欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

电力保障论文(合集7篇)

时间:2022-09-18 17:09:58
电力保障论文

电力保障论文第1篇

1.1维护安全,性能优越

继电保护对于维护电力系统信息数据的安全性具有非常重要的作用,同时还可以有效的减少或是避免外界因素对装置所带来的干扰,确保了装置的安全,而且通过继电保护装置,可以在电力系统运行过程中实现有效的防范监测,确保了电力系统运行的稳定性和可靠性。

1.2投资较少,安装便捷

继电保护装置由于自身重量较小,装置小巧,易于安装,所以在电力行业施工过程中,有效的减少了所占据的空间,为施工的顺利进行创造了良好的条件。同时在安装过程中也有效的提高了操作的效率,减少了成本的投入,只需按照电气图纸安装人员即可完成继电装置的安装工作。

1.3检测故障及防范

电力系统上安装继电保护装置后,一旦系统中有设备或是元器件发生故障,则继电保护装置则会及时发出预警,提醒值班人员进行处理。同时在发生故障的第一时间内,继电保护装置还会向断路器发出跳闸等指令,对故障线路进行及时切断,有效的保障了正常线路的运行,减少了故障所给设备及元器件所还来的损失,继电保护装置在电力系统运行过程中具有较高的故障防范能力,具有不可替代性。

2继电保护故障处理的原则

2.1处理继电保护故障时要保持正确、冷静的态度。

电力系统的发电机等设备在运行过程中,继电保护装置的连接片要根据运行方式的变化而进行相应的投、退处理。在进行这两项处理时要求工作人员同时进行,而且要经过细致的辨别清楚后,才能够操作。而且对于跳闸回路的连接片来说,只有相应的开关在运行的过程中才能够投入。

2.2能够根据信号状态准确判断故障发生点。

在继电保护现场中出现的光子牌信号、事件记录以及故障录波器所采集到的图形、继电保护装置的灯光信号或者其他信号等都是对继电保护的故障进行处理的基础依据。所以,在对继电保护的故障进行处理之前,要对这些信号进行分析,判断出信号处的故障和真伪。

2.3对人为故障要给以紧急处理。

在继电保护装置对故障进行处理时,人为故障的处理具有较大的难度,也是一个非常关键的问题。在继电保护装置处理故障过程中,根据其所提供的故障信息无法找到导致故障发生的原因时,或者当断路器动作后没有发生预警信号时,这时无法判断出导致故障的原因是人为因素还是设备、装置自身的故障,所以给处理带来了较大的难度。再加之继电保护现场中,部分运行人员由于专业技能水平不高,工作缺乏责任心,对故障不重视,不能及时对存在的故障进行处理,操作过程中也极易发生误碰等情况,从而导致人为故障增加。这就需要对现场人为故障进行如实反映,这样对于能够为工作人员进行故障处理提供必要的依据。而且对于现场这类人为故障的原因及处理方式也要进行如实的记录,确保类似故障不再发生。

3差动保护二次回路检修方法

3.1负荷检修

一旦负荷过大时,则会导致电流互感器处于超负荷运行状态下,这样会导致电流互感器的使用寿命降低,所以需要利用差动保护来对负荷进行严格控制,根据实际的需要,来适当的对电流互感器的励磁电流进行降低,通过对电缆的电阻及选择弱电控制用电流互感器等来降低二次负荷,同时还要对互感器的实际运行状态进行定期检查。

3.2质量检修

目前电流互感器的种类较多,市场上的产品较为多样化,这样就需要在实际购买过程中需要选择与系统保护方式相适应的电流互感器。在差动保护过程中,当继电保护装置的测电流过大时,则需要选择带小气隙的电流互感器,由于该种类的电流互感器的铁芯剩磁小,有利于差动保护装置性能的提升,而且其励磁电流也较小,能够有效的实现对失衡电流的有效控制。

3.3电流检修

在差动保护实施过程中,电流互感器作为差动保护效果的重要元件,所以需要对互感器的使用型号进行科学的选择,通常D级电流互感器最为适合进行差动保护。当电流经过差动保护装置的稳态短路电流时,一旦电流达到最大值,则需要有效的控制好差动保护回路的二次负荷,使其误差在规定的范围内。

3.4保护检修

电力保障论文第2篇

关键词:变流器;短路电流;计算方法;继电保护

中图分类号:TM744 文献标志码:A 文章编号:0253-987X(2015)04-0024-08

通过对电力元件的控制,实现电能生产环节的自动化、智能化是电网运行者不变的追求。要想实现这一目标,必须对电力元件进行调节和控制。随着现代科学技术的不断发展和提高,为实现电力元件的可控性,电力电子器件在发电、输电、配电以及用电环节广泛使用。电力电子器件在电力系统中的应用主要有以下几个方面。

(1)新能源与分布式发电。随着化石能源的枯竭,新能源发电的重要性越来越突出,当前大规模并网运行的主要是风力发电和光伏发电,这两者均无法直接并网,需要经过变流器变换后方可馈入交流电网。

(2)直流以及交直流混合输电。无论高压直流输电、柔性直流输电还是交直流混合输电,都是通过变流器实现电能的交直与直交变换。研究变流器的动态特性,有助于提高输电线路保护的可靠性。

(3)柔流输电。输电网的柔流输电与配电网的柔流输电都大量采用电力电子器件,研究电力电子器件的调节特性,可以更好地实现对电力系统的调节与控制。

新能源发电以及直流输电、交直流混合输电是目前电力系统发展的重要方向,风机、光伏电源、换流器等作为一类含变流器的电力元件是其重要的组成部分,而变流器是该类电力元件中应用最广泛的电力电子设备。变流器是一类由电力电子器件及其控制驱动电路组成的电力设备,可以实现对电能的变换、调节和控制,在智能电网中具有重要应用。智能电网要更好地发展,必须对含变流器电力元件的特性进行研究分析。

