、生化代谢活动的结果。植物代谢活动分为初生代谢和次生代谢,初生代谢在植物生命过程中始终都在发生,其通过光合作用、柠檬酸循环等途径,为次生代谢的发生提供能量和一些小分子化合物原料。次生代谢往往发生在植物生命过程中的某一阶段,其主要生物合成途径有莽草酸途径、多酮途径和甲瓦龙酸途径等。植物药材含有的生物碱、胺类、萜类、黄酮类、醌类、皂苷、强心苷等活性物质的绝大多数属于次生代谢产物,因此探讨次生代谢产物在药用植物体内的合成积累机制及其影响因素,对于提高活性物质含量、保证药材质量、稳定临床疗效等具有重要意义。孙视等[24]通过对银杏叶中黄酮类成分积累规律的研究,提出了选择具有一定环境压力的次适宜生态环境解决药用植物栽培中生长和次生产物积累的矛盾。王昆等[25]以人参叶组织为材料,总结了构建人参叶cDNA文库过程中存在的一些关键问题和应采取的对策,为今后关于人参有效成分如人参皂苷的生物合成途径及其调控的基础研究提供技术参考和理论指导。最近,美国加利福尼亚大学伯克利分校的Keasling等[26]采用一系列的转基因调控方法,通过基因工程酵母合成了青蒿素的前体物质——青蒿酸,其产量超过100mg/L,为有效降低抗疟药物的成本提供了机遇。经过长期的研究积累,人们对代谢途径的主干部分(为次生代谢提供底物的初生代谢途径)已经基本了解,例如酚类的莽草酸途径,萜类的异戊二烯二磷酸(IPP)途径等。被子植物中一些相对保守的次生代谢途径也得到了很好的研究,如黄酮类、木质素的生物合成与调控。然而,对次生代谢最丰富最神奇的部分——特定产物合成与积累的过程,还所知甚少[27]。

4展望

近年来,代谢组学正日益成为研究的热点,越来越多的人已加入到代谢组学的研究中。随着代谢组学积累的数据和信息量的增大,其在药用植物学各个领域的应用价值也与日俱增。它将不仅能对单个代谢物进行全方面的分析,更能寻找其代谢过程中的关键基因、通过代谢指纹分析对药用植物进行快速分类、进一步研究药用植物有效成分代谢途径以及环境因子对植物代谢和品质的影响与调控机制。

然而依据传统中医药学和系统生物学的指导思想,目前急待解决的是中药种质资源的代谢组学研究和中药体内作用的代谢组学研究。同时,代谢组学在分析平台技术、方法学手段和应用策略等方面相对于其他组学技术还需要进一步发展和完善,还需要其他学科的配合和介入。相信随着更有力的成分分析设备的使用及代谢组数据库的建立,药用植物代谢组学将对中医药学产生深远的影响。

【参考文献】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孙视,刘晚苟,潘福生,等.生态条件对银杏叶黄酮含量积累的影响[J].植物资源与环境,1998,7(3):1-7.

[25]王昆,王颖,鲍永利,等.人参叶cDNA文库构建中的问题与对策[J].人参研究,2005,17(4):2-4.

植物学论文第4篇

2. 植物材料应附正确的拉丁学名、产地、数量和制备方法。

3. 化学结构图须另页绘制,基团标注无误,在文稿内注明插图位置。常见化合物的结构不必给出。表插人文中适当位置,图表应附相应的英文。

4. 参考文献按出现的先后顺序在文中注明,著录格式见本刊“征稿简则”,其中,英文期刊名的缩写参照CA,但不加点,不可随意缩写,如:Phytochem(正确为Phytochemistry),Tetra(正确为Tetrahedron)。

5. 实验部分必须简明扼要,但要使实验化学家能够据此重复出该实验,可以省略的一些实验细节:(1>常规衍生物(如乙酰化物)的制备方法;(2)化合物分离的细节,如装柱,TLC板,柱子及分馏的大小等;(3)仪器(不包括型号)及化学试剂的商业来源。

6. 新化合物采用IUPAC命名规则给出一个完整的系统名,若有必要可再取一个得体的俗名。文中化合物第一次出现时若注有编号,下文均以编号代表。

7. 每个化合物尽可能标出得率,如:化合物3 (510mg;0.0031%)。结晶须指明所用溶剂,如:白色针晶(MeOH),熔点的表示法,如:mp259—261°C。液体化合物的折射率表示法,如ngl.653„

8. 元素分析表示法,如:已知化合物(Found: C,62.9;H,5.4.Calc,forC13H)3ON4:C,62.9;H,5.3%)。新化合物(Found:C,62.9;H,5.4.C13H13ON4requires:C,62.9;H,5.3%)。

9. 比旋度的表示法:[a]?®测定值° (所用溶剂;c指100ml溶剂里化合物的克数),如[a]2D3+32.2°(EtOHiC0.32-10).

