欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

物联网的技术开发(合集7篇)

时间:2023-10-11 10:10:31
物联网的技术开发

物联网的技术开发第1篇

[关键词]航天靶场;物联网;IP网;装备;信息资源

中图分类号:TP301文献标识码:A文章编号:1008-1739(2016)02-71-4

1引言

航天靶场是国家用于进行航天发射活动和战略武器试验的专门场所,其发展建设水平的提高对于国家综合实力的提升具有重要意义。近年来,随着我国航天科技事业不断取得新的进步,航天靶场的发展建设规模也逐步扩大,新型试验设施与试验装备的种类和数量大幅增加,物资器材的流动与消耗也更加频繁,装备信息资源已成为靶场日常管理和任务组织的重要组成部分。如何对试验设施设备、物资器材等参试装备进行高效的精细化管理与使用,随时掌握相关的数量、质量等信息,以便使之以最佳的状态完成任务,一直是各级管理部门和技术人员考虑的问题。在当前的建设规模下,由于靶场地域分布广及设备器材数量多,仅依靠传统的人工操作方式进行装备信息资源管理和应用,已经无法适应靶场的发展进步。随着靶场信息化条件建设的进步,物联网技术在靶场的应用已具备了现实的基础条件,依靠信息技术特别是物联网技术对靶场装备信息资源进行高效整合和开发利用,进而实现对大量的试验装备进行精确管理已成为可能。

2装备信息资源开发利用的内涵

就航天靶场而言,装备是指靶场为了实现所承担的火箭、卫星和战略武器等航天器发射试验活动而使用的各种机械、仪器、仪表、工具和配件等设备和器材的总称。大到一座火箭发射塔架,小到一把螺丝刀,都可以囊括到“装备”这一概念中。装备信息包括了单个装备的编号、名称、类型、材料、组成部分、生产厂家、出厂日期、主要功能、技术性能指标及使用维护记录等等诸多要素。可以说,装备的价值必须通过装备信息才能体现,而对于装备的使用,也必须掌握足够的装备信息才能得以实现。随着时间的推移,装备信息的内容也在不断的发展变化。在当前的形势下,随着职能使命的拓展和任务量的增加,航天靶场装备的数量总的来说呈上升趋势;同时,随着技术的发展进步,装备的复杂度、可靠性和使用寿命也基本上都呈上升趋势,其相应产生的结果是整个装备信息的爆发式增长。大量不断发展变化的装备信息进行汇集,就形成装备信息资源。对于靶场来说,装备信息资源是一笔宝贵的财富,其中包括了整个靶场各类型装备的信息要素,是靶场技术水平和战斗力的重要体现。科学、高效的进行装备信息资源开发利用,就是要将庞杂、零散和枯燥的海量装备信息进行科学统筹,通过数据分析的方法进行规律探索,从而掌握整个航天靶场的装备实力状况,实现持续提高完成任务的能力。

3现状与需求

按照航天靶场现有的管理体制结构和任务组织指挥模式,装备的采购和配发等职能一般由业务机关负责,而装备的使用和维护等职能由基层单位负责。装备正式列装后,即成为使用单位的固定资产,自装备开始使用直至退役报废的整个周期中,产生与装备相关的各类信息资源,主要包括初始信息资源与过程信息资源两大类。初始信息资源在装备出厂时配套产生,具体内容包括装备的研制总结报告、出厂测试记录、技术性能说明和使用/维护说明等;过程信息资源在装备使用过程中产生,具体内容包括装备的安装交付记录、操作规程、操作使用记录、维护保养记录、升级改造记录和故障维修记录等。目前,各类装备信息资源主要采用纸介质记录,大多由岗位专业人员以手工方式进行填写,各种技术资料及记录文件随装备存放。