继电保护是电网安全运行的第一道防线,对快速切除故障、迅速恢复供电、提高供电连续性、减少设备损坏等具有重要作用。故障特征分析是继电保护研究的前提和基础,其关键问题在于研究电源输出短路电流的暂态变化特性。传统电力系统是由同步机和输电线路构成的线性网络,电源的响应特性较明确,短路电流易于计算分析。随着新能源发电以及直流输电技术的发展,电力电子器件大量应用于电力系统,电网不再只含单一类型的电源。含变流器电力元件作为一种新的电源形式被引人系统,受变流器特性影响,其输出特性明显不同于同步机,使得系统表现出许多异于传统电网的故障特征。为了更好地分析含变流器系统的故障特征,给今后新型电力系统继电保护整定计算提供依据,有必要研究含变流器电力元件故障过程中输出短路电流的理论分析与计算方法。

由于频带宽度的限制,互感器对一次系统中的高次谐波具有一定的滤波作用,电网的二次侧一般只能获取系统电流的低频分量。虽然目前已经提出许多基于暂态量的保护新原理,但当前现场广泛应用的继电保护原理仍旧主要关注系统故障过程中工频电气量的变化规律。因此,从理论上分析含变流器电力元件输出的工频响应特性,得到其短路电流中工频分量在故障暂态的变化规律,对电力系统继电保护分析及整定计算意义重大。

电力保障论文第3篇

关键词:继电保护,维护,故障处理

 

0 引言

随着我国电力工业和电力系统的快速发展,对发电厂、变电站的安全、经济运行要求越来越高。另外,因电子、计算机和通信系统的快速发展,也使得发电厂、变电站监控系统的自动化水平不断提高。微机继电保护和安全自动装置也成为了电网安全稳定运行和可靠供电的重要保障。

1 继电保护发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。免费论文,维护。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

2继电保护的维护管理

2.1 微机保护装置要采取电磁干扰防护措施

变电站改造中,电磁型保护更换成微机型保护时,必须采取防电磁干扰的技术措施,即严格执行微机保护装置的安装条件,安装带有屏蔽层的电缆,而且两端的屏蔽层必须接地。防止由于线路较长,一端接地时,另一端会由于电磁干扰产生电压、电流,造成微机保护的拒动或误动。为减少保护装置故障和错误出现的几率,微机保护装置必须优化设计、合理制造工艺以及元、器件的高质量。同时还要采用屏蔽和隔离等技术来保证装置的可靠性,从而提高抗干扰的能力。

2.2 微机保护装置的接地要严格按规定执行

微机保护装置内部是电子电路,容易受到强电场、强磁场的十扰,外壳的接地屏蔽有利于改善微机保护装置的运行环境;微机保护提高可靠性,应以抑制干扰源、阻塞耦合通道、提高敏感回路抗干扰能力入手,并运用自动检测技术及容错设计来保证微机保护装置的可靠性;容错即容忍错误,即使出现局部错误也不会导致保护装置的误动或拒动。免费论文,维护。容错设计则是利用冗余的设备在线运行,以保证保护装置的不间断运行。采用容错技术设计是为了换取常规设计所不能得到的高可靠性,确保微机保护装置的可靠运行。

2.3 防误措施

微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。

2.4 继电保护装置的日常维护

(1)当班运行人员定时对继电保护装里进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注惫与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次。

(5)每月对微机保护的打印机进行检查并打印。免费论文,维护。

3 继电保护故障处理要点

继电保护工作是一项技术性很强的工作。如果只想学会对设备的调试并不难,只要经过一段时间的培训,按照调试大纲依次进行就可实现。而一旦出现异常现象,想处理它并非易事。它要求工作人员有扎实的理论基础,更要有解决处理故障的有效方法。一个合适的方法,在工作中能帮你少走弯路,提高效率。可以说继电保护技术性很大程度上体现在故障处理的能力上。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面是常用的几种故障处理方法。

3.1 直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10KV开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

3.2 掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。免费论文,维护。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。

如一条110 kV旁路L FP-941A微机保护运行指示灯忽闪忽灭,并不打印任何故障报告,很难判断为何故障。正好附近有备用间隔,取各插件相应对换,查出故障在CPU插件上。用此项方法,要特别注意插件内的跳线、程序及定值芯片是否一样,确认无误方可掉换,并根据情况模拟传动。

3.3 逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。免费论文,维护。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。免费论文,维护。

4 结语

继电保护是电力系统安全正常运行的重要保障,目前已经得到了广泛的应用,随着科学技术的不断进步,继电保护技术日益呈现出向微机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋势。

参考文献:

[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.

[2]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006,(4):80-83.

电力保障论文第4篇

关键词:继电保护,维护,故障处理

 

0 引言

随着我国电力工业和电力系统的快速发展,对发电厂、变电站的安全、经济运行要求越来越高。另外,因电子、计算机和通信系统的快速发展,也使得发电厂、变电站监控系统的自动化水平不断提高。微机继电保护和安全自动装置也成为了电网安全稳定运行和可靠供电的重要保障。

1 继电保护发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。免费论文,维护。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

2继电保护的维护管理

2.1 微机保护装置要采取电磁干扰防护措施

变电站改造中,电磁型保护更换成微机型保护时,必须采取防电磁干扰的技术措施,即严格执行微机保护装置的安装条件,安装带有屏蔽层的电缆,而且两端的屏蔽层必须接地。防止由于线路较长,一端接地时,另一端会由于电磁干扰产生电压、电流,造成微机保护的拒动或误动。为减少保护装置故障和错误出现的几率,微机保护装置必须优化设计、合理制造工艺以及元、器件的高质量。同时还要采用屏蔽和隔离等技术来保证装置的可靠性,从而提高抗干扰的能力。