旋光每散谱(ORD)可用一系列不同波长下的[a]值或分子比旋[0]值表示。

园二色散谱(CD)可用分子椭率值如[0]256+21780,[0]307-16113或微分子色散吸收值如Ae253-1.02(MeOH;c0.164)表示。

10. NMR表示为4NMR或13CNMR,须注明仪器的频率,溶剂及内标物。化学位移以<5值(对TMS)表示,注明峰形,如:单峰(s),宽单峰(brs),双峰(d),双二重峰(dd),复峰(m)等。l3CNMR及1HNMR数所须注明所对应的碳和氢的位置,采用IUPAC定位,标为C-l,C-2;H-l,H-2。例如:I3CNMR(21.15Mz,CDC13):<530.l(t,C-5),74.1(d,C-6),121.3(d,C-3),144.2(s,C-4).'HNMR(100MHz,CDC13):<50.681(3H,S,H-18),0.884(6H,d,J=6.0Hz,H-26andH-27),0.901(3H,d,J=5.0Hz,H-21),4.342(1H,q,J6a,7a=4.5Hz,J6a,7^=2.0Hz,H-6),4.211(1H,m,Wl/2=18.0Hz,H-3a)„所用仪器频率及溶剂若在实验部分的总论中已注明,则以下皆可省略。

11. 质谱须注明所用的方法,如(EIMS, CIMS,GC-MS,FABMS等)及离解能,只须给出分子离f-峰及重要的特征碎片峰(相对强度),如:EIMS(70eVm/z(%):386[M+](36),368[M-H20]+(100),275[M-111]+(35)等。髙分辩质谱(HRMS)若有必要可多给一些信息。

12. 紫外光谱表示法,如UV/CGxHnm(lge):203(4.17)。

13. 红外光谱表示法,如IR<aB丨cnT1: 1740。官能团的指定放在圆括号内,如:1740(>C=0)„若要标明吸收带的强度,则采用以下缩写符号:w(弱),m(中等),v(可变),s(强),vs(很强)。

14. 有机化合物和无机化合物及有关的缩写符号须规范化(参考CA),如氘代溶剂CDC13, DMSO-d5,D20,pyridine-d5等。常见化学试剂在文中均以化学符号表示,如:MeOH,EtOH,n-BuOH,PrOH,iso-PrOH,PhOH(苯酚),petrol(石油醚),CHC13,CC14,C6C6,Et20,Me2CO,HOAc,EtOAc,THF,Ac20.NaOMe,CH2N2,HC02H(甲酸),TCA(三氣乙酸),TFA(三氟乙酸),NaOAc,NaOH,HC1,H,S04,CO,,H, B03.nh3,N2等。

15. 制备薄层析须注明(1)薄层厚度;⑵样品的量;(3)确定带的方法;⑷从吸附剂上洗脱下化合物所用的溶剂。特殊TLC的吸附剂须注明,如:AgN03-硅胶(1:9)。

16. 气相色谱(GC)须注明检测器(FID,EC等),载气及流速,操作温度,柱子情况等。

植物学论文第5篇

【关键词】泡桐属;化学成分;生物活性

玄参科泡桐属Paulownia植物,全属共有7种,分别是白花泡桐[P.fortunei(Seem.)Hemsl.],毛泡桐[P.tomentosa(Thunb.)Steud.],兰考泡桐(P.elongataS.Y.Hu),椒叶泡桐(P.catalpifoliaGongTong),台湾泡桐(P.kawakamiiIto),川泡桐(P.fargesiiFranch.)和南方泡桐(P.australisGongTong),光泡桐[P.tomentosavar.tsinlingensis(Pai)GongTong]是毛泡桐的变种。除东北北部、内蒙古、新疆北部、等地区外全国均有分布,栽培或野生。白花泡桐在越南、老挝也有分布,有些种类已在世界许多国家引种栽培。作为一种优质木材,它不仅在工农业方面有广泛用途,同时它还是一种常用的中草药,其花、叶、皮、根、果古时就有其药用记载。如《本草纲目》记述:“桐叶……主恶蚀疮着阴,皮主五痔,杀三虫。花主傅猪疮,消肿生发[1]。”《药性论》也言:“治五淋,沐发去头风,生发滋润。”近年来医学研究发现其主要作用有:抗菌消炎,止咳利尿,降压止血,同时还具有杀虫作用。