如果管理人员及技术人员需要全面了解掌握装备的相关信息,只能通过到现场查看随机文件和翻阅工作记录,向岗位操作人员进行询问,并现场开机运行以检查装备具体技术状态等方式进行。在这种模式下,装备信息资源的管理和应用水平都较为落后,具体不足表现在:①大量信息以纸质方式保存,未实现数字化和信息化;②信息资源大量分散,相互之间缺乏关联,“碎片化”特征明显;③缺乏信息资源网络,信息难以在岗位间有效共享,资源利用率低;④缺乏信息资源应用平台,信息的检索、查询和保存手段落后,效率低下;⑤缺乏完整的信息资源数据库,无法实时掌握装备实力的整体运行状态。装备信息资源管理和应用水平的落后,直接导致装备自身可能长期闲置,有效利用率不充分,处于分散状态的大量装备难以形成合力;且不同部门、岗位间会因信息障碍而导致重复建设,从而造成资源浪费。根据建设“信息化”航天靶场的总体思路,作为靶场战斗力重要组成部分的装备信息资源,必须朝着数字化、网络化和智能化处理的方向发展。靶场要以信息化手段改变装备信息资源的产生、处理、应用和存储等环节,并深入挖掘装备信息资源的有效价值,从而使装备的建设运行成本和故障率得到降低,装备的管理效率和使用效率得到提高,使其更好的服务于单位战斗力的生成。

4装备信息资源开发利用

物联网建立的初衷就是为了实现“物与物”之间的智能信息交互,从而使其中的关联设备具有“智慧”,实现自动识别和交流,同时大大降低人工劳动强度。物联网从概念推出至今,技术发展和实际应用水平已大大提高,靶场也已具备物联网建设和运行所需的基础网络条件。利用物联网进行航天靶场装备信息资源开发利用是一种先进、合理及可行的实现途径,其中的关键技术环节主要包括信息资源获取、信息资源传输与汇集和信息资源处理等。

4.1总体设计

装备信息资源开发利用的整个系统组成结构包括装备附属的条码或标签、阅读器、用户端PC、传输网络和服务器等,实现过程主要包括注册录入、信息维护和综合利用3个环节。为了实现对装备的全寿命和精细化管理,应在装备配发或经采购到达靶场后,即为其分配一个唯一的、固定的代码,分类根据装备的主要功能和用途进行[1],代码按照装备标识的编制原则和方法进行[2]。代码确定后,生成条码或标签,将其粘贴固定于装备外表面。同时,设立专门的数据服务器,为每一台套装备建立各自的“电子档案”,实现对装备信息资源的集中处理和存储。装备不论是在库房存放,或是在机房运行,或是进行维修升级,每一次发生信息变更时,在维护端PC机通过多功能阅读器识别装备身份或手工录入装备身份代码后,进入装备信息编辑状态,并将变更结果通过网络上交,存储到服务器端数据库中。系统为维护端PC、浏览端PC和服务器端分配不同的用户权限,对应不同的用户操作界面。

4.2信息资源获取

物联网中信息资源获取的方式除了一维条码识别、二维条码识别和RFID标签识别外,还包括摄像头和传感器等。条码或标签与装备一一对应,用于标识装备的身份信息;摄像头用于实时采集装备工作的现场图像;传感器用于感知装备所处工作环境的特征信息。一维条码由一组黑白相间、粗细不同的条状符号组成。在一个方向上通过“条”与“空”的排列组合来存储信息,所以称为“一维条码”。二维条码用特定的、按一定规律在平面(二维方向上)分布的黑白相间图形来记录数据符号信息。一维条码识别的缺点是信息容量小,优点是成本低,读取直观,且适合在外表面积较小的装备上粘贴[3]。二维条码可以记录550个以上的汉字信息[4],同样成本较低,但缺点是读取不直观,只适合在平整的装备外表面粘贴使用。相对于条码技术,RFID标签识别的信息容量大大提高,可进行信息的读取与写入,并能实现远距离非接触式识别,但成本远高于条码识别。根据航天靶场的实际应用环境,对于万用表、示波器和监视器等自身技术状态相对简单,信息变更量较少的一类装备,适合采用一维或二维条码作为身份标识,条码中仅保存装备的编号信息;对于雷达等技术状态复杂和信息变更量较多的一类装备,适合采用RFID标签作为身份标识,标签中保存设备的关键技术状态信息,且与服务器端数据库同步更新。需要进行信息资源获取时,由人工手持便携式多功能阅读器靠近装备上的条码或标签进行扫描,阅读器将所识别的装备代码传输至维护端PC,维护端PC采用C/S(客户端/服务器端)模式或B/S(浏览器端/服务器端)模式与服务器端进行通信。维护端PC主要用于对装备信息进行更新维护。初始状态时,由操作人员将装备的出厂日期、主要功能和技术性能指标等基础信息进行录入;运行状态时,由操作人员将装备的使用操作记录、维护保养记录和维修升级记录等动态信息依时间顺序进行录入。为了更加精准的对装备进行区域定位,每台阅读器也分配不同的特征码,对应相应的工作区[5]。阅读器进行装备代码扫描后,维护端PC向服务器端进行装备信息上报时,同步上报对应的阅读器特征码,实现对装备当前位置的确定。

