欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数学解决问题论文(合集7篇)

时间:2023-02-23 06:28:11
数学解决问题论文

数学解决问题论文第1篇

[关键词]教学教学;问题解决;教学设计

数学课堂教学实质上是基于问题解决的教学,问题解决设计的有效性则是课堂教学设计有效性的真实体现。在数学课堂教学质量观上,长期存在着为解题而解题、为练习而练习、为应用而应用的认识误区;在数学课堂教学实践中,存在着为了一味追求解题而盲目设计更多的问题,为了一味追求知识记忆与机械应用而盲目高难度、高速度解题的诸多现实问题,即重视解题的数量,轻视解题的质量。因此,数学教学有效设计的核心在于基于数学问题解决有效质量的设计。

一、问题解决设计的特征

问题解决过程是一种学生基本技能掌握与学习的创造性活动过程,它贯穿于教学过程的始终。因此,数学教学设计应当是“基于问题解决学习”的教学设计。

在数学教学中,教师应当为学生创造更有利于问题解决的条件,在为学生构建好课堂问题系统的同时,尽量为学生的创造性思维提供良好的问题解决的环境或空间。

(一)问题解决的教学信度——程式性

问题解决的教学信度意指学生对问题解决时序上的稳定性。也即学生在问题解决过程中所产生的信服感和定势性。问题解决的程式性是问题解决教学信度的明显表现。教学中,体现程式性的问题解决,学生能够从中得到思维模式的培养与强化,以此产生记忆的功能固着现象,这样问题解决的教学信度便得以提升。

(二)问题解决的教学效度——有效性

问题解决的教学效度意指问题解决质量上的有效性,它具体体现在问题解决结果的正确性、过程的优化性、方法的独到性、条件的普适性等方面。问题解决的教学效度既包含内在效度,即问题解决自身方法系统正确与否以及教学目标达成与否,也包含外在效度,即问题解决模型化后的应用外延大与否以及教学延伸性程度大与否。前者着眼于问题解决本身的质量,后者着眼于数学教学过程的质量。

(三)问题解决的教学难度——研究性

问题解决的教学难度意指问题解决的障碍性或非常规性。这种教学难度既体现在问题本身的非常规性上,更体现在问题解决教学方法的非常规性上。其中,问题解决教学方法上的非常规性具体体现在问题解决方法的独创性、教学情境或问题空间的开扩性、问题探究的挑战性、问题解决思维的变通性、教学逻辑对学习逻辑的统整性以及“会教”对“会学”的引探性等方面。问题解决教学难度的适宜性决定着问题解决教学的研究性。研究性教学或研究性学习形成的前提则是问题解决教学难度的恰当把握,太难与太易都不可能引发探究或挑战意识,更不可能引发研究意识。

(四)问题解决的教学区分度——策略性

问题解决的教学区分度意指问题解决的教学策略在教学效果、教学效率以及教学效益上的差异性。这种差异性既体现在教师问题解决的教学风格与教学质量上,又体现在学生问题解决的学习风格与学习质量上。前者相关于教师的职业素养或教学经验,当然又与教学个性相关;后者相关于学生的认知背景或问题解决的经验累积,并且又与学习个性相关。因此,问题解决的教学区分度是体现教师的个性教学与学生的个性学习的重要指标,也是教师策略性教学与学生策略性学习的重要表现,更是区分不同教师教学水平与不同学生学习水平的重要因素。

二、问题解决教学设计的类型

问题解决教学设计是“基于学生问题解决学习”的教学设计,教师问题解决的教学始终着眼于学生问题解决的学习,因此,教师以什么方式进行问题解决的教学就决定了学生会以什么方式进行问题解决的学习。一般而论,从学生问题解决学习方式的角度,问题解决教学设计的类型主要有知识接受型设计、规律发现型设计以及课题研究型设计三种。这三种类型无好坏之分,仅仅在于各自任务的侧重点不同、各自所处教学过程中的具体情境有所不同而已。教师的功夫就体现在适时、适地、适人地对其进行合理选用。

(一)知识接受型设计

知识接受型设计的主要意图是按照教师预先构想好的知识传授或知识强化方案引导学生解决问题,学生通过这种构想方案进行问题解决的知识接受学习。这种设计指向“在做中有意义学习”,即在知识的应用中掌握知识的意义,把握知识的应用领域,使知识形成强有力的条件系统,由此形成一个在意义上、态度上、技能上相互联系的经验系统。

知识接受型设计主要适宜于授新过程,尤其适宜于教学过程中迁移性问题、反馈性问题的学习。学生通过这种问题解决的学习既能有意义接受知识的深层内涵,又能有意义接受知识的条件范畴,更能有意义接受知识的方法属性。知识接受型设计的根本目标在于让学生能将问题解决学习中所获得的知识有效迁移到其他问题解决过程中,使其能扩大知识的外在效度。

(二)规律发现型设计

规律发现型设计的主要意图是教师引导学生创造性地自主解决问题,让学生在问题解决过程中产生自主学习的意识,并强化其创新意识。这种设计指向“在做中发现规律,明确学习路线”,即在做中发现问题、凸显认知冲突。又在做中产生灵感、发现经验性结论。这种设计强调问题解决的质量,淡化问题解决的数量;强调问题解决的过程,淡化问题解决的结果;强调学生问题解决的学习,淡化教师问题解决的传授。

规律发现型设计主要适宜于授新前后的过渡和总结强化性学习过程。尤其适宜于教学过程中过渡性问题、强化性问题、变异式问题的学习。学生通过这种问题解决的学习能够活化其思维的创造性与灵敏性,更能激发问题解决的动机和兴趣意识。规律发现型设计的根本目标在于让学生在问题解决学习中获得探究问题解决的具体方法,并能激活元认知的参与意识,强化问题解决过程中的认知体验意识,进而强化其问题解决的成功感或成就感,促成学生“会解题”并“乐解题”。转

(三)课题研究型设计

课题研究型设计的主要意图在于教师指导学生通过从真实生活情境中确定研究课题,让学生在课题设计与课题研究中主动获取知识并应用知识。这种设计指向“在做中研究性学习”,即强调学生通过实践,认识数学的真实性与生动性,真正领悟“数学来自于生活,又必须回归于生活,数学在生活中赋予活性与灵性;数学来自于大众,又必须回归于大众,数学在大众中得以完善和发展”这一精神实质。无论把数学当作一种社会文化,还是当作科学或艺术,我们都需要去研究、去探索。如果把数学当作一种社会文化,那么社会文化就不应当是原理加例题就可以通晓的,它有许许多多的奥秘需要去研究,需要研究者去整合它所涉及的多种学习领域,它能折射出无穷的社会文化气息,因此,要通晓数学文化,我们就必须去研究数学文化,要研究数学文化,就必须去探索有效的数学问题或有关数学的现实课题。如果把数学当作一种科学技术,那么科学的价值就在于探索,在于求真,技术的价值就在于寻求有效,这一切都需要创新,真实问题或现实课题则是创新的土壤,课题研究则是创新的根源。因此。要通晓数学科学或技术,我们就必须去求真、求善,去寻求它的有效性和应用的广泛性。如果把数学当作一种艺术,那么艺术的生命在于创造,在于求美,“数学学习的每一活动过程及其细节都讲究精湛惟妙,讲究个性,讲究感染力,以达炉火纯青之境界”,这就需要去创新。去寻找数学的和谐美、对称美与简洁美等。课题研究则是求美的主渠道,因此,数学学习既是一个求真、求善的过程,更是一个求美的过程,它是一个真善美的结合体,这一结合体的形成与感悟有赖于数学课题的研究性学习,只有通过课题研究性学习,学生数学创新能力才能生成,自主学习意识与合作探究意识才能得以有效强化。

课题研究型设计主要适宜于数学实验课或实践活动课,也适宜于授新后的延伸性教学环节,尤其适宜于教学过程中延伸性问题的学习。学生通过这种问题解决的学习,能够学会搜集资料、整理资料与分析资料的基本技能,也能够由课内的学会延伸到课外的乐学与会学,使课内知识与课外见识能得以有效整合。

三、问题解决教学程式的设计

问题解决是以个体思维为内涵,以目标为指向的认知活动。无论是以机能主义心理学家桑代克为代表的联结说,还是以格式塔心理学家苛勒为代表的顿悟说,对数学问题解决的过程都能起一定的方法指导性作用。

各种学术领域的学者们对问题解决的程式描述各异,但综述起来我们可以抽出共同的成份,即:情境激活程式一方案构想程式—假定施行程式一系统改良程式。这种程式构建的出发点是,把数学问题解决作为一种个体的高级思维活动。既体现了问题解决中认知与元认知的统一,也体现了认知与非认知的统一。