1化学成分

泡桐属植物的化学成分研究始于20世纪30年代初。日本学者最先对泡桐属植物的化学成分进行了研究,1931年MascoKazi等从泡桐叶的树皮和树叶中分离得到糖苷类化合物[2,3]。1959年,KazutoruYoneichi研究了桐木中的木脂素成分,分离得到了丁香苷。随着科学技术的发展,各种色谱分离方法和现代波谱技术应用于天然产物的研究,从泡桐属植物中不断发现新化合物。该属植物中所含化学成分类型主要有环烯醚萜苷、苯丙素、木脂素苷、黄酮、倍半萜、三萜等。其中许多化合物被证明具有一定的生物活性。

1.1苯丙素类化合物苯丙素类化合物在泡桐属植物中分布较为广泛。主要有:(1)木脂素(四氢呋喃骈四氢呋喃类):细辛素(d-Asarinin)[4],芝麻素(d-Sesamin)[5],泡桐素(Paulownin)[6],异泡桐素(Isopaulownin)、(+)-Piperitol[7]等。(2)苯丙素酚类:Verbascoside[8],Isoverbascoside[9]。

1.2环烯醚萜类富含环烯醚萜类成分是泡桐属植物的一大特征,在该属植物中多以成苷的形式出现,广泛分布于桐木、桐皮、桐叶中,花中还未见文献报道。泡桐属中的环烯醚萜成分具有九碳骨架(即C-4去甲基)的环戊烷型、环戊烯型和7,8环氧戊烷型,显示了其在植物分类学上的意义。其取代基位置比较固定,一般1位羟基与1分子葡萄糖成苷,8位为甲基或羟甲基。另外,Soern等从成年毛泡桐的叶部获得两个5,6位为双键的环烯醚萜苷,同时,他还发现成年和幼年的毛泡桐中环烯醚萜苷成分有所不同[10~14]。

1.3倍半萜类李志刚等[15]从毛泡桐的花中分到7个落叶酸型的倍半萜,为首次从该属植物中分到倍半萜类化合物,可能与该类激素促进开花,抑制种子发芽有关,其他部分未发现。

1.4甘油酯类杜欣等[16]从毛泡桐的花中还分到了甘油酯类的化合物及其苷。

1.5其他成分从该属植物中还分离出黄酮类、二氢黄酮类、三萜(主要为熊果酸及其苷[17])、生物碱、多酚、单糖、鞣酸、脂肪酸等多种成分。另外,栗原滕三郎和宋永芳等[18]对泡桐花的精油成分作了色谱、质谱分析,研究了其中的蛋白质、氨基酸、微量元素等营养成分,利用GC/MS技术鉴定出许多长链及芳香族化合物。

1.6植物激素王文芝等[19]对河南兰考泡桐的根、茎、叶中的植物激素进行了研究,利用HPLC技术分离鉴定出了激动素、反式玉米素、激动素核酸等8种激素。

2生物活性

2.1抗菌作用芝麻素对结核杆菌有抑制作用[20],而泡桐花及其果实的注射液(醇提取后用醋酸铅沉淀去杂质制成),体外实验时对金黄色葡萄球菌及伤寒杆菌、痢疾杆菌、大肠杆菌、绿脓杆菌、布氏杆菌、革兰菌、酵母菌等均有一定的抑制作用[4]。从泡桐属植物中分到的紫葳新苷Ⅰ对金黄色葡萄球菌和乳链球菌均有抑制作用,最小浓度为150μg/ml,并认为其角甲基是抗菌必要基团[21]。魏希颖等将泡桐花的黄酮提取物作了体外抑菌实验,发现其对金黄色葡萄球菌作用最强,而对黑曲霉、啤酒酵母、产黄青霉无明显的抑制作用[22]。

2.2治疗气管炎泡桐果及花治疗慢性气管炎有一定疗效,临床治疗1341例,有效率为81%,其中临床控制率7%,显效25%[23]。

2.3消炎作用泡桐花可用于治疗炎症感染,临床报道用其治疗16种疾病计244例,均有一定疗效,其中对上感、支气管肺炎、急性扁桃体炎、菌痢、急性肠炎、急性结膜炎的疗效较好,治疗中未发现不良反应和副作用[4]。实验中通过观察泡桐花浸膏对哮喘豚鼠肺病理组织学的影响发现泡桐花浸膏能明显延长豚鼠诱喘潜伏期,优于地塞米松(P<0.001);对肺组织炎性细胞浸润有明显的抑制作用。能减轻炎症反应对哮喘豚鼠肺组织结构的破坏[24]。李寅超等通过实验发现泡桐果总黄酮及挥发油可通过抑制支气管肺泡灌洗液(BALF)中的血嗜酸粒细胞(EOS)聚集而具有一定的抗哮喘气道变应性炎症的作用[25]。