2.2 微机保护装置的接地要严格按规定执行

微机保护装置内部是电子电路,容易受到强电场、强磁场的十扰,外壳的接地屏蔽有利于改善微机保护装置的运行环境;微机保护提高可靠性,应以抑制干扰源、阻塞耦合通道、提高敏感回路抗干扰能力入手,并运用自动检测技术及容错设计来保证微机保护装置的可靠性;容错即容忍错误,即使出现局部错误也不会导致保护装置的误动或拒动。免费论文,维护。容错设计则是利用冗余的设备在线运行,以保证保护装置的不间断运行。采用容错技术设计是为了换取常规设计所不能得到的高可靠性,确保微机保护装置的可靠运行。

2.3 防误措施

微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。

2.4 继电保护装置的日常维护

(1)当班运行人员定时对继电保护装里进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注惫与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次。

(5)每月对微机保护的打印机进行检查并打印。免费论文,维护。

3 继电保护故障处理要点

继电保护工作是一项技术性很强的工作。如果只想学会对设备的调试并不难,只要经过一段时间的培训,按照调试大纲依次进行就可实现。而一旦出现异常现象,想处理它并非易事。它要求工作人员有扎实的理论基础,更要有解决处理故障的有效方法。一个合适的方法,在工作中能帮你少走弯路,提高效率。可以说继电保护技术性很大程度上体现在故障处理的能力上。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面是常用的几种故障处理方法。

3.1 直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10KV开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

3.2 掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。免费论文,维护。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。

如一条110 kV旁路L FP-941A微机保护运行指示灯忽闪忽灭,并不打印任何故障报告,很难判断为何故障。正好附近有备用间隔,取各插件相应对换,查出故障在CPU插件上。用此项方法,要特别注意插件内的跳线、程序及定值芯片是否一样,确认无误方可掉换,并根据情况模拟传动。

3.3 逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。免费论文,维护。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。免费论文,维护。

4 结语

继电保护是电力系统安全正常运行的重要保障,目前已经得到了广泛的应用,随着科学技术的不断进步,继电保护技术日益呈现出向微机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋势。

参考文献:

[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.

[2]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006,(4):80-83.

电力保障论文第5篇

关键词电力;电气设备;故障诊断;研究

中图分类号:TM77 文献标识码:A 文章编号:1671-7597(2014)12-0145-01

随着我国社会经济的不断发展和进步,我国的电力、电气设备故障诊断工作也越来越被人们所重视。电力、电气设备故障诊断工作主要包括元件故障诊断和系统故障两个方向,其中的系统故障诊断主要是指通过分析电网中的各级报警装置所提供的信息以及断路器的状态变位信息以及电流电压等电气量的测量的特征,然后根据断路器、保护器的动作逻辑和运行人员的工作经验来推断可能出现的故障类型和故障元件的过程。

1国内外关于电力、电气设备故障诊断现状

1.1 以专家系统为依据的诊断方法

专家系统是利用一种由专家推理方法支撑的一种计算机模型来解决电力、电气设备故障的诊断方法,目前这种方法已经在国内外广泛的使用。目前专家系统诊断电力、电气设备故障这种方式的效率较高。有故障诊断所用推理方法以及诊断知识的表示方法不同,专家系统主要分为以下两类。

1)结合正、反推理的系统。结合正、反推理的系统是结合了正反两向的一种混合推理方法,可以根据继电保护和路由器与被保护设备之间的逻辑关系来建立电力、电气设备故障的推理规则,同时这种推理系统也结合了反向的推理方法,可以有效的缩短故障出现的范围,通过故障假设与动作继电保护的符合程度来计算推理所得结果的可信程度。

2)以启发式规则为基础的推理系统。以启发式规则为基础的推力系统主要是把断路器和保护的动作逻辑和运行人员对于故障诊断所有的经验使用规则来表示出来,最终形成一个有诊断专家系统的知识库,在电力、电气设备中存在故障时,就采用正向推理的方式将故障出现后所观察到的情况与知识库中所设置的规则相结合,进而推断出电力、电气设备故障的一个结论。目前使用的专家系统主要是采用启发式规则为基础的推理系统[1]。

以专家系统为基础的诊断方法的主要特点就是可以系统的、细致的将保护以及断路器的动作逻辑和运行人员多年的工作经验采用规则的方法表示出来,同时建立一个知识库,知识库在使用的过程中可以根据需要进行适当的添加和删减,这样可以保证知识库在使用的过程中可以满足电力、电气设备故障诊断工作的需求。但是目前以专家为基础的这种诊断方法还存在一些缺点和不足:①建立知识库的过程较为困难,无法验证知识库的完备性;②无法分析知识库中信息的正确性;③对于大型的专家系统知识库的维护工作困难;④复杂的故障诊断过程中专家系统推理速度慢。正是专家系统中存在的这些问题,使得专家系统无法满足大规模电力、电气设备的故障诊断工作,目前专家系统主要使用在离线的故障分析上。

1.2 以人工神经网络为基础的诊断方法

这种诊断方法与专家系统相比较,其诊断方法具有学习能力强、容错能力的特点。目前使用在电力、电气设备故障诊断工作中的人工神经网络有:基于BP算法的基于径向基函数的神经网络以及前向神经网络等。但是因为人工神经网络训练完备的样本集获取也是较为困难,所以目前人工神经网络为基础的诊断方法还主要是应用在中小型的电力、电气设备的故障诊断工作中。而人工神经网络为基础的诊断方法目前存在的问题是:①性能与受到样本完备性很大的影响,且大型的电力、电气设备样本获取极度困难;②不擅长处理启发性的知识;③和符号数据库的数据交互能力差;④缺乏解释自己行为以及最终输出结果的能力。上述的这些人工神经网络为基础的这种诊断方法的缺点使得其无法被应用与大型的电力、电气设备故障诊断工作中去。