4.3信息资源传输

信息资源的传输包括维护端PC上报至服务器端、服务器端反馈至维护端PC、服务器端反馈至浏览端PC三种方式,均依托靶场IP网进行。维护端PC需要进行信息上报时,先从阅读器中获取装备代码,由代码进行程序驱动后打开对应的录入界面,操作人员将需要上报的信息按约定格式进行录入后,通过网络提交至服务器进行存储。为了实现装备信息资源的共享,系统可为维护端PC和浏览端PC分配全局访问权限,实现对整个系统中所有注册装备信息资源的开放式浏览。出于保密和信息安全的考虑,进行资源访问前需先使用预先分配的认证用户身份进行登录,且只具备信息浏览权限,不能对信息进行任何形式的更改。用户浏览可采用树状结构浏览和条件检索浏览等多种方式。按树状结构浏览时,所有注册装备可按“区域—系统—专业”三级结构进行归类,用户可依次浏览所需了解装备的履历、配置和性能等所有信息;按条件检索浏览时,用户可以装备代码和装备名称等作为条件按需检索浏览相关信息。

4.4信息资源汇集与处理

装备信息资源的汇集与处理主要在服务器端完成,具体包括装备信息的接收存储、请求响应和数据统计等方面功能,所有信息资源以数据库的形式进行集中存储。服务器端配置装备信息资源管理软件,实现对数据库的访问控制和数据管理。装备信息自维护端PC上报之后,服务器便以装备代码作为特征量在数据库中进行检索,将上报信息增加到该装备代码所对应的存储区,同时保存信息的上报时间。信息来源于不同的阅读器及维护端PC,可以说,服务器是整个装备信息资源开发利用系统的核心要素。为了实现数据安全,必须采用磁盘镜像对数据进行实时热备份,确保数据资源的可靠存储。PC机对服务器提出浏览请求后,服务器端的管理软件先对请求的合法性进行判断,将非法用户的访问拒绝,对合法用户的请求按照其类型进行相应响应,反馈所需的信息内容。服务器端集中了整个靶场的装备信息资源数据库,通过专用的数据处理软件,可从专业、系统、列装时间、归属单位、存放区域、生产厂家和故障率等等多个角度进行直观的数据分析与统计,从而掌握整个靶场装备的全时域信息,并寻找出装备管理工作中的科学规律。

5结束语

基于物联网技术进行航天靶场装备信息资源开发利用研究,既符合信息化建设的发展要求,也具备可行的现实条件。物联网技术的应用,降低了人员的工作强度,减小了差错的发生率,有利于提高值勤维护和装备管理水平。通过装备信息资源的开发利用,一方面大大提高了装备管理部门的工作效能,便于快捷掌握靶场装备的整体状态;另一方面也极大方便了各级专业人员学习、了解和掌握靶场装备的相关信息,使分散在不同区域和岗位的人员能够通过网络实现全方位的技术交流。当然,装备信息资源的开发利用不仅仅是技术层面的工作,也需要相应的工作制度做保障。

参考文献

[1]GJB7000-2010,军用物资和装备分类[S].