2.4止血作用泡桐属植物中所含丁香苷有明显止血作用。本品注射液用于手术70例,良效(明显止血)30例,占42.9%,有效(出血减少)26例,占37.1%,无效14例[26]。

2.5毒性研究小鼠口服泡桐果乙醇提取物半数致死量为21.4g生药/kg。大鼠口服2g/(kg·d),共21天,一般情况及体重均无异常,内脏病理检查未见中毒性病理形态改变。家兔急性、亚急性毒理实验中,泡桐果煎剂对心、肝、肾、脾、胃均无毒性病理改变。家兔灌服泡桐花浸膏或静脉注射,一般情况及食欲、体重、白细胞等均无明显变化,成人口服上述浸膏或肌肉注射,自觉症状、体温、脉搏及白细胞数等均无明显改变,但有轻度血压下降[4]。已有报道苯丙素苷具有抗菌、抗病毒、抗肿瘤、清除自由基、延缓骨骼肌疲劳、DNA碱基修复、抗凝血、抗血小板凝聚等多种生理活性。从泡桐属植物的树皮和茎部分离得到一个新的呋喃醌酮(methyl-5-hydroxy-dinaphtho[1,2-2′,3′]furan-7,12-dione-6-carboxylate),对hela癌细胞有抑制作用,对polio病毒的brunhildeⅠ型EC50为0.1μg/ml对leonⅢ型EC50为0.1μg/ml[27]。另外,咖啡酸的糖酯类化合物被认为与该植物的颜色改变有关[28]。

2.6杀虫作用泡桐素、芝麻素可增强杀虫剂除虫菊酯的杀虫作用,可有效杀灭蚊蝇及其幼体[29]。

2.7其他作用泡桐属植物还具有止咳、平喘、祛痰、治手足癣与烧伤、消肿、生发等功效[4]。

从以上可知,泡桐属植物化学成分疗效显着且具多样化,但对该属植物的成分研究多集中于毛泡桐种,其他种涉及较少,而对部位的研究则多为桐叶,皮、根,茎次之,花研究的最少。对生物活性的研究则不够深入,其有效部位及有效成分有待进一步确定。

【参考文献】

1中国科学院.中国植物志.北京:科学出版社,1979,67(2):28.

2MasaoKazi,TokitiSimabayasi.AglucosidefromPaulownia.Japan,1931,93;735;27.

3KoitiIwadare.Lignin.Ⅱ.LiginofPaulowniaimperialis.JChemSocJapan,1941,62:186-189.

4江苏新医学院编.中药大词典.上海:上海科学技术出版社,1977.

5KijjoaA,KitirattrakarnT,AnantachokeC.PreliminarystudyofchemicalconstituentsofPaulowniaTaiwaniana.KasetsartJ,1991,25(4):430-433.

6KotaroTakagawa.ConstituentsofmedicalplantsⅣstructureofpaulownin,acomponentofwoodofPaulowniatomentosa.YakugakuZasshi,1963,83:1101-1105.

7Hiroji,MayumiO,YutakaS,etal.(+)-PiperitolfromPaulowniatomentosa.PlantaMedica,1987,53(5):504.

8SchillingG,HugelM,MayerW.VerbascosideandisoverbascosidefromPaulowniatomentosaSteud.Z.,Naturforsch,B:AnorgChemOrg.Chem,1982,37B(12):1633-1635.

9SticherI,LahloubMF.PhenolicglycosidesofPaulowniatomentosabark.PlantaMedica,1987,46(3):145-148.

10DamtoftSoren.Biosynthesesofcatalpol.Phytochemistry,1994,35(5):1187-1189.

11HegnauerR,KooimanP.Thetaxonomicsignificanceofiridoidsoftubifloraesensuwettstein.PlantaMedica,1978,33(1):1-33.

12AdrianiC,BoniniC,IavaroneC,etal.Isolationandcharacterizationofpaulownioside,anewhighlyoxygenatediridoidglucosidefromPaulowniatomentosa.JNatProd,1981,44(6):739-744.

13SorenD,SorenRJ.Tomentosideand7-hydroxytomentoside,twoiridoidglucosidesfromPaulowniatomentosa.Phytochemistry,1993,34(6):1636-1638.

14SoerenD.Biosynthesisofcatalpol.Phytochemistry,1994,35(5):1187-1189.

15李志刚.毛泡桐花化学成分.兰州大学硕士学位论文.2001.

16杜欣.毛泡桐花的化学成分研究.兰州大学硕士学位论文,2003.

17YoshihisaT,SadaoK,KotaroT,etal.ConstituentsofmedicalplantsⅢConstituentsofleavesofPaulowniatomentosaandRhododendronkaempferi.KauazwaDaigakuYakugakubuKeukguNempo,1962,12:7-14.