(一)情境激活程式——初见者的新奇

情境激活程式属于问题解决出发点的形成阶段,这一阶段的教学任务在于创设好问题解决的情境,从而引发全体学生主动参与审题。数学问题并非“读而知之”,而应“思而知之”,所以审题并非读题而了之,教师应以读题为手段,以引发学生回顾题中每一句话所牵涉的知识含量为目的,让题中所有知识含量都能通过审题凸显出来,以此激活学生思维的主动参与,有效调用学生的认知经验系统。

情境激活程式中教师应引发学生产生对问题认知的兴趣感,引发学生对问题解决的探究动机。为此,教师自身所扮演的角色是至关重要的。在此程式中,教师对问题的认知应具有初见者的新奇感,因为只有教师的新奇感才有可能引发学生的新奇感,又只有师生新奇感的产生才有可能促成问题解决初始阶段情境激活机制的生成。

(二)方案构想程式——未知者的茫然

方案构想程式属于问题解决的试探阶段,这一阶段的教学任务在于搜索知识经验系统中的相关信息,引发全体学生主动探求方法,以此形成所有学生解题方法都能涵盖的方法系统,再由学生择优选取其中的最佳方案。这一阶段中,教师应尊重每一位学生的发言权,让每一位学生都能分享各自的方法与思维资源。

方案构想程式中,教师应引发学生主动探究,使他们积极发表各自的观点,但教师必须以学生“点到为止”来点评和监控每一位学生的发言,争取为每一位发言者提供“点到为止”的发言机会。这一阶段中,师生应当是处于一种平等的对话关系,尤其是教师始终应当充当方案陌生者的角色,以未知者的茫然来创设“愤悱”的自主探究空间。

(三)假定施行程式——发现者的惊奇

假定施行程式属于问题解决中学生自主择优方案的实施或证明阶段,这一阶段的教学任务在于师生共做或让择优选取者口头报告其问题解决的思维过程。这一阶段中,教师应尊重学生的自主与合作交流权力,暂不能抛出自己的预设方案。只有如此,才能真正体现课堂教学中学生主体性的实效发挥。

假定施行程式中,教师应引发学生对自己每一闪光点的认同,相信自己会发展,相信自己已发展,从问题解决中感受到自己对问题解决的点滴成功处。以此强化学生数学课堂教学中的成功体验。这一阶段中,教师应引发学生以发现者的身份去点评问题解决的施行过程,既发现其施行过程的有效度,也发现其施行结果的正确度。为此,教师自身应以发现者的惊奇感去引发学生对问题解决探究与发现后惊奇感的产生。

(四)系统改良程式——胜利者的满足

数学解决问题论文第2篇

一、对「问题的理解

对「问题的理解与关于甚么是「问题解决的分析直接相关,讨论和研究「问题解决的一个主要困难就在于对甚么是真正的「问题缺少明晰的一致意见。

当代美国著名数学家哈尔莫斯(P.R.Halmos)曾说:「问题是数学的心脏。美籍匈牙利著名数学教育家波利亚(G.Polya)在《数学的发现》一书中曾给出问题明确含义,并从数学角度对问题作了分类。他指出,所谓「问题就是意味着要去寻找适当的行动,以达到一个可见而不立即可及的目标。《牛顿大词典》对「问题的解释是:指那些并非可以立即求解或较困难的问题(question),那种需要探索、思考和讨论的问题,那种需要积极思维活动的问题。

在1988年的第六屇国际数学教育大会上,「问题解决、模型化及应用课题组提交的课题报告中,对「问题给出了更为明确而富有启发意义的界定,指出一个问题是对人具有智力挑战特征的、没有现成的直接方法、程序或算法的待解问题情境。该课题组主席奈斯(M.Niss)还进一步把「数学问题解决中的「问题具体分为两类:一类是非常规的数学问题;另一类是数学应用问题。这种界定现已经逐渐为人们所接受。

我国的张奠宙、刘鸿坤教授在他们的《数学教育学》里的"数学教育中的问题解决"中,对甚么是问题及问题与习题的区别作了很好的探讨,根据他们的思想观点,我们可对「问题作以下几个方面的理解和认识。

*问题是一种情境状态。这种状态会与学生已有的认知结构之间产生内部矛盾冲突,在当前状态下还没有易于理解的、没有完全确定的解答方法或法则。换句话说,所谓有问题的状态,即这个人面临着他们不认识的东西,对于这种东西又不能仅仅应用某种典范的解法去解答,因为一个问题一旦可以使使用以前的算法轻易地解答出来,那么它就不是一个问题了。

*问题解决中的「问题,并不包括常规数学问题,而是指非常规数学问题和数学的应用问题。这里的常规数学问题,就是指课本中既已唯一确定的方法或可以遵循的一般规则、原理,而解法程序和每一步骤也都是完全确定的数学问题。

*问题是相对的。问题因人因时而宜,对于一个人可能是问题,而对于另一个人只不过是习题或练习,而对于第三个人,却可能是所然无味了。另一方面,随着人们的数学知识的增长、能力的提高,原先是问题的东西,现在却可能变成常规的问题,或者说已经构不成问题了。例如,学生在学习因式分解之前,对于「求方程﹕x3-6x2+5x=0的解,构成问题,而在学习了因式分解之后,已熟练地掌握了abc=0;则a=0或b=0或c=0,那么,此时前述求方程的根已对他不构成问题了,而当前状态下对于「求方程x3-6x2-4x=6的根则构成一个问题。

*问题情境状态下,要对学生本人构成问题,必须满足三个条件:(1)可接受性。指学生能够接受这个问题,还可表现出学生对该问题的兴趣。(2)障碍性。即学生当时很难看出问题的解法、程序和答案,表现出对问题的反应和处理的习惯模式的失败。(3)探索性。该问题又能促使学生深入地研究和进一步的思考,展开各种探究活动,寻求新的解题途径,探求新的处理方法。

*问题解决中的「问题与「习题或「练习是有区别的,其重要区别在于:(1)性质不同。中学数学课本中的「习题或者「练习属于「常规问题,教师在课堂中已经提供了典范解法,而学生只不过是这种典范解法的翻版应用,一般不需要学生较高的思考。因此,实际上学生只不过是在学习一种算法,或一种技术,一种应用于同一类「问题的技术,一种只要避免了无意识的错误就能保证成功的技术。(2)服务的目的不同。尽管有些困难的习题对大部份学生实际上也可能是真正的问题,但数学课本中的习题是为日常训练技巧等设计的,而真正的问题则适合于学习发现和探索的技巧,适合于进行数学原始发现以及学习如何思考。因此,练习技巧与解真正问题所要达到的学习目的不大相同,也正因为它们各自服务于一种目的,所以中学教学课本中的「习题、「练习不应该从课本中被除去,而应该被保留。然而,解决了这些常规问题后,并不意味着已经掌握了「问题解决。

二、一个好问题的「标准

以问题解决作为数学教育的中心事实上集中体现了数学观和数学思想的重要变化,也即意味着数学教育的一个根本性的变革,正是在这样的意义上,著名数学教育家伦伯格指出:解决非单纯练习题式的问题正是美国数学教育改革的一个中心论题。

那么,从数学教育的角度看,究竟甚么是一个"好"的问题,它的标准该是甚么?一般来说,一个好问题标准应体现在以下三个方面:

其一、一个好问题应该具有较强的探究性。

这就是说,好问题能启迪思维,激发和调动探究意识,展现思维过程。如同波利亚所指出的「我们这里所指的问题,不仅是寻常的,它们还要求人们具有某种程度的独立见解、判断力、能动性和创造精神。这里的「探究性(或创造精神)的要求应当是与学生实际水平相适应的,既然我们的数学教育是面向大多数学生的,因此,对于大多数学生而言,具有探索性或创造性的问题,正是数学上「普遍的高标准-这又并非是「高不可及的,而是可通过努力得到解决的。从这个意义上来说,我们这里说的好问题并不是指问题应有较高的难度,这一点与现在数学奥林匹克竞赛中所选用的大部份试题是有区别的。在竞赛中,「问题解决在很大程度上所发挥的只是一种「筛子的作用,这是与以「问题解决作为数学教育的中心环节和根本目标有区分的。

其二、一个好问题,应该具有一定的启发性和可发展空间。

一个好问题的启发性不仅指问题的解答中包含着重要的数学原理,对于这些问题或者能启发学生寻找应该能够识别的模式,或者通过基本技巧的某种运用很快地得到解决。同时,「问题解决还能够促进学生对于数学基本知识和技能的掌握,有利于学生掌握有关的数学知识和思想方法,这就与所谓的「偏题、「怪题划清了界线。