1.3 以粗糙集理论为基础的诊断方法

1982年波兰的Z.Pawlak教授提出了一种处理不确定性以及不完整性问题的新型的数学工具―粗糙集理论。粗糙集理论的主要思想在于保证分类能力不变的前提下,通过简化知识,导出分类规则或者是问题的决策[2]。这种诊断方法不需要提供处理数据之外的任何有关的信息,同时还能够有效的处理和分析出不一致、不精确以及不完整的各种不够完备的数据,以及从中挖掘出隐含的知识,揭露出其中存在的一些潜在的规则。鉴于粗糙集理论相比其余两种诊断方法的优越性,目前已经有越来越多的研究人员开始使用粗糙集理论进行电力、电气设备的故障诊断。

2电力、电气设备故障诊断发展趋势

随着科学技术的不断发展和进步,从对电力、电气设备故障诊断的方法研究与理论以及应用的广度、深度中可以看出,电力、电气设备故障诊断工作还停留在探索阶段,目前还没有成功的成型实用系统。由于过去的设施以及技术上的问题,导致信息的资源有限。从相关文献中来看电力、电气设备的故障诊断大都依靠变电站内或者是调度端,分别利用调度SCADA系统的站内综合百动化系统以及实时信息收集来的信息来实现。而对着计算机、系统以及网络建设技术的发展和故障录波专用网络的建设使用,后来又出现了以故障录波为基础的故障诊断系统。例如:录波器信息、保护装置信息、监控装置信息以及雷电定位信息等,进行了数据的采集、数据的传输、存储,最后进行了数据的处理,这些都为电网故障的处理工作提供了大量的信息支持。同时这些信息的提供也为电力、电气设备故障诊断方法的使用提供了基础,也拓宽了电力、电气设备故障诊断方法的研究方向。因此在进行电力、电气设备故障诊断工作时,要重视信息的采集与整理的工作,同时也包括数据仓库的构建以及故障综合信息的提取等。

电力、电气设备的故障诊断是保证电力、电气设备正常运行的基础工作,虽然国内外对电力、电气设备故障诊断做了大量的研究,同时也提出了很多的诊断手段,但是实际系统中存在的问题还是没有得到很好的解决。本文论述了电力、电气设备故障的智能诊断的研究方法,也提出了这些诊断方法需要改进的地方,指明了电力、电气设备故障诊断的发展趋势。希望可以为电力、电气设备故障诊断工作的研究提供一定的依据。

参考文献

[1]杜一,张沛超,郁惟墉.基于事例和规则棍合推理的变电站故障诊断系统[J].电网技术,2004,28(l).

电力保障论文第6篇

关键词:故障诊断;故障识别;小波分析;熵理论

作者简介:杨朝兵(1982-),男,河北邢台人,国网河北省电力公司邢台供电分公司,工程师;付学文(1983-),男,河北邢台人,国网河北省电力公司邢台供电分公司。(河北 邢台 054001)

中图分类号:TM7 文献标识码:A 文章编号:1007-0079(2014)06-0238-03

近年来,随着社会对电力需求的日益增加,电网呈现出高电压、远距离、大容量的发展趋势,高压输电线路特别是超高压输电线路在电力网中所占的地位也越来越重要。超高压输电线路既担负着传送大功率的任务,还作为联合电力系统运行的联络线使用,其运行可靠性影响着整个电力系统的供电可靠性。[1-2]由于高压输电线路工作环境恶劣,故障时极难查找,在电力系统中又是发生故障最多的地方,随着现代大电网的结构和运行方式复杂多变,故障类型越来越复杂,对保护的要求也越来越高。因此,准确而迅速地排除故障不仅满足继电保护的速动性,缩短系统恢复供电时间,而且还能提高电力系统的稳定性,降低运行成本。而准确区分故障相是高压输电线路保护的重要前提,所以探索新的故障选相原理和方法、提高继电保护的性能是超高输电线路故障检测中的一个重要课题。

一、背景和意义

当输电线路发生故障的初始瞬间,通常都有一个既包含直流分量又包含高频暂态分量的暂态故障信号,其所包含的信息是继电保护动作的依据,所以需要先对采样的故障信号进行处理以便获得有意义的特征量。但高压输电线路的距离比较长,输电线路之间存在互感耦合,只有在故障发生的初始瞬间故障信号不容易识别等特点;而电力系统本身又是一个容易受环境干扰的动态系统,因此要准确地对故障进行检测与分类,并防止故障进一步发生是非常困难的。所以借助现代各种数字信号处理工具和方法准确地对故障信息的特征进行提取与分类就显得十分必要,特别是近年来基于暂态量原理的保护更需要快速、可靠的故障类型识别元件。[2-4]

随着小波分析技术的引入,电力系统暂态信号特征量提取及分类技术得到了迅速发展。但是,由于小波变换结果中包含了大量的分解信息和数据,通常的检测方法都少不了对特定工况的假设或对特征提取的人工干预。而分类方法中,由于小波分解信息量比较大,使得一些智能判别系统(如模糊理论与神经网络等)变得比较庞大。因此对于小波分析还需研究合适的信息提取方法,给新型继电保护原理、系统故障判断与预测提供有效的依据。这些信息提取方法中最有效的是提供一个或系列描述系统的普适量,用这些普适量来检测、分类电力系统的故障。[4]

信息熵是对系统不确定性程度的一种描述,若把一个信源当做物质系统,可能输出的消息越多,信源的随机性越大,越紊乱,熵值也越大,所以信息熵可以被看做是系统紊乱程度的量度。[5-7]小波分析和熵理论相结合,在生物医学领域和机械故障诊断领域已经得了很好的应用。[8-9]它结合了小波变换多分辨分析的特点和信息熵对信息具有较强的表征能力的优点,成功地分析了各种突变信号。所以,在暂态信号特征提取方面表现出独特优点的小波熵,在电力系统故障检测与分析中具有很好的应用前景。本文给出了小波包能量熵的定义及其应用领域,旨在探讨小波包能量熵在输电线路故障检测中应用的可能性,对于小波包能量熵在电力系统暂态信号分析中的应用研究具有重要意义。