18宋永芳,罗嘉梁,倪善庆,等.泡桐花的化学成分研究.林产化学与工业,1990,10(4):269.

19王文芝.反向高效液相色谱分离泡桐中的植物激素.分析化学,1984,12(6):531.

20国家医药管理局中草药情报中心.植物药有效成分分离手册.北京:人民卫生出版社,1980.

21WhitePJ.SeparationofK+-andCl--selectiveionchannelsfromryerootsonacontinuoussucrosedensitygradient.JExpBot,1995,46(285):361-376.

22魏希颖,何悦,蒋立锋,等.泡桐花体外抑菌作用及黄酮含量的测定.天然产物研究与开发,2006,18:401-404.

23河南医学院,等.泡桐果及花治疗慢性气管炎的临床疗效和实验研究.河南医学院学报,1975,1:26-28.

24张永辉,刘宗花,杜红丽,等.中药泡桐花浸膏对哮喘豚鼠肺组织作用的病理学研究.新乡医学院学报,2002,19(6):473-475.

25李寅超,赵宜红,李寅丽,等.泡桐花总黄酮抗BALB/c小鼠哮喘气道炎症的实验研究.中原医刊,2006,33(19):16-17.

26谢培山,杨赞熹.救必应化学成分的研究—止血成分救必应乙素的分离、鉴定.药学学报,1980,15(5):3-7.

27KangKH,HuhHK,BakK.AnantiviralfuranoquininefromPaulowniatomentosaSteud.Phytother,1999,13(7):624-646.

植物学论文第6篇

1.1传统的实验教学

传统的药用植物学实验内容多为验证性实验,在实验教学中采取的教学方法一般是带教老师介绍实验目的、实验材料、实验内容和实验方法,然后由学生根据实验材料,按照实验内容、实验方法的描述验证学过的理论知识。虽然通过教师的讲解,学生对实验内容和方法己经有了较详细的了解,并在实验过程中对学生实验操作也有较详尽而规范的要求和不断的督导,但是学生因为缺少实验学习的能动性,在实验过程中大多敷衍了事、照本宣科,不去分析实验的机理,不去探讨实验中的问题,使实验教学的质量在教学活动中大打折扣。

1.2传统实验教学方法改进为了配合药用植物学的教学改革,对药用学实验课程的教学内容和方法要进行一些必要改革。在实验内容方面,可以把实验内容分为四部分,即基本实验技术;基础的验证性实验、综合性实验、探索性实验;在实验教学方法方面:对于不同的实验内容采取不同的教学方法,目的是让学生能积极主动的通过实验课的学习获取知识[2,3]。

1.2.1基本实验技术基本实验技术是指一些基本的实验技能,如显微镜的使用方法、临时装片的制作、生物绘图技术、显微化学方法以及实验室常用药品、试剂、染液等的配制,玻璃器皿的洗涤方法等等,这些基础性的实验技术,要求每一位学生都能熟练掌握,并在期末的实验考核中能有所反映。实验教学方法就采用传统的教师先讲授,然后学生进行验证的教学方法。

1.2.2基础的验证性实验以巩固课堂所学的理论知识为目的,通过药用植物学中的经典实验和观察性实验,使学生掌握基本的实验方法和培养学生的观察能力,如植物细胞的基本形态与结构观察;植物组织的主要类型及结构观察;植物营养器官和生殖器官的结构观察等实验。这些实验按传统的教学方法虽然有利于学生基础知识的巩固,但这种单一的教学模式不能调动学生进行积极的思维,实验课显得枯燥,没有生机和活力。

如果我们尝试把“验证性”实验转变为“探索性”的实验,就会有截然不同的教学效果。如在实验教学方法上,采取让学生在课前预习实验,上课时教师通过提问检查学生预习情况并对实验要点和实验注意事项简要提示,留出较多时间让学生自己动手观察,然后通过相互讨论来解决实验中出现的问题,最后由教师做总结。对有些实验的材料,除了教师准备的实验材料外,鼓励学生自己准备实验材料,如细胞、植物营养器官、生殖器官的观察、分类学上的实验都可以通过鼓励学生自己准备实验材料,提高学生学习积极性。同时在实验过程中,穿插徒手切片法、染色法、生物绘图法等基本实验技能的培养。

1.2.3综合性实验主要针对的是植物分类学的实验,以基本实验技术和基础的验证性实验的技能为基础,变实验室单一观察的方法为实验室与野外观察相结合的方法,把传统分类学实验设计为以比较解剖和野外资源调查为主的综合实验。比如,先通过学习让学生直观的认识不同类群的植物,总结各类植物的特征,然后带学生到野外进行对比和扩展实验,巩固理论知识。如对裸子植物、被子植物常见重要类群的特征和分布特点;校园常见物种的鉴定,检索表的编制;某一地区的药用植物资源的调查;珍惜濒危植物的调查等均可设计为综合实验。