[2]GJB7001-2010,军用物资和装备品种标识代码编制规则[S].

[3]李俊宏,湛邵斌.条码技术的发展及应用[J].计算机与数字工程,2009(12):116-117.

[4]高彦受,许春根.安全实用的二维码研究与实现[J].技术研究,2012(10):48.

物联网的技术开发第2篇

通过实训系统的综合技能训练,能够培养物联网方面的高级技术人才,并且学生毕业后可就业于与物联网相关的企业

尽管近年来开设物流专业的院校都已建有一定规模的实训中心,但目前基于物联网技术应用的实验实训条件建设还很欠缺,尤其是面向企业需求的物联网综合应用实训。大多数院校仅仅是物流管理软件的应用或物流系统的模块化操作,先进一点的也仅有用管理软件驱动硬设备件实现系统集成,且系统中信息采集方式比较单一,条码是主要的数据采集手段,基于RFID技术和传感技术的集成应用平台目前还不多见。为提升物流专业学生信息化应用水平,我院协同专业的软件公司,集中抽调了一批既具有物联网技术开发与应用经验,又具有深厚理论基础的教师、工程师共同合作开发了“基于物联网技术的物流实训系统”,为物联网技术、物流管理、物流工程、连锁经营等专业的学生提供一个实战化的职场环境。

实训系统的开发目标

本系统的开发目标是:在学校的实验室内,搭建起一个以生产企业为主导、集供应、仓储、配送、运输、销售等物流节点于一体的供应链仿真平台,并将此“平台”当作舞台,通过任务引导、环境模拟、行动参与、亲身体验、情景感触等多种生动活泼的实验教学方式,培养学生身临其境地在针对岗位、流程、任务的实践中,熟练掌握最新的物流信息技术在供应链管理中的应用,如:管理信息系统、多种传感技术、条码制作和扫描设备应用、手持RF信息采集终端、带gps和温控设备的运输管理系统等。

通过实训系统的综合技能训练,能够培养物联网方面的高级技术人才,并且学生毕业后可就业于与物联网相关、的企业、行业,从事与物流供应链管理或物联网相关的工作。

实训系统需解决的主要问题:如何使用RFID技术、传感技术、3G传输技术、虚拟现实与多媒体技术、人一机一环境系统技术、GPS定位等,实现供应链管理中的原材料供应、仓储管理、生产管理、运输管理、销售管理以及售后服务管理中的业务流程优化。如何与自动仓储系统、生产系统、电子标签拣选系统、POS系统等相集成,建立更为强大的信息链,实现在准确的时间及时传递准确的数据,进行各种在线测量及支持质量控制。如何设计基于物联网技术的供应链系统总体架构以及信息集成方案。

实训系统的开发流程

基于物联网技术的实训系统以企业真实业务流程为基础,针对一个典型物流企业的供应链管理系统,构建一个面向上下游企业之间供应链管理的物联网技术应用框架,将3G传输技术、RFID技术、温度传感器、压力传感器、GPS定位、车辆数据采集、警示和远程控制终端等应用在各个环节,在中间件基础上增加与第三方应用软件的接口(为管理信息系统提供数据接口)。使各种应用软件与RFID中间件数据互通互联,构成一个基于物联网技术的物流综合实训平台。

系统开发的具体设计流程为:在供应链管理业务流程上,建立基于RFID的供应链系统体系结构,包括基于RFID的供应链组建系统、运行系统和软硬件系统。在精益制造环节,利用RFID电子标签预测原材料供应需求,并对原材料进行实时跟踪;应用RFID的在制品跟踪系统构成无看板的拉式生产解决方案;并利用嵌在缓冲货架上的标签阅读器监控零部件消耗状况,及时向上游发送信号通知生产补充零部件。在仓储管理环节,应用RFID电子标签及温度传感器对商品在仓储管理中的温度变化自动记录,出入库数据实时采集、传递、核对和更新。在物流运输过程中,应用GPS、GIS实现车辆跟踪定位、利用RFID+温度传感器集成技术实现产品标识和运输途中的温度自动采集,实时掌握运输过程中的温度变化。在超市终端销售时,利用RFID电子标签记录的数据可追溯、查询产品的全供应链信息。集成基于物联网技术的供应链管理平台信息,具体包括RFID系统的数据流关系、数据处理方法以及供应链数据商业价值挖掘。