二、故障类型识别的研究现状

传统的故障选相元件主要采用突变量与稳态量相结合,以工频量为基础。在多数情况下这些选相元件对于简单故障能正确地选择故障相,但其选相速度不够快,且易受系统的运行方式及故障接地电阻的影响,结果往往不理想。因此,新型快速的故障选相方法成为众多学者研究的方向。[10]

新型的故障选相方法主要有:基于行波故障的选相元件和基于故障暂态量的选相元件。基于行波的选相元件[11-14]主要是利用故障时信号的行波波头所包含的信息进行故障选相。虽然基于行波的选相元件能在故障发生的第一时间捕获故障信息,与传统的选相方法相比具有灵敏度高、识别率好等优点,且对波头进行处理的方法也有很多。但基于行波的故障选相方法存在一些缺点,如初始行波受初始角、反射波、故障电弧等因素的影响。基于行波的选相元件由于计算量大,对处理器的运算能力要求也比较高,费用相对也就比较高,在嵌入式系统中难以做到实时性,这使得基于行波的故障选相方法具有很大局限性。

基于故障暂态量的选相[15-16]是利用输电线路发生故障时所产生的故障暂态信号实现故障选相,故障暂态信号与线路参数、故障情况等有关,不受系统运行方式、过渡电阻、电流互感器饱和、系统振荡、长线分布电容等的影响。近年来又随着硬件条件的实现和小波变换等信号处理工具的发展,使得大量、准确、实时地获取故障时产生的暂态电压和电流信号,并使对其作进一步的处理成为现实。这些丰富的故障暂态信号蕴涵了大量的故障特征信息,其频率成分贯穿于整个频谱中,如果能充分利用这些信息就能快速地对故障相作出判断。因此,基于故障暂态量的选相方法具有很大的发展前景,使得越来越多的学者从事电力系统暂态信号的研究。

目前用于电力系统故障类型识别的方法有很多,如小波分析、神经网络和模糊理论等智能算法、数学形态学等。

1.小波分析

文献[15]利用小波对暂态电流的模分量进行分析,并通过比较各相暂态电流的能量和各模分量的大小进行故障相判断。文献[16]利用小波提取故障暂态电流信号的特征,通过计算提取的信号特征沿尺度分布的权重得到暂态电流信号的小波熵权,进而构造故障选相判据。文献[17]对线路两端模量方向行波之差进行小波变换,通过比较其幅值大小来判别故障类型,但对两相接地故障的具体类型区分不明确。文献[12-13,18]通过比较(零、线)模量电流行波的幅值之间的大小关系从不同角度进行故障选相。但是,由于零模量的严重衰减导致保护装置不能正确反映故障点处零模与线模的大小关系,当输电线路远端发生单相接地或两相接地故障时可能出现误判。文献[19]将小波奇异熵应用于识别高压输电线路的故障相,提出了一种基于暂态电压的选相方案。通过取各相的小波奇异熵相对比值反映故障相和非故障相间的相对差异,构成高压输电线路故障选相的依据。

2.神经网络和模糊理论等智能算法

文献[20-21]利用提升小波变换对故障信号进行处理,并作为神经网络的输入构造了一种新型的小波神经网络模型来识别输电线路故障。文献[22-23]通过小波包将故障电压和故障电流分解后分别获得分解后的故障暂态量的能量值和熵值,并将能量值与熵值分别对神经网络进行训练,对输电线路进行故障分类和定位。文献[24]在暂态信号多尺度的基础上定义了小波能量熵,并与模糊逻辑系统相结合形成故障类型识别方法。

3.数学形态学

文献[25]在分析EHV线路发生故障后电流模分量的基础上,利用数学形态学梯度提取暂态信号波头能量,构成故障选相方案。文献[26]提出了一种基于数学形态谱和神经网络相结合的识别接地短路故障类型的新方案。该方法对三相电流进行相模变换后,用数学形态学颗粒对电流各模量分析并提取模电流的形态谱,将各形态谱作为神经网络的输入,进而判断出接地故障的类型。

三、小波分析在电力系统暂态处理中的应用

20世纪80年代初Morlet等人第一次提出了小波变换的概念。它可以根据处理信号频率的高低自行调整窗口的大小,确保捕捉到有用的信息,可以对信号奇异点作多尺度分析。小波变换有以下特点:在高频范围内时间分辨率高;在低频范围内频率分辨率高;既适合于分析平稳信号及非平稳信号;有快速算法——Matlab算法;利用离散小波变换可以将信号分解到各个尺度(频带)上。

由于小波变换有以上优点,所以它在各个应用领域中都得到了广泛应用,比如生物医学工程、机械故障诊断、非线性动力系统、量子物理、模式识别、参数辨识、CT成像、数据压缩等。近几年小波变换技术在分析和处理电力系统暂态信号方面也显示了其优越性和良好的应用前景,主要应用领域包括电力信号去噪[6,27-28]、数据压缩、电力设备故障诊断、电能质量信号分析、故障定位等。文献[28]指出db6小波对电压暂升、暂降、闪变信号均能获得较好的去噪效果。文献[29]提出了一种小波包去噪算法,用以消除暂态扰动检测中噪声的影响,为在噪声环境中检测和定位暂态扰动提供了依据。电能质量信号分析方面:文献[31]将小波包用于对谐波的检测,并与IEC推荐的谐波检测方法进行了对比,仿真结果证明了基于小波包的检测方法对非整次谐波与间小波的检测要优于IEC推荐的方法。电力设备诊断方面:文献[30]通过对基于Shannon熵的最优小波包基的快速搜索算法的探讨,提出了基于最优小波包基小波包方法。