通过综合性的实验,使学生既了解植物物种的多样性、植物资源的丰富性,又增强学生保护植被,保护生态环境的决心。

1.2.4探索性实验通过基本技能实验,基础实验和综合性实验的训练,学生已经具备了一定的植物学基础知识、操作和动手能力,可以根据学生的实际能力和实验室的具体情况确定几个研究方向,让学生自己查资料,自行设计实验方案,经教师检查修改后,利用野外实习和课外假日时间来完成实验的题目。通过探索性实验可以培养学生发现问题、分析问题、解决问题的能力,培养学生创造力和科研能力,为学生完成毕业论文和将来的自我发展打下坚实的基础。

2重视野外实习,培养学生的观察能力[4~6]

2.1对生态环境的观察

任何生物的生存都必须依托于一定的环境,药用植物也不例外。野外实习首先要指导学生认识各种生态环境。指出各类生态环境的特点,尤其指出重点考查的药用植物的主要生态环境。

2.2对单株植物的观察在观察其形态后,要注重从植物的分类学特征上进行观察,观察植物的根、茎、叶、花、果实等器官。对于一些当地特产的药用植物要重点观察药用部分器官的形态特征。对于细部的观察可以在采集后整理标本时进行。

2.3培养学生的采集标本能力

2.3.1对采集标本的选择

药用植物的采集要特别注意其标本的典型性和完整性。所谓典型性是指所采标本要具有明显的分类特征,在同种植物中有较强的代表性。所谓完整性,是指整株标本的根、茎、叶、花、果俱全,尤其要采带花的,因为花是鉴定种类的主要依据。对于地下部分有突出特征的药用植物,如百合科、薯蓣科等,应注意采集这此植物的鳞茎、根茎等,它们也是鉴定物种的重要依据。遇到雌雄异株的植物,应分别采集雌、雄株。草木植物的茎生叶和基生叶不同时要注意采集基生叶,如茵陈、荠菜等。寄生植物采集时要把寄生全部或部分采下,并注明关系。

2.3.2采集的注意事项采集标本要注重质量,尽量减少野外采集的数量,对于植物的产地、生活环境、性状、花的颜色、采集日期等都要做详细记录,这对标本的鉴定和研究有很大帮助。一份没有记录的标本是没有科学价值的。

2.4培养学生的标本制作能力

2.4.1保证压制标本的质量

要指导学生做好药用植物标本,最初压制时,必须使标本舒展,叶片应有正面和反面两种叶子,为今后制作药用植物的腊叶标本做好准备。

2.4.2开展标本展评

在实习阶段,应组织学生随时进行采集制作标本的讲评话动,指导学生科学采集标本。野外实习结束后,可以进行以学生、小组或班级为单位的标本展评话动,调动学习的积极性。

2.4.3留存优秀标本把学生野外实习作为教学科研的一部分。教师应有针对性地采集、制作一批高质量药用植物标本,也可以选择学生制作精良的标本,充实学校的标本室和教学科研素材。

3建立自由开放型实验室,促进学生个性特长的发展

药用植物学的主要培教学目标是讲授药用植物学基础知识和基本技能等。它是一门实践性很强的学科,不通过反复实践是很难掌握的。实验教学和野外实习是在规定的时间内,在有限的课堂教授和实践时间内达不到掌握知识的目的。为此,根据培养实用型人才的目标,我们进行实验改革,提出了自由开放型实验室的教学理念,在药学专业药用植物学的实验教学中进行了初步尝试。

自由开放型实验室的含义:其一是指一个单元的实验内容在一段时间内向学生自由开放,学生可以利用课余时间进入实验室学习、实践,给学生提供学习时间和空间的自由;其二是给学生提供学习的自由,使学生学习的积极性、主动性和创造性得到充分发挥,学生可以自由选择实验项目、实验方法、实验材料,实施开放式探究,促使学生个性特长的发展。

自由开放型实验主要安排在课余时间进行,一般一个教学单元的内容向学生开放两个星期,指定一位教师或实验员在实验室值班。这段时间主要是让学生进行自由探究学习,教师一般不给予辅导,让学生自己去摸索、设计、操作、得出结果。但实验准备所需用的仪器、药材标本、试剂要有充分的余地,比教学目标要求所规定的内容尽可能多,让学生自由选择,为学生特长发展提供自由的空间[7,8]。

总之,从当今教学改革的发展趋势来看,学生实践能力的培养越来越受到重视。药用植物学试验教学、野外实习和自由开放型实验室的实施,有利于本门学科教学质量的提高和促进学生各种能力的发展,特别是学生实际操作动手能力和创新能力的培养,对学生学习后续课程乃至他们今后的发展均有促进作用。只有教会求学者会学,求学者能学,才能开拓,才能创新。

【参考文献】

[1]孙敏,邓洪平,王明书,等.植物学实验教学改革及其对学生创新能力的培养[J].西南师范大学学报(自然科学版),2003,28(5):812.