一个好问题的可发展空间是说问题并不一定在找到解答时就会结束,所寻求的解答可能暗示着对原问题的各部份作种种变化,由此可以引出新的问题和进一步的结论。问题的发展性可以把问题延伸、拓广、扩充到一般情形或其他特殊情形,它将给学生一个充分自由思考、充分展现自己思维的空间。

其三、一个好问题应该具有一定的「开放性。

好问题的「开放性,首先表现在问题来源的「开放。问题应具有一定的现实意义,与现实社会、生活实际有着直接关系,这种对社会、生活的「开放,能够使学生体现出数学的价值和开展「问题解决的意义。同时,问题的「开放性,还包括问题具有多种不同的解法,或者多种可能的解答,打破「每一问题都有唯一的标准解答和「问题中所给的信息都有用的传统观念,这对于学生的思想解放和创新能力的发挥具有极为重要的意义。

三、「问题解决见解种种

从国际上看,对「问题解决长期以来有着不同的理解,因而赋予「问题解决以多种含义,总括起来有以下6种:

1、把「问题解决作为一种教学目的。

例如美国的贝格(Begle)教授认为:「教授数学的真正理由是因为数学有着广泛的应用,教授数学要有利于解决各种问题,「学习怎样解决问题是学习数学的目的。E.A.Silver教授也认为本世纪80年代以来,世界上几乎所有的国家都把提高学生的问题解决的能力作为数学教学的主要目的之一。当「问题解决被认为是数学教学的一个目的时,它就独立于特殊的问题,独立于一般过程和方法以及数学的具体内容,此时,这种观点将影响到数学课程的设计和确定,并对课堂教学实践有重要的指导作用。

2、把「问题解决作为一个数学基本技能。

例如美国教育咨询委员会(NACOME)认为「问题解决是一种数学基本技能,他们对如何定义和评价这项技能进行了许多探索和研究。当「问题解决被视为一个基本技能时,它远非一个单一的技巧,而是若干个技巧的一个整体,需要人们从具体内容、问题的形式、构造数学模型、设计求解模列的方法等等综合考虑。

3、把「问题解决作为一种教学形式。

例如英国的柯可可劳夫特(Cockcroft)等人认为,应当在教学形式中增加讨论、研究问题解决和探索等形式,他还指出在英国,教师们还远远没有把「问题解决的活动形式作为教学的类型。

4、把「问题解决作为一种过程。

例如《21世纪的数学纲要》中提出「问题解决是学生应用以前获得的知识投入到新或不熟悉的情境中的一个过程。美国的雷布朗斯认为:「个体已经形成的有关过程的认识结构被用来处理个体所面临的问题?此种解释,可以使一个人使用原先所掌握的知识、技巧以及对问题的理解来适应一种不熟悉状况所需要的这样一种手段,它着重考虑学生用以解决问题的方法、策略和猜想。

5、把「问题解决作为法则。

例如在《国际教育辞典》中指出,「问题解决的特性是用新颖的方法组合两个或更多的法则去解决一个问题。

6、把「问题解决作为能力。

例如1982年英国的《Cockcroftreport》认为那种把数学用之于各种情况的能力,称之为「问题解决。

综合以上各种观点,虽然对「问题解决的描述不同,形式不一,但是,它们所强调的有着共同的东西,即「问题解决不应该仅仅理解为一种具体教学形式或技能,它应贯穿在整个教学教育之中。「问题解决的教学目的是很明确的,那就是要帮助学生提高解决实际问题能力,而且「问题解决的过程是一个创造性的活动,因而是数学教学中最重要的一种活动?以下是从文献中对「问题解决的六个不同的概念:

(1)解决教科书中标题文字题,有也叫做练习题;

(2)解决非常规的问题;

(3)逻辑问题和「游戏;

(4)构造性问题;

(5)计算机模拟题;

(6)「现实生活情境题。

在「问题解决中,相当一部份是实际生活中例子。从构造数学模型、设计求解模型的方法,再到检验与回顾等整个过程要由学生去发现、去设计、去创新、去完成,这是「问题解决与创造性思维密切联系之所在。数学教师应创造更有利于问题解决的条件,在为所有年级编制出好的问题并传授解决问题的技能、技巧的同时,尽力为学生的创造性思维提供良好的课堂环境与机会、乃至服务。

四、数学问题解决的心理分析

1、从学习心理学看「问题解决

从学习心理学角度来看,问题解决一般理解为一种认知操作过程或心理活动过程。所谓「问题解决指的是一系列有目的指向认知操作过程,是以思考为内涵、以问题为目标定向的心理活动过程。具体来说,问题解决是指人们面临新的问题情境、新课题,发现它与主客观需要的矛盾而自己缺少现成对策时,所引起的寻求处理问题办法的一种心理活动过程。问题解决是一种带有创造性的高级心理活动,其核心是思考与探索。认知心理学家认为,问题解决有两种基本类型:一是需要产生新的程序的问题解决,属于创造性问题解决;一是运用已知或现成程序的问题解决,是常规性问题解决。数学中的问题解决一般属于创造性问题解决,不仅需要构建适当的程序达到问题的目标,而且更侧重于探索达到目标的过程。

问题解决有两种形式的探索途径:试误式和顿悟式。试误式是对头脑中出现的解决问题的各种途径进行尝试筛选,直至发现问题解决的合理途径。顿悟式是在长期不懈地思考而又不得其解时,受某种情境或因素的启发,突然发现解决的方法和途径或方式。对中学生而言,这两种探形式都是问题解决不可缺少策略。

2、数学问题解决心理过程

现代学习心理学探究表明,问题分为三种状态,即初始状态、中间状态和目的状态。问题解决就是从问题的初始状态开始,寻求适当的途径和方法达到目的状态的过程。因此,问题解决实质上是运用已有的知识经验,通过思考探索新情境中问题结果和达到问题的目的状态的过程。

以数学对象和数学课题为研究客体的问题解决叫做数学问题解决。一般来说,数学问题解决是在一定的问题情境中开始。所谓问题情境,是指问题的刺激模式,即问题是以甚么样的形态、方式组成和出现的,其内涵包括三个方面:第一、个体试图达到某一目标;第二、个体与目标之间存在一定的距离,它将引起学生内部的认知矛盾冲突;第三、能激起个体积极心理状态,即产生思考、探索和达到目标的心向,从而刺激学生积极主动的思维活动。因此,数学问题解决是从问题情境开始,运用已有的知识经验,克服认知矛盾冲突,积极主动地寻求和达到问题结果的过程。著名数学教育家波利亚在《怎样解题》一书中指出:「数学问题解决过程必须经过下列四个步骤,即理解问题、明确任务;拟定求解计划;实现求解计划;检验和回顾。根据上述分析,数学问题解决过程可用框图示如下:以上关于问题解决的过程讨论,数学问题解决在一定的问题情境中开始,要求教师根据问题的性质、学生的认识规律和学生所学知识的内部联系,创造一种教学中问题情境,以引起学生内部的认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目的。

主要参考文献

(1)张奠宙等:《教学教育学》,江西教育出版社,1991年

(2)李铭心:《数学教育学》,青岛海洋大学出版社,1994年

数学解决问题论文第3篇

问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。

一、背景和意义

19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。

什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。

有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。

从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。

简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。

问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。

二、“问题解决”的重要性

问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:

(一)时代呼唤创新

在国际竞争日益激烈的当今世界,各国政府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。

(二)我国数学教育的成功和不足

我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。

(三)数学观的发展

数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。

(四)问题解决过程和方法的一般性

在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。

三、“问题解决”和中学数学课程

问题解决在各国的中学数学课程中的引入方式各不相同,英国SMP数学课程专门设置了一种问题解决课,我国人民教育出版社出版的义务教育初中数学课程中设立了实习作业、应用题、想一想、做一做等,在高中数学试验课本中也增加了研究题等,这些和问题解决思想是一致的。笔者认为,从目前中国的实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:

(一)鼓励学生去探索、猜想、发现

要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。

学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。

无论是教科书的编写还是实际教学,在讲到探索、猜想、发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。

(二)打好基础

这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试图去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。

教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。

数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。

(三)重视应用意识的培养

用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。

当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。

此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。

(四)教一般过程和方法

在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。

由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决问题的计划,计划往往是粗线条的;3.实施计划,在实施计划的过程中要对计划作适时的调整和补充;4.回顾和总结,对自己的工作进行及时的评价。

问题解决的常用方法有:1.画图,引入符号,列表分析数据;2.分类,分析特殊情况,一般化;3.转化;4.类比,联想;5.建模;6.讨论,分头工作;7.证明,举反例;8.简化以寻找规律(结论和方法);9.估计和猜测;10.寻找不同的解法;11.检验;12.推广。