在输电线路故障定位方面:

(1)故障选线。文献[31]提出了基于单相电流行波的故障选线原理。文献[32]利用小波变换与电弧故障产生的突变相结合而进行故障选相。文献[33]提出用小波变换提取电流故障分量的暂态能量,并且以三相间暂态能量的大小及其相对关系来识别故障类型和判断故障相的新方案。文献[34]利用小波变换提取故障后电流行波的线、零模量,根据提取出的电流行波波前1/8周期的能量进行故障选相。文献[35]通过小波变换利用故障电流行波幅值及极性逻辑关系相结合的故障类型识别方法,并设计出了故障类型识别的实用算法。该方法可以提高以往行波故障选相方案中利用零、线模量之间幅值关系判别单相接地或两相接地故障时的可靠性。总的来说,目前基于暂态信号,利用小波变换工具进行选相的方法得到了很好的研究,但在实际应用时仍需进行相应的分析论证。文献[36]对电力系统暂态信号提取小波能量熵及能量熵权,并将其分别对神经网络进行训练,提出了小波能量熵与神经网络相结合的故障分类方法。

(2)故障测距。电力系统要求及时、准确地得知线路故障位置,以便用最短的时间清楚故障,尽快恢复供电,现已有可用于解决实际问题的各种故障测距方法。小波变换可以很好地表征输电线路故障行波信号的突变点,故很多文献提出用小波变换来进行行波故障测距。[37-41]主体思路是:运用小波变换对故障信号进行分解,并用小波变换模极大值表示故障信息,揭示了行波信号奇异、瞬时信号与小波变换模极大值的关系,运用小波对奇异点检测的原理,确定两次行波波头达到检测点的时间间隔及故障发生的时刻,推算出故障位置,以达到故障定位的目的。

四、熵理论的应用现状

1948年Shannon把通信过程中信源讯号的平均信息量定义成为熵,这就是信息熵。小波熵是小波变换和信息熵的结合,它具有小波变换和信息熵的特点,对动态系统参数的微小变化具有独特的敏感性,反映了暂态信号在时-频域空间的能量分布情况,随着小波熵理论的不断发展与完善,它被应用机械、生物、电力系统等众多领域。

生物领域中,文献[42]运用小波熵分析心跳信号,并识别其变化规律;文献[43-44]将小波熵应用于EEG等非平稳信号的分析,体现出小波熵区别非平稳信号复杂度的特点,又有其反映微状态信号快速变化的优点。在机械故障诊断领域里,文献[45]将小波包与特征熵结合提出了一种诊断高压断路器机械故障的新方法,并给出了切实可行的诊断步骤和分析。

这几年小波熵理论在电力系统中的应用才刚刚开始,所以这方面的文献较少。文献[46]提出采用离散小波变换和神经网络相结合的方法,对输电线路故障进行分类和定位,虽然训练好的神经网络可以准确地对故障进行分类和定位,但存在计算量大、运算费用高的缺点。文献[47]提出一种基于小波熵权和支持向量机相结合的故障识别方法。该方法识别速度快,有较好的通用和实用价值。文献[48]虽采用了小波分析理论与信息熵理论,但并没有对小波熵进行一个完整的、系统的定义。文献[49]综合阐述了小波熵在电力系统中各方面应用的可行性,表明了其在电力系统中具有良好的发展空间。文献[5-6,50-51]探讨了小波熵在电力系统故障检测征提取的应用机理,通过仿真一些输电线路故障检测对文中给出的几种小波熵进行了验证,仿真分析结果表明小波熵测度在暂态信号检测与分类中有望得到较好的发展。小波熵作为近年来才发展的一种新理论在电力系统故障检测中的应用具有广阔前景。所以,在电力系统暂态信号的检测和分类中运用小波熵理论具有重要的研究意义。

五、结束语

电力系统故障类型识别的研究为暂态信号检测分析开辟了新的道路,为暂态信号特征提取理论奠定了新的基础,进行了不同变换空间内信号特征和复杂程度的定量描述方法,建立了适合于电力系统暂态信号分析的小波熵理论。

参考文献:

[1]王志华.超高压线路故障行波定位及高压变频技术研究[D].武汉:华中科技大学,2004.

[2]魏智娟,李春明,付学文.输电线路故障诊断方法综述[J].电气技术,2012,(2):1-5.

[3]何正友,王晓茹,钱清泉.利用小波分析实现EHV 输电线路单端量暂态保护的研究[J].中国电机工程学报,2001,21(10):10-14.

[4]何正友.小波分析在电力系统暂态信号处理中的应用[M].北京:中国电力出版社,2011.

[5]何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21.

[6]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):23-43.

[7]李志民,李卫星,李勃龙.熵原理及其在电力系统可靠性中的应用[J].电力系统及其自动化学报,200l,13(3):37-39.

[8]任震,张征平,黄雯莹,等.基于最优小波包基的电动机故障信号的消噪与检测[J].中国电机工程学报,2002,22(8):53-57.

[9]Rosson OA,B1anco S,Ybrdanova Jetal.Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J].J Neumsci Meth,2001,105(1):65-75.

[10]李东敏.基于多小波包和人工神经网络的电力系统故障类型识别研究[D].成都:西南交通大学,2008.

[11]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.

[12]Joe- AirJiang,Ching- ShanChen,Chi-WenLiu.A new Proteetion seheme for fault detection, direetion diserimination,elassifieation and location in transmission lines[J].IEEE Trans on Power Delivery,2003,18(l):34-42.

[13]危韧勇,刘春芳.基于小波理论的超高压线路故障定位与选相方法[J].中国电机工程学报,2000,20(5):85-88.

[14]段建东,张保会,周艺.利用电流行波进行超高压输电线路故障类型识别的研究[J].中国电机工程学报,2005,25(7):58-63.