实训系统可实现的功能

整个实训中心可分为8个功能区,分别是教学区、职能区、智能运输区、自动化仓储区、电子标签拣选区、柔性生产区、智能超市区和存货区。学生可在职能区扮演不同的管理角色体验对供应链各环节的决策和控制,实训系统既能分模块实训,也可基于典型工作任务开展综合实训项目。

实训系统可分解为6个模块化实训,具体内容包括:

物联网感知与获取需要RFID读写设备,智能RF手持终端,电子价格标签,智能购物车等。

基于物联网技术的仓储管理系统。使用RFID技术/无线传感网实现收货验货:使用RFID固定读写器进行收货、验货,确认产品编号、订单编号、数量、产品型号一致,并检验运输过程恒温情况。状态信息通过无线传感网在读写器与控制中心、管理系统之间进行数据交换。使用RFID技术/无线传感网实现库内作业:库位、托盘用RFID标签代替条码,使用RFID读写器实现入库、出库、移库、盘库作业。状态信息通过无线传感网在读写器与控制中心、管理信息系统之间进行数据交换。

基于物联网技术的运输跟踪与监控系统。用一辆带有车载GPS终端的运输货车在特制的轨道上模拟冷链物流运输,车辆在运输状态时,可实现车厢内部的温度、湿度、震动、视频,车厢外的视频信息的监测,冷藏车厢温度的控制,经过集成传感器的采集处理,实时通过Wi-Fi. 3G网络无线上传到上位机管理层面,为物流运输管理、调度规划提供数据。系统可通过网络将信息储存、统计、提取处理、数据分析、报警提示,具有信息回溯、追踪定位功能。在实际应用中,可广泛应用于农副产品、食品、危险品、特种产品的运输环节中,实时把握车辆的最新状态,便于监控、调配,危险时刻,上位管理层可做出提示、警示,反馈控制车厢温控系统,必要时可实现远程关闭车辆的发动机,防止灾害的发生。

基于物联网技术的生产管理系统。使用RFID技术跟踪原材料使用:原材料收货时以箱(或托盘)为单位贴RFID标签,记录供应商、采购单号、入库时间、入库库位,在配送到工位时,记录生产批号。使用RFID技术跟踪生产加工的过程:生产线上线、下线两处安装RFID识读设备,并在产品或托盘上放置可反复读写的RFID电子标签。这样,当这些产品或托盘经过这些节点的时候,RFID读写设备即可读取到产品或托盘上标签内的信息,并将这些系统实时反馈到后台生产管理技术系统中,制造商就能很轻松地及时了解生产线的详细工作情况。使用RFID技术记录质检数据:生产成品进行质量检测,并通过RFID标签记录质检信息,作为质量追踪所用。

基于物联网技术的智能超市系统。使用RFID实现收货、验货:参考仓储环节的收货验货。使用智能购物车实现自动定位选货、销售自动结帐:自动定位显示出商品实时位置,出售的货物经过RFID门禁或账台实现自动化结算,系统自动更新库存信息以及客户历史购物资料,从而避免经常出现排长队结帐的现象。

基于物联网的供应链管理系统。通过一个典型企业在生产环节、运输环节、仓储环节、配送环节、零售环节引入物联网技术,实现产品从生产到零售整个生命周期的全程跟踪。RFID技术为实现供应链上各个节点之间的高效协同和信息共享提供了技术平台。通过RFID触发事件管理来实现协同;通过对无线标签的信息读写实现信息共享。带有电子标签的货物进出通道口的时候,RFID标签能够发出无线信号,把信息立即传递给无线射频阅读器,传递到供应链经营管理部门的各个环节上,于是车间、仓库、运输途中,甚至超市货架上的有关商品的货物动态就可以一目了然,实现商品在整个供应链环节中监控和跟踪管理。