(五)创设问题情景

1.一个好问题或者说一个精彩的问题应该有如下的某些特征:(1)有意义,或有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味,有挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题是简明的,问题情景是学生熟悉的;(4)时机上的适当;(5)难度的适中。

2.应该对现有习题形式作些改革,适当充实一些应用题,配备一些非常规题、开放性题和合作讨论题。

(1)应用题的编制要真正反映实际情景,具有时代气息,同时考虑教学实际可能。

(2)非常规题是相对于学生的已学知识和解题方法而言的。它与常见的练习题不同,非常规题不能通过简单模仿加以解决,需要独特的思维方法,解非常规题能培养学生的创造能力。

(3)开放性问题是相对于“条件完备、结论确定”的封闭性练习题而言的。开放性问题中提供的条件可能不完备,从而结论常常是丰富多彩的,在思维深度和广度上因人而异具有较大的弹性。

数学解决问题论文第4篇

对于什么是数学问题,虽然目前尚无统一看法,但大体说来,它有以下特点:一是非常规性;二是重视情境应用,给出一种情境,一种实际需求,以克服一种现实困难为标志;三是探究性。[1]从历史角度来看,正是问题的提出、探究和解决,推动了数学科学的不断发展。从某种意义上来说,数学发展的历史,就是数学问题的提出和解决的历史。

数学是研究客观世界的数量关系和空间形式的科学,正如恩格斯所说:“纯数学的对象是现实世界的空间形式和数量关系,所以是非常现实的材料。”当人们与客观世界产生接触,从数量关系或空间形式的角度反映出认识与客观世界的矛盾时,就形成了问题。以数学为内容,或者虽不以数学为内容,但必须运用数学概念、理论或方法才能解决的问题称为数学问题。希尔伯特在1900年巴黎国际数学家代表大会上以“数学问题”为题发表演讲时说:“只要一门科学分支能提出大量的问题,它就充满着生命力;而问题缺乏则预示着独立发展的衰亡或中止。正如人类的每项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新方法和新观点,达到更为广阔和自由的境界。”

由于数学问题包含着有关数学的疑问因素和未知方面,所以,在数学的学习和研究中,对已有的数学概念或结论产生疑问,或者对数学的未知领域进行探索时,都会提出一些不同问题。但是,教学中所要解决的并不是那些尚未解决的数学问题,而是前人已有的数学知识的再发现。只有提出问题,让学生明了产生问题的情境,才能引起学生有目的的思考。正是由于学生把特定的数学问题确定为自己努力攻克的方向,才能使思维活动以一定的方法、在一定的范围内进行,才能激发学生的创造热情,不断冲击头脑中旧有的认知结构,不断构建新的认知结构。

数学问题来源于人类的生产、生活实践,来源于人们了解自然、认识自然的科技活动。古代巴比伦人在观测天文、丈量土地和进行贸易中形成了位值观念和六十进制数系,并发现了大量数表、计算方法以及包括解一元二次方程在内的许多数学问题。早在公元前5世纪,古希腊人就已经形成后来被称为几何三大作图问题的倍立方问题、三等分任意角问题和化圆为方问题。成书于公元1世纪前后的《九章算术》,集古代数学问题之大成,记载了我国古代劳动人民在生产、生活和社会活动中形成的各种数学问题246个。《九章算术》是我国古代传统数学中具有最深远影响的一部著作,它反映出我国古代数学是怎样从实际生活中分析出数量关系,建立数学模型,又怎样从研究具体的数学问题入手,通过抽象与归纳而得到解决问题的数学方法的。

纵观数学的发展历史,可以看到数学问题在数学的历史进程中的重要作用。它既是数学发现的起点,又是数学发现的路标;它既有数学发展的探索和导向作用,又可以为数学理论的形成积累必要的资料;它既可以导致数学的发现和理论的创新,又可以激发人们的创造和进取精神。

由数学问题的形成和来源可以看到,数学问题种类繁多,但用于“数学问题解决”教学的问题大致有以下三种,它们具有不同的教育价值和功能。

1.可以构建数学模型的非常规的实际问题。21世纪是信息化的时代,是现代科技迅速发展的知识经济时代。随着数学和科学技术的飞速发展以及电子计算机和网络技术的广泛使用,科学技术数学化的进程日益加速。任何科学技术要实现数学化,都必须首先把研究对象用数学语言和方法表述为具有一定结构的数学体系,即建立有关研究对象的数学模型,这是科学技术数学化的关键。数学模型可以有效地描述自然现象和社会现象。数学问题要能够给学生提供尝试建立数学模型的机会,让学生根据观察和实验的结果,尝试运用数学思想以及归纳、类比的方法得出猜想,然后再进行证明。将生活、生产等社会活动中发现的实际问题抽取出来,通过构建数学模型,化实际问题为数学问题,然后应用数学思想或方法来解决问题,这是人们认识世界的重要途径。非常规的问题往往不是纯数学化的问题模式,而是一种情境,一种实际需求,只是为了克服实际碰到的困难。因此,要培养适应知识经济社会需要的高素质、创造型人才,就要进行数学建模的训练。培养学生数学建模的能力,是学好数学、用好数学的重要保障,也是基础教育不可或缺的任务之一。“义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”[2](1)

2.探究性问题。通过一定的探索、研究去深入了解和认识数学对象的性质,发现数学规律和真理的问题叫做探究性问题。这里,对于对象之间的数量关系、图形性质及其变化规律,数学公式、法则、命题、定理等的探索和发现,虽然只是对前人工作的一种重复和再发现,但知识形成、发展过程的意义则被学习者重新建构。“数学学习过程充满着观察、实验、模拟、推断等探索性和挑战性活动。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。”[2](65)数学命题的发现就是一个探索的

过程。例如,在学习了三角形内角和定理后,教师可以让学生通过观察和实验去探索四边形、五边形,六边形等多边形的内角和问题,然后通过归纳得到多边形内角和定理。通过探究,不仅可以培养学生的数学思维能力,科学探索精神,而且可以使学生在数学学习活动中获得成功的体验,从而建立自信心,这对于培养学生形成完整的独立人格具有重要的作用。3.开放性问题。《全日制义务教育数学课程标准(实验稿)》在第三学段教材编写建议中写道:教材可以“提供一些开放性(在问题的条件、结论、解题策略或应用等方面具有一定的开放程度)的问题,使学生在探索的过程中进一步理解所学的知识”。[2](93)开放性问题旨在培养学生思维的灵活性、发散性,因而也有利于培养学生的创新精神、创新意识。例如,在ABC 中,三边a、b、c成等差数列,由此可得哪些结果?这是一个结论开放的问题,由三边成等差数列,联系三角形的有关定理、公式如正弦定理、余弦定理、射影定理、面积公式以及其他三角、几何定理公式,可得到许多结果,诸如sin A +sin C =2sin B ,等等。[1](197)通过对这个问题的探讨,不仅复习巩固了所学知识,将多学科的许多不同思想方法都联系到了一起,而且充分表现了思维的多向性、灵活性和创造性。

如前所述,问题解决中的“问题”主要是指那些非常规性的或者条件不充分、结论不确定的开放性、探究性问题。“问题”常常给出联系实际的情境,主体必须要将它数学化,并且必须探究解决问题的策略(数学方法)。数学问题的设计是数学问题解决教学的基础。要使问题解决教学取得良好成效,必须预先将问题设计好。好的数学问题应当具有较强的探索性,它要求人们具有某种程度的独立见解、判断力、能动性和创新精神;具有现实意义或与学生的实际生活有着直接的联系,具有趣味性和魅力;具有多种不同的解法或有多种可能的解答,即开放性;能推广或扩充到各种情形。[3]数学问题除了应具备以上特点,在设计时还要遵循以下原则。

1.可行性原则。在设计数学问题时,教师首先要细致地钻研教材,研究学生的思维发展规律和知识水平,提出既有一定难度又是学生力所能及的问题,也就是说,要选择在学生能力的“最近发展区”内的问题。学生的第一发展水平和第二发展水平之间存在着差异。教师应走在学生发展的前面,创造“最近发展区”,并注意适时、适度创设实际情境,培养学生的创新意识和实践能力;根据学生年龄特点、学生已有的认知结构、教材及学生的生活实际,设计适当的数学问题。这些问题既能有效地激发学生的求知欲望,又能使学生积极主动地去寻求解决问题的策略,并通过一定的努力或小组讨论、探究,最后归纳出具有一般规律性的结果。例如,在初中阶段,学生学习了圆的有关性质以后,可以设计一道关于找圆心的问题。给学生一张上面画有一个圆的纸,提出问题:我们怎样确定这个圆的圆心?学生通过实际操作,可以用许多不同的方法获得答案。其中用到的数学知识有“半圆上的圆周角是直角”的定理,“弦的垂直平分线通过圆心”的性质,等等。[2](185)在小学高年级,甚至在中学阶段,可以将“六角星”问题,即“如何把1、2、3、4、5、6、7、8、9、10、11、12这些数填在六角星中各条线段的交点上,使每条线上四个数字之和都等于26”提供给学生进行探究。“六角星”问题是一个寓教于乐、数形结合的典型的开放性问题,并可进行不同的条件变化,得到许许多多不同的解。[4]