[15]Duan Jiandong,Zhang Baohui,Ha Hengxu.A novel preach to faulted-Phase selection using current traveling waves and wavelet analysis[C].IEEE Power Conference 2002,Kunming,China,2002,(4):1146-1150.

[16]何正友,陈小勤,罗国敏,等.基于暂态电流小波熵权的输电线路故障选相方法[J].电力系统自动化,2006,30(22):39-44.

[17]Li Zewen,Yao Jiangang,Zeng Xiangjun,Deng Feng.Power grid fault traveling wave network protection scheme[C].Electrical Power and Energy Systems,2011:875-879.

[18]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究第二部分仿真实验研究[J].电力系统自动化,1999,23(1):20-22.

[19]何正友,符玲,麦瑞坤,等.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-35.

[20]P.S.Bhowmik a,P.Purkait b,K.Bhattacharya.A novel wavelet transform aided neural network based transmission line fault analysis method[J].Electrical Power and Energy Systems,2009,(31):213-219.

[21]王忠民,乐全明,杨光亮,等.基于提升小波和神经网络的超高压电网故障类型识别[J].华东电力,2006,34(2):30-33.

[22]张举,王兴国,李志雷.小波包能量熵神经网络在电力系统故障诊断中的应用[J].电网技术,2006,30(5):72-76.

[23]Sami Ekici,Selcuk Yildirim,Mustafa Poyraz.Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition[J].Expert Systems with Applications, 2008, (34):2937-2944.

[24]张斌,何正友,钱清泉.基于小波能量熵和模糊逻辑的故障选相元件[J].电网技术,2006,30(15):30-35.

[25]卜春霞,张义含,姜自强,等.超高压线路暂态保护选相研究[J].电力系统保护与控制,2010,38(16):30-34.

[26]谢添卉,刘明光,杨罡.基于数学形态谱和人工神经网络的高压输电线接地故障类型识别方法[J].电气自动化,2009,31(3):62-65.

[27]杨霁,李剑,王有元,等.变压器局部放电监测中的小波去噪方法[J].重庆大学学报,2004,27(10):67-70.

[28]薛蕙,杨仁刚.基于小波包除噪的电能质量扰动检测方法[J].中国电机工程学报,2004,24(3):85-90.

[29]Barros J,Diego R I.Application of the wavelet-packet transform to the estimation of harmonic qroups in current and voltage waveforms[J].IEEE Transactions on information Theory,2006,21(1):533-535.

[30]任震,张征平,黄雯莹,等.基于最优小波包基的电动机故障信号的消噪与检测[J].中国电机工程学报,2002,22(8):53-57.

[31]Omar A.S.Youssef.A wavelet-based technique for discrimination between faults and magnetizing inrush currents in transformers [J].IEEE Transactions On power Delivery,2003,18(1):170-176.

[32]Youssef Q A S.New Algorithm to Phase Selection Based on Wavelet Transforms[J].Power Engineering Review,IEEE,2002,22(6):60-61.

[33]段建东,张保会,周艺.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.

[34]麦瑞坤,何正友,符玲,等.基于电流行波能量和小波变换的输电线路故障选相研究[J].电网技术,2007,31(3):38-43.

[35]G.Sudha,T.Basavaraju.A comparison between different approaches for fault classification in transmission lines[J].International Conference on Information and Communication Technology in Electrical Sciences,2007,20(22):398-403.

[36]Zhengyou He,Shibin Gao,Xiaoqin Chen.Study of a new method for power system transients classification based on wavelet entropy and neural network.[J].Electrical Power and Energy Systems,2011, 33(3):402-410.

[37]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)——理论与实现技术[J].电力系统自动化,2002,26(6):34-40.

[38]李泽文,姚建刚,曾祥君,等.基于整个电网行波时差的故障定位方法[J].中国电机工程学报,2009,(4):60-64.

[39]谢民.220kV电网行波测距系统组网运行实践探讨[J].电力自动化设备,2010,30(5):136-138,141.

[40]徐伟宗,唐昆明.基于导数法的故障行波法识别改进算法[J].电网技术,2010,34(1):198-202.

[41]郑州,吕艳萍,王杰,等.基于小波变换的双端行波测距新方法[J].电网技术,2010,34(1):203-207.

[42]A.M.PetrocIk,DL S.Reisman,Dr I.Darrd,et al.Wavelet entropy analysis of cyclic exercise protocol on herrate Variability[C].IEEE,2004:91-92.

[43]Quiroga RQ,Rosso OA,Basar E,et al.Wavelet entropy in event—related potential:a new method shows ordering of EEG oscillations[J].Biological Cybernetics,2001,84(4):291-299.

[44]H.A.Al-Nashash,J.S.Paul,N.VThakor.Wavelet entropy method for EEG analysis:Application to obal brain injury[C].Conference on Neural Engineering,IEEE,2003:348-351.

[45]孙来军,胡晓光,纪廷超.改进的小波包-特征熵在高压断路器故障诊断中的应用[J].中国电机工程学报,2007,27(12):103-108.

[46]杨健维,罗国敏,何正友.基于小波熵权和支持向量机的高压输电线路故障分类方法[J].电网技术,2007,31(23):22-26,32.

[47]Ming-Yu Yang,Yu-Kun Yang.A study of transient-based protechion using wavelet energy entropy for power system EHV transmission line [J].Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition,2010:283-288.

[48]Wen Junli,1Yhan Chunli.Arc fault detection based on wavelet packet[C].PID feedings of the Fourth International Conference on Machine Learning and Cybemetics,IEEE,2005:1783-1788.

[49]Zhimin Li,weixing Li,Ruiye Liu.Applications of entropy principles in power systems:A Survey[C].IEEE/PES 1rransmission and Distribution:Asia and Pacific Dalian China,2005:1-4.