[2]孙敏,王彦涵,王明书,等.高师植物学实验教学中的科学索质教育探讨实验教学与创新能力[J].南京:南京大学出版社,2000:30.

[3]郁达,卢祥云,吴金男,等.加强综合性和设计性实验,培养学生创新能力[J].实验室研究与探索,2002,21(1):15.

[4]黄宝康,张朝晖.药用植物学野外教学的几点体会[J].药学教育,2001,17(1):37.

[5]王丽红,刘娟,郑淑琴.药用植物学野外实习综述[J].黑龙江医药科学,2004,27(5):69.

[6]叶创兴,廖家遗,廖文波,等.从严要求,提高生物学野外实习的质量,打好生物学专业学生宽广的基础[J].中山大学学报论丛,2001,21(5):24.

植物学论文第7篇

1.植物保护学开放式实践教学平台的构建

开放式实践教学将教师的研究性实践教学与学生的研究性实践学习有机结合,鼓励学生选择与课程内容相关的课题进行研究,激发学生自主学习和探究的热情,培养学生在实践过程中获取新知识、激发创造力和创业能力,同时培养学生严谨的科学作风、相互合作的团队精神,提高学生自身的综合素质和在社会中的竞争力。

(1)以植物生产实验中心为依托,构建开放式实践教学平台

植物生产实验教学中心实验室包括植物生产专业植物基础实验室、作物学教学实验室、园艺学教学实验室和植物保护教学实验室4个本科教学实验室,分别被批准为省级和部级教学示范中心。2008~本中心以各学科重点实验窒如作物生理生态与遗传育种教育部省部共建重点实验室、国家水稻工程实验室、省超级稻工程技术研究中心以及省果蔬保鲜及无损检测重点实验室等教学科研平台为依托,搭建大学生创新创业平台,设计选取了实验项目50余项,从实验内容、实验时间、组织管理等各环节实行完全开放模式。学生借助本中心实验平台,根据个人兴趣自选任选公布的开放实验项目,或自行设计实验项目内容,接受创新意识培养和创新能力训练,全方位开展研究性科学试验,拓展了植物生产实验教学中心实验室开放的内涵和外延。

(2)构建植物保护学开放式实践基地

其一,校内实践基地的构建。农学院以班级实验田为特色,加强实践基地的建设。农学院在校科学试验站专门划出10余亩试验田作为“责任田”,以班级为单位,下设三四个生产小组,每个实验小组根据课程需要,结合兴趣爱好,自主决定种植品种。从开始选种、整地、播种、田间肥水管理、病虫害防治到最后收割,全部由生产小组完成。为了及时解决学生在实践过程中碰到的问题,学院给每个小组配备指导教师进行技术指导,从人、财、物上给予保障,指导小组还制定了相关的奖惩制度,调动大家的积极性和主动性。在生产实验中遇到了许多课本上没有具体阐述的细节问题,通过解决这些问题,不仅提高了实践的兴趣,而且增强了今后在学习和科研中解决问题的信心和能力。此外,果树标本园、果树种质资源圃、蔬菜标本园、蔬菜种质资源圃和设施农业区等校内实践基地在开放式实践基地构建中发挥重要作用。目前,植保系拥有“昆虫展览馆”“植物医院”和“病虫标本馆”等实训基地。此外,植保系在农业大学科技园建立了病虫情报观测站,结合病虫教学实习和毕业论文实验,定期组织学生开展实践研究。

其二,校外实践基地的构建。植保系根据学校有关要求和实践基地需要,聘请出入境检验检疫局、省植保植检总站、省农业科学研究院、正邦集团等单位植保专家定期为学生授课,使学生能把课堂理论知识与生产实践内容紧密联系起来。此外,植保系特别重视与出入境检验检疫局、省植保站、正邦农化公司等建立双方合作培养人才的机制,签订合作培养计划,为植保系学生实习和就业提供条件。