2.渐进性原则。渐进性原则要求问题设计要有层次性,要由浅入深,由易到难。人类认识数学对象的过程,是一个渐进过程,是从认识最简单的对象开始,逐步发展到对数学对象之间的相互关系及它们的内部结构的认识。人们对于数学问题的认识,如同对数学对象的认识一样,也是一个渐进的过程。因此,在数学问题的设计中就要遵循由浅入深,由易到难,有层次、循序渐进的原则,使学生在问题的探究中不断获得成功,逐步树立起学好数学的自信心,培养勇于探索、敢于攀登的精神。如当学生观察下面这些等式:1·2·3·4+1=?,2·3·4·5+1=?,3·4·5·6+1=?,4·5·6·7+1=?时可以发现,它们分别等于5,11,19,29的平方。这时可以提出问题:“从这些等式中你能发现什么规律?”当学生通过探索发现并提出一种归纳猜想时,可以进一步提出证明猜想的问题。然后,再进一步让学生观察类似的问题:1·3·5·7+16=?,3·5·7·9+16=?,5·7·9·11+16=?,7·9·11·13+16=?……能不能提出类似的猜想?进而,从等差数列的角度,能否再提出几个类似的问题?最后,能否把上面这些问题的共同规律找出来?这样,根据由浅入深、由易到难、循序渐进的原则,依次提出问题,逐步展开问题的探究,不仅可以把学生的探究活动步步引向深入,而且还可以培养学生学习数学的兴趣。

3.应用性原则。随着数学的发展,它的应用越来越广泛,世界各国的数学教育也越来越强调数学的应用,这是当前国际数学教育的重要动向。各国都在数学课程中增加现代数学中具有广泛应用性的内容,注重从生活实际和学生知识背景中提出问题,结合生活中的具体实例进行数学知识的教学,增强课堂教学中的实践环节,重视培养学生用数学的意识和用数学的能力,使学生能主动尝试用数学知识和思想方法寻求解决问题的途径。在数学问题的设计中,要考虑能将数学思想方法和数学模型用于探究所提出的问题。义务教育阶段的数学课程,特别强调学生用数学的意识的培养。“应用意识主要表现在:认识到现实生活中蕴涵着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。”[2](5)例如,在学生已经掌握三角形中边角关系及平面上周角的有关知识后,可给出这样的问题:“有若干个城市,它们之间的距离彼此互不相等。如果从每个城市都起飞一架飞机到离该城市最近的城市降落。证明:每个城市降落的飞机都不超过五架。”这个问题可以通过构造平面几何模型,应用简单的几何知识得到解决。[5]

如前所述,由于数学问题来源于人类的生产、生活实践,来源于人们了解自然、认识自然的科技活动,一般来说,它是非常规的、由情境给出的一种实际需求,并且具有一定的探究性。因此,数学问题的解决一般要通过以下几个过程来实现。

1.分析问题背景,寻找数学联系。通过对所给问题的分析,理解问题背景的意义,从中找出它们与哪些数学知识有联系,以便建立有关的数学模型,使实际问题数学化,从而使非常规问题转化为常规问题来解决。在这个过程中,要充分发挥学生的积极主动性,必要时可以让学生分组开展讨论,以集体的力量和智慧攻克难关。分析问题的步骤非常重要,万事开头难,只要攻破了这一关,学生就会信心倍增,就会以更高的热情投入到后面问题的探讨中去。在学生自主分析的同时,教师可在关键处给以必要的指导和点拨,以控制教学的进度,提高课堂教学效率。

2.建立数学模型。在分析的基础上,将实际问题符号化并确定其中的关系,进而写出由这些符号和关系所确定的数学联系,用具体的代数式、函数式、方程式、不等式或相关的图形、图表等把这些数学联系确定下来,就形成了数学模型。在建立数学模型的时候,可要求学生独立完成,因为前面的分析过程,已经使问题明朗化,一般情况下学生都可以独立完成数学建模任务。对于有困难的学生,也可以通过小组讨论来完成这一工作。

3.求解数学问题。根据数学模型的特征,可采用适当的数学思想、方法和数学知识,对数学模型进行求解。这里主要强调学生用数学的意识的培养和形成。一般情况下,只要数学模型建立起来以后,学生自然会去联想已学过的数学知识和熟悉的数学思想方法,通过推理和演算,达到问题的解决。

4.检验。将数学问题的求解结果返回到实际问题中去进行检验,看它是否与实际问题的情形相吻合,从而决定是否要修改模型或另辟途径。

5.交流和评价。在学生进行研讨、解决问题的过程中,教师要通过巡回观察及时了解和掌握学生的学习进度,对于有困难的学生及时给予必要的指导,也可以作为学生的伙伴和助手,参加到学生的探究活动中去。在多数学生完成任务以后,可组织学生进行交流,然后对各种模型进行评价。学生通过交流、评价,进一步完善各自的模型,同时也达到互相学习、取长补短、共同提高的目的。

6.推广。如果问题得到了解决,看它是否可以进行推广。如果解决过的问题是一个具体问题,就可引导学生通过归纳、类比和猜测,得到普遍的结论,然后再证明这个结论。例如,在学生学习过二次函数求最大(小)值及等差数列的有关知识后,可设计这样一个实际问题:一幢33层的大楼有一部电梯停在第1层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次。对于每个人来说,他往下走一层楼梯不满意度是1,往上走一层楼梯不满意度是3。现在32人打算下到第1层且他们分别住在第2层至第33层的每一层。如果你是一名电梯管理员,请你确定将电梯停在哪一层可以使这32人的不满意度达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼。)在解决此问题的基础上,可推到一般情形n层楼时。

数学问题解决教学是通过创设情境,激发学生的求知欲望,使学生亲身体验和感受分析问题、解决问题的全过程。它强调使用数学的意识,培养学生的探索精神、合作意识和实际操作能力。通过问题解决能使学生对数学知识形成深刻的、结构化的理解,形成自己的、可以迁移的问题解决策略,而且产生更为浓厚的学习数学的兴趣、形成认真求知的科学态度和勇于进取的坚定信念。由于问题解决教学是近年来受到广泛重视的一种教学模式,它强调把学习设置到复杂的、有意义的问题情境中,通过让学习者合作解决实际问题来学习隐含于问题背后的科学知识,形成解决问题的技能,并形成自主学习的能力。[6]所以,问题解决教学是通过高水平的思维来进行学习,来建构知识的。

传统的教学模式比较重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养,而不重视学生实践能力的培养和实际操作的训练,致使学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多。学生机械地模拟一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。在中小学数学课程中体现问题解决的思想,在课堂教学中采用问题解决的教学模式,为克服上述问题开辟了一条有效的途径。应当看到,在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其他学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其他学科的问题解决过程中。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,从而提高学生的综合素质和能力。

在数学问题解决的教学过程中,既要注重发挥学生的主体作用,又要重视教师主导作用的发挥,二者相辅相成,不可偏废。特别是在讲到探索、猜想、发现方面的问题时要侧重于“教”;有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导和点拨。因此,在一些典型的数学问题解决教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力,应引起广大数学教师的高度重视。

参考文献:

[1]张奠宙,戴再平.中学数学问题集[M].上海:华东师范大学出版社 ,1996.

[2]中华人民共和国教育部.全日制义务教育数学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.

[3]奚定华.数学教学设计[M].上海:华东师范大学出版社,2001.

[4]于琛.数学问题的解决[M].长春:东北师范大学出版社,2000.