物联网的技术开发第3篇

1.1企业需求调研

深人了解物流企业(广西丽都物流有限公司、广西南宁南都物流有限公司、广西昊晟国际物流有限公司)仓储管理过程,均发现现在的物流企业普遍存在耗时长、效率低、成本高的问题。

1.2系统的设计阶段

根据市场调研结果,为企业生产线仓储管理的每一个过程设计相应的实施模块,保证企业在运用系统时能够与企业生产紧密结合。

1.3系统代码编写阶段

根据系统的设计模块需求,使用RFID自动识别技术、E-DI交换技术代码访问安全性指定基性类CodeAccessSecuri-tiesAttribute等技术进行、系统代码编写,本研发采用通用的RUP保证了实施质量。在一些CPM上和关键实施单元,大量米用了敏捷建模(AgileModeling,AM)和极限编程(ExtremeProgramming:XP极限编程),大大地提高了研发的实施效率。

1.4系统测试及试点

首先对研发的系统进行相关扣程序测试,其次通过中试阶段后,将系统实地进驻广西丽都物流有限公司、广西南宁南都物流有限公司、广西昊晟国际物流有限公司试点考察。

2.基于物联网技术的仓储管理系统的设计

    2.1总体目标设计

2.1.1基于物联网技术的仓储管理系统主要功能该系统主要功能包括人库管理、出库管理、在库管理、财务管理和仓库管理。实现五项关键技术:多途径全方位自动采集物资信息;有线无线网络无缝切换;在多种终端与系统平台之间安全同步传输数据;建立仓库全景3D;面向用户角色生成报表。

     2.1.2分布架构

基于WebSERVICES多层分布式架构,集成移动APP应用,支持不同地点、不用的用户使用系统而不受任何影响。系统开发完成后将会使企业储能力库存和发货正确率进一步提高;同时库存和短缺损耗减少,劳动、设备、消耗等费用降低。这些最终都给物流仓储企业带来实在的经济效益。

2.2基于WebServices多层分布式架构

系统的设计开发采用通用的RUP(RationalUnifiedPro¬cess),保证了系统开发和实施的质量,同时在一些CPM(CriticalPathMethod,关键路径法)上和关键实施单元’大量地采用敏捷建模(AgileModeling,AM)和极限编程(ExtremeProgramming:XP极限编程)。

系统可以本地部署,也可以运行于云端,仓库也许分布于全国各地,但是都可以有个性化设置。云服务架构只需进行简单配置,就能够适应客户需求,并且他们之间还能有效协作,同时系统把二维码、条码、FFID进行整合,把温度传感器、上湿器和WMS进行整合,打通控制和管理系统的壁垒,真正实现双向控制智慧物联(如图1所示)。

2.3功能模块设计

物联网智慧仓储管理系统主要功能模块如图2所示。

2.3.1后台管理系统

(1) 用户管理。一个用户可以属于多个组,一个组可以包含多个用户。用户组相当于部门的概念(用户组每次层次的概念,也就是说用户组不能包含用户组)。(2)权限管理。“权限管理”是对用户(职员)或部门(用户组)授予用户对业务系统的使用权限。授权成功,用户登录业务系统,系统将按照权限分配用户(权限取用户和用户组并集,可以理解为最大权限)可使用功能。(3)系统管理。工作计划设置成功后有两方面用途,系统会根据计划协作请求发送当班用户(职员),用户(职员)登录业务系统后可以了解自己和其他用户(职员)排班情况。

    2.3.2仓储管理系统

(1) 入库管理。人库管理主要包括“入库申请、入库结算、入库验货、入库订单管理”四大功能块,主要业务流程如图3所示。入库申请有两种方式:①以导入外部EXCEL订单;②手工录人订单。

(2) 出库管理。出库管理主要包括“出库申请、出库结算、出库验货、出库订单管理”四大功能块,主要业务流程如图4所示。出库申请有两种方式:①以导人外部EXCEL订单;②手工录人订单。