(3)加强信息化建设,构建网上实验教学平台

随着网络技术的发展和校园网的完善,通过应用信息技术与现代教育技术构建网上实验教学平台,能对实验过程涉及到的仪器设备和实验操作流程等有感性认识,实现以学生自主型实验学习目标为重点,构建基于网络条件下的实验教学信息资源库。包括:本课程基本情况和教学模式介绍区;操作流程观摩模拟学习区;作物病虫害识别与控制观摩仿真区;师生在线互动区;其四,在线考核区。

利用信息技术教学环境,实现模拟展示多种化学保护实验情景及化学实验问题解答,让学生在计算机上完成有毒、有害的“实验”,并组织他们对实验提出问题进行讨论分析,形成自己的研究结论,锻炼他们的思维能力和对知识的准确理解,培养他们从事科学探究的严谨性。甚至可以模拟时下最流行的网络游戏模式,如QQ农场,将植物保护实践环节以游戏的方式嵌入虚拟的网络空间,激发学生的学习兴趣。

2.构建植物保护学开放式实践教学内容

开放式实践教学的课程内容要充分反映相关产业和领域的新发展、新要求。减小植物保护学传统实践教学验证性实验,增设综合性、设计性和创新性实验,完善后的实践教学内容包括:基础性实践教学、综合性与设计性实践教学、科学研究性实践教学等,形成从低到高、从基础到前沿、从接授知识到培养综合能力,逐级提高的实践教学新体系。

(1)植物保护学基础性实验

以传统植物保护学基础性实验为指导,结合植物病虫害的发生与危害现状,自行编撰基础性实验教材,包括植物病害症状观察、植物病原物的观察与临时玻片制作、植物病原物的分离与培养与接种、昆虫的形态结构观察、昆虫重要目科的鉴定、植物病虫害的田间调查、植物病虫害标本的采集与制作、常用农药剂型的配制与质量鉴定、杀虫(菌)剂室内毒力与内吸作用测定、杀虫剂和杀菌剂田间药效试验等。这些实验具有基础性、启示性和应用性等特点,为学生的主要必修内容,在实践教学中可先行安排,为后续开展综合性与研究性教学实验奠定基础。

(2)植物保护学综合性实验

在设计基础性实验的基础上,构建了完善、实用且可行的综合性教学实验。该阶段提供了南丰蜜桔黑星病拮抗内生细菌的筛选、入侵实蝇的动态监测以及新型农药对昆虫生殖行为影响的研究等20余项综合性教学实验,供学生自行选做;或在教师指导下,根据专业培养目标和学生个人兴趣,自己动手设计实验方案,独立或以团队的形式一起完成实验。以上综合性实验教学内容的开展,可有效提高学生对课堂所学知识的综合与应用能力,培养学生的创新能力和团队合作意识,也为开展科学研究型实验创造良好条件。

(3)植物保护学研究性实验

一方面,从基础性、综合性与设计性实验入手,进一步扩展引申,开展研究性实验,譬如从植物被病原物和害虫为害后的特点入手,研究为害后植物相关生理指标的变化,进一步探索植物抗性与生理指标的关系等;另一方面,围绕生产上重要病虫害的发生,展开研究探索,如近年来赣南脐橙溃疡病和黄龙病等病害发生严重,结合当地防控现状,拟定可行性防治措施,主要以学生毕业论文设计阶段,申请参加指导教师的科研课题或参加大学生训练计划为主。本研究开展的研究性实验包括茉莉酸甲酯诱导水稻抗白叶枯病与防御酶活性的变化、茉莉酸甲酯调控白叶枯病菌胁迫下酚类物质代谢的作用、壳聚糖涂膜对脐橙保鲜效果的研究等10余项,学生可根据个人兴趣爱好,选择自己的研究项目。

3.构建植物保护学开放式实践考核体系

构建与实验教学环节、课程体系的调整与变革相适应的“形成性”课程考核体系,使考核的目的从单纯检验知识的掌握转向更多关注实验能力和创新意识的体验与培育,使考试成为继续学习的课堂。考核方式多样化,主要包括学生实习标本制作、互动式专题讨论和实验报告撰写等,依次占总分值30%、40%和30%,以考核学生运用知识的能力。随机选取鲜活的实物标本,考查学生对生产中重要病虫害的识别与诊断能力;每阶段实践结束后,学生以团队的形式,以多媒体等方式展示实践成果等。在以上过程中,提升学习笔记、实验报告、讨论讲座、实践成果展示等的计分比例,突显实践性教学环节的重要性。

4.构建高素质实践教学师资队伍

构建以经验丰富的教授为带头人,中青年教师为骨干的实践教学队伍,鼓励专任教师到相关产业和领域学习,紧密联系实践生产第一线。近几年来,在植物保护学实践教学过程中,根据班级人数配备2-3名教师,以老带新,加强青年教师实践能力的培养和训练,取得了较好的效果。

二、结语