电力保障论文第7篇

[关键词]继电保护;模型;可靠性指标

中图分类号:TM73 文献标识码:A 文章编号:1009-914X(2015)44-0065-01

继电保护系统是一个由继电保护装置、测量装置(电压互感器、电流互感器)、断路器及其操作机构及二次回路(由继电器、电器元件和连接不同电器设备的导线及电缆所组成)构成的统一整体。电力系统二次系统,如继电保护、自动装置等是保护一次设备的哨兵,它们能自动、快速、有选择性地将故障元件从电力系统中切除,直接关系到电力系统的安全运行与可靠性。过去人们一直把可靠性分析的重心放在一次系统上,这造成了二次系统可靠性理论研究的空白。近几十年来,一些国家大停电的教训使得建立二次系统可靠性标准越来越迫切。因此,电力系统二次系统可靠性研究的理论意义和实践意义也越来越深远。

1 电网可靠性分析中继电保护模型

1.1 继电保护保护模式分析

电力系统继电保护一般遵循主保护加后备保护的配置模式。不同的电压等级,保护的配置模式也有着很大差别。不同的保护硬件和软件配置模式,使得保护装置切除故障的概率不一样,而且由主保护或后备保护切除故障的概率也不一样。继电保护切除故障的机理均可认为是由主保护或后备保护通过操作断路器来切除故障完成的。当一次元件发生故障时,则可能由主保护或后备保护切除故障,其中包括主保护正确切除和主保护未及时动作后备保护误动切除。如果主保护发生拒动,在被保护元件故障的情况下,主保护不可能再出现误动,因为误动一般出现在被保护元件受到扰动的情况下,则由有后备保护切除故障。

1.2 继电保护运行原理

在配电网可靠性分析中,某一元件发生了金属性接地故障,如果其所配置的保护都完好,则由该区段的主保护动作切除故障,故障被切除后该元件所在的负荷点对其他负荷点没有影响但会使整个系统的供电可用度降低。主保护发生了故障而拒动则由其近后备保护来断开故障元件,和主保护一样切掉的是同一故障区域,对其他负荷点的影响也相同。如果近后备保护也故障,不能正确动作切除故障,必然使停电范围扩大。由于上段线路的保护无故障,其作为本段线路的远后备保护正确切除故障,使停电范围仅保留在本段和上段线路,避免了事故的继续扩大,多重保护的设置使得系统更能稳定可靠运行。

1.3 继电保护对系统运行可靠性响应

保护系统的不同配置直接影响保护系统的可靠性,而保护系统的动作行为将影响电网可靠性评估的准确性,因此,对于由不同保护单元(主保护、后备保护)组成的保护系统,根据各保护单元之间的动作逻辑,计算在一次元件故障情况下各保护单元的正确动作概率。设一次元件的保护配置为一套主保护以及近、远后备保护。当一次元件故障时,如果主后备保护都正常,则首先由主保护正确切除故障,也可能是由于主保护未来得及动作而由近后备保护或远后备保护误动切除故障;如果主保护故障,近后备保护也可能未及时动作而由远后备保护误动切除故障;如果主保护故障而拒动,则近后备保护由备用状态转启用并且正确切除故障;如果主保护和近后备保护都故障,则远后备保护由备用状态转启用并且正确切除故障;如果主保护和近远后备保护都故障,则保护系统完全失效。

2 继电保护装置的可靠性指标

2.1 可靠性指标的引出

继电保护装置即指能反映电力系统中电气元件发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。它的基本任务是自动、迅速、有选择性地将故障元件从电力系统中切除,保证其他无故障部分迅速恢复正常运行;反映电力设备的不正常运行状态,并根据运行维护条件而动作并发出信号或跳闸。继电保护装置的可靠性是指在该装置规定的范围内发生故障时,它不应拒动,而在任何其他不应动作的情况下,它不应误动。对传统继电保护装置可靠性的研究已经有很多,随着微机保护的发展,微机继电保护装置逐渐取代了传统继电保护装置,本文针对微机保护的特点运用马尔科夫理论建立其状态空间模型,准确全面评估微机保护装置的可靠性指标。

2.2 可靠性指标含义

可靠性指标是用数值大小来表示可靠性各个方面性质的量,它既可以从成功的观点出发,也可以从失败的观点出发。通常采用以下可靠性指标:

各项指标分析

2.3 继电保护装置可靠性指标的分析

继电保护装置的运行状态一般有正确工作和不正确工作2种,相应的,继电保护装置运行的可靠性指标也存在正确工作率和不正确工作率2种。过去,继电保护装置运行的正确动作率的定义为保护区内故障正确动作次数/总动作次数)×100%,不正确动作率的定义为保护区内故障拒动作次数+区内、外故障误动作次数+正常运行时的误动作次数)/总动作次数]×100%。这里总动作次数等于正确动作次数和不正确动作次数之和。如果将保护装置在正、反方向区外动作统计在不正确动作次数内,则保护装置在正、反方向区外故障不动作也应认为是一种正确动作而计入正确动作率内,否则将出现不正确结论。

若某一继电保护装置在1年内因为系统未发生内部故障而没有区内故障动作次数,但在正、反方向区外发生的100次故障却有1次误动,按前述正确动作率计算方法,则保护装置的正确动作率为0,不正确动作率为100%。这种结论当然是不能接受的,对保护装置的评价也极不合理。而更加准确的可靠性指标定义为:正确动作率包括区内故障正确动作率、正反方向区外故障正确不动作率、正常运行时的正确不动作率;不正确动作率包括正常运行时的误动率、正反方向区外故障的误动率、拒动率。

3 结语

总之,继电保护系统是防止故障及扰动对电力系统危害的第一道防线,是电力系统必不可少的组成部分,对保证系统安全运行、电能质量、防止事故的发生和故障的扩大都有着极其重要的作用。

参考文献

[1]王树春,双重化继电保护系统可靠性分析的数学模型,继电器,2005,23(18):6~10