(3)在库管理。在库管理主要包括“盘点管理、移库管理和过户管理”三大功能块,仓管员制定盘点和移库计划,业务员负责受理过户业务,主要业务流程如图5所示。

    (4) 仓库管理。仓库管理主要包括“货物管理、容器管理、收费设置、车辆管理、排班计划、智能报表”等几大功能块。①货物管理:添加、删除和修改仓库可以存储的货物类别(货物类别分级管理)。添加、删除和修改货物类别下属货物种类。仓库管理过程中的货物,必须是巳定义的类别或货物。②容器管理:分类管理不同货物需要的包装容器。仓库管理过程中,必须使用已定义的容器。③收费设置:设置系统的收费产品、费率和折扣。仓库管理过程中,必须使用已经定义的收费产品。④车辆管理:添加、删除、修改和査询车辆和司机信息。⑤排班计划:用户可以实时查看工作计划,当前在岗人员情况,方便工作协作。系统会根据真实的工作计划,把系统消息和协作请求推送给在岗工作人员。⑥智能报表:通过数据建模、统计分析和CrystalReports技术,面向不同角色用户,定制化、自动化提供各种二维、三维报表。

(5) 客户管理。客户管理主要包括“客户信息、1C卡管理、统计査询”三大功能块。①客户信息:系统可以服务的对象必须是系统的注册客户,在这里可以添加、修改、删除和査询客户信息。②1C卡信息:管理客户1C卡信息,在这里可以为客户办卡或为1C卡充值。充值完成后,系统也可以通过1C卡结算。③统计查询:系统可将客户相关信息全部或部分进行统计汇总分类,并可以实时查询到客户及货物的相关物流信息。

3主要技术‘施

    3.1 WebService架构

WebService臬基于网络的、分布式的模块化组件,它执行特定的任务,遵守具体的技术规范,这些规范使得WebService能与其他兼容的组件进行互操作。InternetInter-OrbProtocol(HOP)已经了很长时间,但是这些模型都依赖于特殊对象模型协议、而WebServices利用SOAP和XML对这些模型在通讯方面作了进一步的扩展,以消除特殊对象模型的障碍。WebServices主要利用HTTP和SOAP协议使商业数据在Web上传输,SOAP通过HTTP调用商业对象执行远程功能调用,Web用户能够使用SOAP和HTTP通过Web调用的方法来调用远程对象。

3.2 JAVA语言J2EE标准

J2EE核心是一组技术规范与指南,其中所包含的各类组件、服务架构及技术层次,均有共同的标准及规格,让各种依循J2EE架构的不同平台之间,存在良好的兼容性,解决过去企业后端使用的信息产品彼此之间无法兼容,企业内部或外部难以互通的窘境。

J2EE组件和“标准的”Java类的不同点在于它被装配在一个J2EE应用中,具有固定的格式并遵守J2EE规范,由J2EE服务器对其进行管理。J2EE规范是这样定义J2EE组件的:客户端应用程序和applet是运行在客户端的组件;JavaServlet和JavaServerPages(JSP)是运行在服务器端的Web组件;EnterpriseJavaBean(EJB)组件是运行在服务器端的业务组件。

3.3 移动ANDROIDSDK

Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发。Android操作系统最初由AndyRubin开发,_主要支持手机。2007年11月,Google与84家硬件制造商、软件开发商及电信营运商组建开放手机联盟共同研发改良Android系统。随后Google以Apache开源许可证的授权方式,了Android的源代码。第一部Android智能手机于2008年10月。Android逐渐扩展到平板电脑及其他领域上,如电视、数码相机、游戏机等。

3.4物联网IOT应用

3.4.1物联网

物联网是新一代信息技术的重要组成部分。其英文名称是“TheInternetofthings’’。由此,顾名思义,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网就是“物物相连的互联网”。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。