数学解决问题论文第5篇

1.新时代对高素质人才的需求

我们的数学课堂教学,更多的强调定义的解释,定理的证明和命题的推导,却忽略了从生活经验去理解数学的需要,因而学生对数学的作用产生疑惑也就不难理解。事实上,我们培养学生的数学能力和修养,恐怕不能单单地强调“数学是思维的体操”,而应该从更广阔的范围上去培养学生“用”数学的意识

时代的发展需要更多的高素质人才,他们除了要学好丰富的理论知识之外,还必须学以致用,这样才能推动时代的发展.我们学数学的目的是为了应用它去解决实际问题。因此,增强数学应用意识,培养学生数学应用能力,是素质教育的重要内容,也是数学教学的任务之一。《新课标》中就有如下论述:“应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值”,“能从日常生活中发现并提出简单的数学问题”,“了解同一问题可以有不同的解决办法”,“有与同伴合作解决问题的体验”。这就要求我们广大教师在教学时,应着眼于学生的生活经验和实践经验,开启学生的视野,拓宽学生学习的空间,最大限度地挖掘学生的潜能,从而使学生体验数学与日常生活的密切联系,培养学生从周围情境中发现数学问题,运用所学知识解决实际问题的能力,发展学生的应用意识。

2.数学知识的实用性

20世纪中叶以来,现代信息技术的飞速发展,极大地推进了应用数学与数学应用的发展,使得数学几乎渗透到了每一个科学领域及人们生活的方方面面。比如计算机的发明和不断更新换代,一方面有赖于数学发展的需要,另一方面更体现了数学知识的广泛应用.这一伟大的发明不仅推动了各个科学领域的发展,而且对人们的生活产生了巨大的影响.自然科学的深入发展越来越依赖于数学,而社会科学、人文科学也越来越多地借助于数学知识及其思想方法。比如方程的在物理学中的混合运动问题,地理学中的降水量、温度问题,化学中化学方程式的计算等的应用,一次函数知识与经济学中的利息、外汇换算,化学中的定量计算,信息学中的图表等的联系,立体几何在化学晶体结构、美术****,地理中地球的运动、太阳直射点的移动等的应用,排列组合在化学中讨论由原子、离子等微粒组成的物质种类,在生物中遗传基因自由组合可能性的讨论等应用,三角函数在物理交流电、简谐振动中的应用,向量在力学中力、运动的合成和分解、速度、加速度等的应用。数学知识不仅解决了这些学科中的一些问题,而且有力的推动了这些学科的发展.

数学作为科学的语言,作为推动科学向前发展的重要工具,在人类发展史上具有不可替代的作用,并将在未来的社会发展中发挥更大的作用。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。只有如此,才能使所学的数学富有生命力,才能真正实现数学的价值。这就要求我们必须重视从小培养学生的应用意识。

二.培养学生数学应用能力的基本途径

1.在生活中培养学生的数学应用意识

数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识,甚至某些学科的生命力也取决于对数学知识的应用程度。马克思曾指出:“一门科学只有成功地应用了数学时,才算真正达到了完善的地步。”生活中充满着数学,人们的吃、穿、住、行都与数学有关.例如通过人们吃的糕点可认识到丰富的几何图形;在商场买衣买鞋时经常会遇到打折的问题;住房转让和新房购买时的收入和支出;行程中的路程、速度和时间的关系等等.数学教师要善于从学生的生活中抽象出数学问题,使学生感到数学就在自己身边,让学生感受到生活中处处有数学,培养学生数学应用意识。

2.用实际问题调动学生的学习兴趣

心理学研究表明:学习内容和学生熟悉的生活背景越贴近,学生自觉接纳知识的程度就越高。因此,在课堂教学中,要尽可能地将教学内容与学生的生活背景结合起来,从贴近学生生活的实际问题引入新课,调动学生的学习兴趣。

(1).概念从实际引入例如在学习“垂线”的概念时,可结合实际提出这样的问题:“马路的十字路口的两条道路位置上有何关系?再比如电线杆与它上面架的电线位置上有什么关系?这些都是数学在实际生活中具体涉及到的例子,能激发学生的求知欲望,使学生产生“生活中处处有数学”的意识,而且能直观地理解垂线的意义,并意识到学习这个内容的重要性。

(2).公式、法则结合实例抽象提出结合实例抽象提出,既容易对其作出通俗易懂的解释,又容易对其自身作出本质的揭示。例如:在学习有理数减法法则时,可以这样引入新课:某一天白天的最高气温是10°C,夜晚的最低气温是-5°C,这天的最高气温比最低气温高多少?用投影仪展示分别标注着10°C和-5°C的温度计,让学生直观地看出高多少,在让学生考虑如何列算式及怎样计算,并换例让学生验证探究出来的结论,归纳出有理数的减法法则。这样不仅能激发学生学数学的兴趣,而且能激发学生爱数学、学数学、用数学的情感。

(3).公理、定理从实际需要提出例如:在学习“线段公理”时,可以从走路时往往喜欢抄斜路直奔目的地,这样做究竟是为了什么为出发点让学生思考,通过这样的实例,能调动学生的学习热情,让学生易于接受,同时还能领悟到数学在现实生活中无所不用。

教师在教学中还要注意充分利用现代化教育技术辅助教学,采用模型、幻灯、录象、计算机等现代教学手段,增加师生互动、形象化表示数学的内容,同时将抽象的知识直观化。这样能吸引学生的注意力,调动学生积极学习知识的兴趣,又能加深对知识的理解,提高学习效率.

3.教学联系实际,从生活中发现问题、提出问题

从知识的掌握到知识的应用不是一件简单、自然而然就能实现的事情,没有充分的、有意识的培养,学生的应用意识是不会形成的。教学中应该注重从具体的事物提炼数学问题,引导学生联系日常生活中的一些问题用数学知识来解决,这有助于学生数学应用意识的形成。

比如在讲“行程应用题”时,利用这样一个生活中常遇到的问题:甲乙两地有三条公路相通,通常情况下,由甲地去乙地我们选择最短的一条路(省时,省路);特殊情况下,如果最短的那条路太拥挤,在一定时间内由甲地赶到乙地我们就选择另外的一条路,宁肯多走路,加快步伐(速度),来保证时间(时间一定,路程与速度成正比)。从数学角度给学生分析这个问题用于“行程应用题”,是路程、时间、速度三者关系的实际应用。

又比如,在讲“解直角三角形”时,可利用这样一个实际问题。修建某扬水站时,要沿斜坡辅设水管,从剖面图看到,斜坡与水平面所成的∠A可用测角器测出,水管AB的长度也可直接量得,当水管辅到B处时,设B离水平面的距离为BC,如果你是施工人员,如何测得B处离水平面的高度?有的同学提出从B处向C处钻个洞,测洞深;

有的同学反对,因为根据实际情况,这样做费力;有的同学又反对,因为这不是费力问题,C点无法确定。应该运用解直角三角形知识去解决:BC=ABsinA(AB、∠A均已知)。这实在是一个施工中经常遇到的问题,这一问题的提出可以使学生感到具体的实际问题就在自己身边等待解决,增强了主动意识,激发了兴趣。

4.精心编制问题,培养学生的应用能力。

当前我国数学教材中的问题和考题多半是脱离了实际背景的纯数学问题,或者是看不见背景的应用数学问题。这样的训练,久而久之,使学生解现成数学题的能力很强,而把实际问题抽象化为数学问题的能力却很弱。而数学是以现实世界的空间形式和数量关系作为研究对象的,它的许多概念、定理和方法都从现实中来。但它有更多结论去为生产和社会各行各业服务。因此,教师可在遵循教学要求的前提下,精心编制一些与生活、科学有关的问题,可以使学生感到自己的周围处处有数学,从而使其萌发学好数学去解决实际问题的愿望,把学和用结合起来,达到提高学生应用能力的效果。

如在学习不等式时,可注意编制实际生活中有关产品的生产、销售与利润问题,旅游选最合算的购票方案问题等。

例:某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)按要求安排A、B两种产品的生产件数,有几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试用含有x的代数式表示y,并说明(1)中哪种生产方案获总利润最大?最大利润是多少?

在此问题的教学中可先引导学生根据题意列出不等式组,然后由解集和实际要求设计方案;而在第二问中还涉及到函数知识的实际应用,对后面函数知识的学习作了准备。根据教学目的编制这类与生活相关的问题,在教学时学生不仅容易接受,而且能体会到数学知识在生活中的实用价值,让学生知道了数学来源于生活,并服务于生活。

在教学中,可逐步引导学生根据所学知识并结合实际编制问题并解决问题,逐步增强学生学数学、用数学的能力。

5.加强课外实践,带着数学知识走进生活

著名的数学华罗庚先生曾说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”精辟地阐述了数学在现实生活中的广泛应用。可以说数学为很多生活问题建模。

例如举行一次野炊活动。一方面要引导学生收集大量信息,深化统计的学习,另一方面也让学生参与活动的全过程:调查市场行情,让学生亲自去粮店买米,去菜场买菜,在整个活动过程中学生可能会遇到许多困难,如买菜中的估算,人民币的支付,菜的搭配和选择等策略活动,引导学生有序地思考,提高解决实际问题的能力,渗透应用数学的意识。素质教育的发展要求,人类生活的实际需要,社会经济文化的一体化发展进程,让我们每天思考,每天探求,每天革新。“野炊”活动将学生学习数学与生活紧密相连,让孩子们津津有味地评论着自己所买的菜,交流着买菜的体验,充分展示了每个人的个人爱好,生活经验、情趣,也学习和交流着学习数学所包融的价值观,实用观,享受着学习数学的快乐

又如有一年经常下雨,玉米的收成不太好,农民议论说今年的玉米可能要减产几成了。于是设计了这样的作业:分小组调查自己村中的几户人家,了解他们种同样多的地,去年和今年的玉米收成情况,根据搜集的数据算出这几户人家今年比去年减少了几成,这几户人家平均减产几成。思考:是什么原因列出来,小组中的学生分工进行调查,完成调查后,合作写出一份调查报告,并给农民提出建议。这是融数学、科学、社交知识于一体的综合练习,前半部分是百分数(成数)的实际应用,没有给出具体数据,需要学生自己调查完成;后半部分是学生调查造成减产的原因:(1)与经常下雨有关。(2)管理不当,病虫害的缘故。(3)空气污染。(4)玉米品种问题。这样的作业设计取材农村特有的资源,从孩子们身边的现实问题入手,给学生提供了一次运用各种知识进行实践活动的锻炼机会。在这一过程中学生学会获取知识、掌握研究问题的方法,培养实际运用能力,使自己成为学习的主人。

总之,教师在平时的教学过程中,应有意识地收集、整理一些适应本地生活、生产需要的实际应用性问题,注意收集与教学内容相关的实际素材组织教学活动,增加实习作业和探究性活动,找到向实际问题过渡的渗透点,使学生领悟数学的应用价值,达到潜移默化地培养学生应用数学的能力,为培养出适应知识经济时代的创新型人才提供可能。

参考文献:

数学解决问题论文第6篇

一、对「问题的理解

对「问题的理解与关于甚么是「问题解决的分析直接相关,讨论和研究「问题解决的一个主要困难就在于对甚么是真正的「问题缺少明晰的一致意见。

当代美国著名数学家哈尔莫斯(P.R.Halmos)曾说:「问题是数学的心脏。美籍匈牙利著名数学教育家波利亚(G.Polya)在《数学的发现》一书中曾给出问题明确含义,并从数学角度对问题作了分类。他指出,所谓「问题就是意味着要去寻找适当的行动,以达到一个可见而不立即可及的目标。《牛顿大词典》对「问题的解释是:指那些并非可以立即求解或较困难的问题(question),那种需要探索、思考和讨论的问题,那种需要积极思维活动的问题。

在1988年的第六屇国际数学教育大会上,「问题解决、模型化及应用课题组提交的课题报告中,对「问题给出了更为明确而富有启发意义的界定,指出一个问题是对人具有智力挑战特征的、没有现成的直接方法、程序或算法的待解问题情境。该课题组主席奈斯(M.Niss)还进一步把「数学问题解决中的「问题具体分为两类:一类是非常规的数学问题;另一类是数学应用问题。这种界定现已经逐渐为人们所接受。

我国的张奠宙、刘鸿坤教授在他们的《数学教育学》里的"数学教育中的问题解决"中,对甚么是问题及问题与习题的区别作了很好的探讨,根据他们的思想观点,我们可对「问题作以下几个方面的理解和认识。

*问题是一种情境状态。这种状态会与学生已有的认知结构之间产生内部矛盾冲突,在当前状态下还没有易于理解的、没有完全确定的解答方法或法则。换句话说,所谓有问题的状态,即这个人面临着他们不认识的东西,对于这种东西又不能仅仅应用某种典范的解法去解答,因为一个问题一旦可以使使用以前的算法轻易地解答出来,那么它就不是一个问题了。

*问题解决中的「问题,并不包括常规数学问题,而是指非常规数学问题和数学的应用问题。这里的常规数学问题,就是指课本中既已唯一确定的方法或可以遵循的一般规则、原理,而解法程序和每一步骤也都是完全确定的数学问题。

*问题是相对的。问题因人因时而宜,对于一个人可能是问题,而对于另一个人只不过是习题或练习,而对于第三个人,却可能是所然无味了。另一方面,随着人们的数学知识的增长、能力的提高,原先是问题的东西,现在却可能变成常规的问题,或者说已经构不成问题了。例如,学生在学习因式分解之前,对于「求方程﹕x3-6x2+5x=0的解,构成问题,而在学习了因式分解之后,已熟练地掌握了abc=0;则a=0或b=0或c=0,那么,此时前述求方程的根已对他不构成问题了,而当前状态下对于「求方程x3-6x2-4x=6的根则构成一个问题。

*问题情境状态下,要对学生本人构成问题,必须满足三个条件:(1)可接受性。指学生能够接受这个问题,还可表现出学生对该问题的兴趣。(2)障碍性。即学生当时很难看出问题的解法、程序和答案,表现出对问题的反应和处理的习惯模式的失败。(3)探索性。该问题又能促使学生深入地研究和进一步的思考,展开各种探究活动,寻求新的解题途径,探求新的处理方法。

*问题解决中的「问题与「习题或「练习是有区别的,其重要区别在于:(1)性质不同。中学数学课本中的「习题或者「练习属于「常规问题,教师在课堂中已经提供了典范解法,而学生只不过是这种典范解法的翻版应用,一般不需要学生较高的思考。因此,实际上学生只不过是在学习一种算法,或一种技术,一种应用于同一类「问题的技术,一种只要避免了无意识的错误就能保证成功的技术。(2)服务的目的不同。尽管有些困难的习题对大部份学生实际上也可能是真正的问题,但数学课本中的习题是为日常训练技巧等设计的,而真正的问题则适合于学习发现和探索的技巧,适合于进行数学原始发现以及学习如何思考。因此,练习技巧与解真正问题所要达到的学习目的不大相同,也正因为它们各自服务于一种目的,所以中学教学课本中的「习题、「练习不应该从课本中被除去,而应该被保留。然而,解决了这些常规问题后,并不意味着已经掌握了「问题解决。二、一个好问题的「标准

以问题解决作为数学教育的中心事实上集中体现了数学观和数学思想的重要变化,也即意味着数学教育的一个根本性的变革,正是在这样的意义上,著名数学教育家伦伯格指出:解决非单纯练习题式的问题正是美国数学教育改革的一个中心论题。

那么,从数学教育的角度看,究竟甚么是一个"好"的问题,它的标准该是甚么?一般来说,一个好问题标准应体现在以下三个方面:

其一、一个好问题应该具有较强的探究性。

这就是说,好问题能启迪思维,激发和调动探究意识,展现思维过程。如同波利亚所指出的「我们这里所指的问题,不仅是寻常的,它们还要求人们具有某种程度的独立见解、判断力、能动性和创造精神。这里的「探究性(或创造精神)的要求应当是与学生实际水平相适应的,既然我们的数学教育是面向大多数学生的,因此,对于大多数学生而言,具有探索性或创造性的问题,正是数学上「普遍的高标准-这又并非是「高不可及的,而是可通过努力得到解决的。从这个意义上来说,我们这里说的好问题并不是指问题应有较高的难度,这一点与现在数学奥林匹克竞赛中所选用的大部份试题是有区别的。在竞赛中,「问题解决在很大程度上所发挥的只是一种「筛子的作用,这是与以「问题解决作为数学教育的中心环节和根本目标有区分的。

其二、一个好问题,应该具有一定的启发性和可发展空间。

一个好问题的启发性不仅指问题的解答中包含着重要的数学原理,对于这些问题或者能启发学生寻找应该能够识别的模式,或者通过基本技巧的某种运用很快地得到解决。同时,「问题解决还能够促进学生对于数学基本知识和技能的掌握,有利于学生掌握有关的数学知识和思想方法,这就与所谓的「偏题、「怪题划清了界线。

一个好问题的可发展空间是说问题并不一定在找到解答时就会结束,所寻求的解答可能暗示着对原问题的各部份作种种变化,由此可以引出新的问题和进一步的结论。问题的发展性可以把问题延伸、拓广、扩充到一般情形或其他特殊情形,它将给学生一个充分自由思考、充分展现自己思维的空间。

其三、一个好问题应该具有一定的「开放性。

好问题的「开放性,首先表现在问题来源的「开放。问题应具有一定的现实意义,与现实社会、生活实际有着直接关系,这种对社会、生活的「开放,能够使学生体现出数学的价值和开展「问题解决的意义。同时,问题的「开放性,还包括问题具有多种不同的解法,或者多种可能的解答,打破「每一问题都有唯一的标准解答和「问题中所给的信息都有用的传统观念,这对于学生的思想解放和创新能力的发挥具有极为重要的意义。

三、「问题解决见解种种

从国际上看,对「问题解决长期以来有着不同的理解,因而赋予「问题解决以多种含义,总括起来有以下6种:

1、把「问题解决作为一种教学目的。

例如美国的贝格(Begle)教授认为:「教授数学的真正理由是因为数学有着广泛的应用,教授数学要有利于解决各种问题,「学习怎样解决问题是学习数学的目的。E.A.Silver教授也认为本世纪80年代以来,世界上几乎所有的国家都把提高学生的问题解决的能力作为数学教学的主要目的之一。当「问题解决被认为是数学教学的一个目的时,它就独立于特殊的问题,独立于一般过程和方法以及数学的具体内容,此时,这种观点将影响到数学课程的设计和确定,并对课堂教学实践有重要的指导作用。

2、把「问题解决作为一个数学基本技能。

例如美国教育咨询委员会(NACOME)认为「问题解决是一种数学基本技能,他们对如何定义和评价这项技能进行了许多探索和研究。当「问题解决被视为一个基本技能时,它远非一个单一的技巧,而是若干个技巧的一个整体,需要人们从具体内容、问题的形式、构造数学模型、设计求解模列的方法等等综合考虑。、把「问题解决作为一种教学形式。

例如英国的柯可可劳夫特(Cockcroft)等人认为,应当在教学形式中增加讨论、研究问题解决和探索等形式,他还指出在英国,教师们还远远没有把「问题解决的活动形式作为教学的类型。

4、把「问题解决作为一种过程。

例如《21世纪的数学纲要》中提出「问题解决是学生应用以前获得的知识投入到新或不熟悉的情境中的一个过程。美国的雷布朗斯认为:「个体已经形成的有关过程的认识结构被用来处理个体所面临的问题?此种解释,可以使一个人使用原先所掌握的知识、技巧以及对问题的理解来适应一种不熟悉状况所需要的这样一种手段,它着重考虑学生用以解决问题的方法、策略和猜想。

5、把「问题解决作为法则。

例如在《国际教育辞典》中指出,「问题解决的特性是用新颖的方法组合两个或更多的法则去解决一个问题。

6、把「问题解决作为能力。

例如1982年英国的《Cockcroftreport》认为那种把数学用之于各种情况的能力,称之为「问题解决。

综合以上各种观点,虽然对「问题解决的描述不同,形式不一,但是,它们所强调的有着共同的东西,即「问题解决不应该仅仅理解为一种具体教学形式或技能,它应贯穿在整个教学教育之中。「问题解决的教学目的是很明确的,那就是要帮助学生提高解决实际问题能力,而且「问题解决的过程是一个创造性的活动,因而是数学教学中最重要的一种活动?以下是从文献中对「问题解决的六个不同的概念:

(1)解决教科书中标题文字题,有也叫做练习题;

(2)解决非常规的问题;

(3)逻辑问题和「游戏;

(4)构造性问题;

(5)计算机模拟题;

(6)「现实生活情境题。

在「问题解决中,相当一部份是实际生活中例子。从构造数学模型、设计求解模型的方法,再到检验与回顾等整个过程要由学生去发现、去设计、去创新、去完成,这是「问题解决与创造性思维密切联系之所在。数学教师应创造更有利于问题解决的条件,在为所有年级编制出好的问题并传授解决问题的技能、技巧的同时,尽力为学生的创造性思维提供良好的课堂环境与机会、乃至服务。

四、数学问题解决的心理分析

1、从学习心理学看「问题解决

从学习心理学角度来看,问题解决一般理解为一种认知操作过程或心理活动过程。所谓「问题解决指的是一系列有目的指向认知操作过程,是以思考为内涵、以问题为目标定向的心理活动过程。具体来说,问题解决是指人们面临新的问题情境、新课题,发现它与主客观需要的矛盾而自己缺少现成对策时,所引起的寻求处理问题办法的一种心理活动过程。问题解决是一种带有创造性的高级心理活动,其核心是思考与探索。认知心理学家认为,问题解决有两种基本类型:一是需要产生新的程序的问题解决,属于创造性问题解决;一是运用已知或现成程序的问题解决,是常规性问题解决。数学中的问题解决一般属于创造性问题解决,不仅需要构建适当的程序达到问题的目标,而且更侧重于探索达到目标的过程。

问题解决有两种形式的探索途径:试误式和顿悟式。试误式是对头脑中出现的解决问题的各种途径进行尝试筛选,直至发现问题解决的合理途径。顿悟式是在长期不懈地思考而又不得其解时,受某种情境或因素的启发,突然发现解决的方法和途径或方式。对中学生而言,这两种探形式都是问题解决不可缺少策略。

2、数学问题解决心理过程

现代学习心理学探究表明,问题分为三种状态,即初始状态、中间状态和目的状态。问题解决就是从问题的初始状态开始,寻求适当的途径和方法达到目的状态的过程。因此,问题解决实质上是运用已有的知识经验,通过思考探索新情境中问题结果和达到问题的目的状态的过程。

以数学对象和数学课题为研究客体的问题解决叫做数学问题解决。一般来说,数学问题解决是在一定的问题情境中开始。所谓问题情境,是指问题的刺激模式,即问题是以甚么样的形态、方式组成和出现的,其内涵包括三个方面:第一、个体试图达到某一目标;第二、个体与目标之间存在一定的距离,它将引起学生内部的认知矛盾冲突;第三、能激起个体积极心理状态,即产生思考、探索和达到目标的心向,从而刺激学生积极主动的思维活动。因此,数学问题解决是从问题情境开始,运用已有的知识经验,克服认知矛盾冲突,积极主动地寻求和达到问题结果的过程。著名数学教育家波利亚在《怎样解题》一书中指出:「数学问题解决过程必须经过下列四个步骤,即理解问题、明确任务;拟定求解计划;实现求解计划;检验和回顾。根据上述分析,数学问题解决过程可用框图示如下:以上关于问题解决的过程讨论,数学问题解决在一定的问题情境中开始,要求教师根据问题的性质、学生的认识规律和学生所学知识的内部联系,创造一种教学中问题情境,以引起学生内部的认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目的。主要参考文献

(1)张奠宙等:《教学教育学》,江西教育出版社,1991年

(2)李铭心:《数学教育学》,青岛海洋大学出版社,1994年

数学解决问题论文第7篇

问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。

一、背景和意义

19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。

什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。

有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。

从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。

简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。

问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。

二、“问题解决”的重要性

问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:

(一)时代呼唤创新

在国际竞争日益激烈的当今世界,各国政府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。

(二)我国数学教育的成功和不足

我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。

(三)数学观的发展

数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。

(四)问题解决过程和方法的一般性

在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。

三、“问题解决”和中学数学课程

问题解决在各国的中学数学课程中的引入方式各不相同,英国SMP数学课程专门设置了一种问题解决课,我国人民教育出版社出版的义务教育初中数学课程中设立了实习作业、应用题、想一想、做一做等,在高中数学试验课本中也增加了研究题等,这些和问题解决思想是一致的。笔者认为,从目前中国的实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:

(一)鼓励学生去探索、猜想、发现

要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。

学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。

无论是教科书的编写还是实际教学,在讲到探索、猜想、发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。

(二)打好基础

这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试图去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。

教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。

数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。

(三)重视应用意识的培养

用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。

当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。

此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。

(四)教一般过程和方法

在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。

由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决问题的计划,计划往往是粗线条的;3.实施计划,在实施计划的过程中要对计划作适时的调整和补充;4.回顾和总结,对自己的工作进行及时的评价。

问题解决的常用方法有:1.画图,引入符号,列表分析数据;2.分类,分析特殊情况,一般化;3.转化;4.类比,联想;5.建模;6.讨论,分头工作;7.证明,举反例;8.简化以寻找规律(结论和方法);9.估计和猜测;10.寻找不同的解法;11.检验;12.推广。

(五)创设问题情景

1.一个好问题或者说一个精彩的问题应该有如下的某些特征:(1)有意义,或有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味,有挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题是简明的,问题情景是学生熟悉的;(4)时机上的适当;(5)难度的适中。

2.应该对现有习题形式作些改革,适当充实一些应用题,配备一些非常规题、开放性题和合作讨论题。

(1)应用题的编制要真正反映实际情景,具有时代气息,同时考虑教学实际可能。

(2)非常规题是相对于学生的已学知识和解题方法而言的。它与常见的练习题不同,非常规题不能通过简单模仿加以解决,需要独特的思维方法,解非常规题能培养学生的创造能力。

(3)开放性问题是相对于“条件完备、结论确定”的封闭性练习题而言的。开放性问题中提供的条件可能不完备,从而结论常常是丰富多彩的,在思维深度和广度上因人而异具有较大的弹性。