3.4.2条形码

条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。

二维码(2-dimensionalbarcode),又称二维条码,最早起源于日本,它是用特定的几何图形按一定规律在平面(二维方向)上分布的黑白相间的图形,是所有信息数据的一把钥匙。在现代商业活动中,可实现的应用十分广泛,如:产品防伪/溯源、广告推送、网站链接、数据下载、商品交易、定位/导航、电子凭证、车辆管理、信息传递、名片交流、wifi共同享等。

3.4.3射频识别

射频识别即RFID(RadioFrequencyIDentification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频(125~134.2K)、高频(13.56MHz)、超高频、微波等技术。RFTD读写器也分移动式的和固定式的,目前RFID技术应用很广,如图书馆、门禁系统、食品安全溯源等3.4.4第三代移动通信技术

第三代移动通信技术(3rd-generation,3G),是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及数据信息,速率一般在几百kbps以上。3G是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,目前3G存在四种标准:CDMA2000,WCDMA,TD-SCDMA,WiMAX。

4.系统测试及分析

4.1完全基于WEB的应用

系统利用J2EE平台开发,采用B/S架构,系统在外网服务器上(222.73.181.109:60888),用户可以通过IE浏览器、CHT0ME、360浏览器(222.73.181.109:60888)即可打开系统登录页面,在登录页面中输人用户名、密码及验证码,进人到系统,操作系统功能,真正实现了SAAS服务模式的应用。

4.2多途径全方位自动采集

系统在收货人库、入库验货、库存盘点等各系统功能环节中使用条码、二维码和RFID作为货物采集标识,系统定义了一套基于EDI数据交换的标准结构,以实现上行对客户、厂家,下行对财务系统、GPS系统、短消息平台等实现标准化接口,保证了系统的开放性。

4.3仓库全景3D和智能报表

通过HTML5实现了3D可视化仓库操作。通过数据建模、统计分析和CrystalReports技术,面向不同角色用户,定制化、自动化提供各种二维、三维报表。实现了面向出人库业务、面向客户、面向财务和面向仓库的动态三维报表。

4.4系统具有友好的人机界面,操作简单方便,界面形象简洁

系统功能菜单实现上采用现代物流通用术语模块功能简单、易用,真正做到了会用电脑、了解物流就能够使用系统。界面设计上主要以方便、简洁、实用等几个方面人手,目前已得到试用公司的良好评价。

4.5具有良好的模块化集成及多层体系结构

软件系统分为多层架构。DBE—数据引擎,RE层一转发引擎,WEX—WEB数据交换层,各个层相互数据调用又保持相对独立,从而保证软件系统的模块化,耦合程度低的特点,降低系统复杂度过高而出BUG的概率。

4.6多途径全方位自动采集

利用条码、二维码、RFID、GIS和GPS技术,实现人库、出库、验货、盘点、调拨、移库等各个环节物资数量、位置信息的全方位感知和自动采集。

4.7双向物联

通过利用10转换技术实现电信号和数字信号双向转换,打通监控、广播和仓储管理系统的双向互联,实现真正意义上的M2M应用。

物联网的技术开发第4篇

关键词:物联网;食品安全;溯源;系统开发

中图分类号:TP393 文献标识码:A

文章编号:1005-913X(2015)09-0071-01

一、研究的目的及意义

食品安全溯源系统可以追溯“从源头到餐桌”中的各个环节的全部信息,是从生产到最终消费建立起完整的一套可溯源性食品信息,从而可以追究相应环节违法者的法律责任。

目前,我国食品安全超标、检测和环保体系以及监管追溯信息平台不健全、法律法规缺失等问题严重存在。食品安全事件不仅引发大量食源性疾病,造成严重的经济损失,而且,造成生产力水平下降,经济效益减少。并且,食品安全事件增加医疗费用,造成国家财政支出上升,从而影响社会经济发展,最终威胁国家安全和社会稳定。对于食品安全的管理,我国只是在控制食品生产的加工过程中采取了一些方法,并没有将食品供应整个环节连接起来。传统的方法是采用食品检验,对食品供应的关键环节进行控制等手段,但由于管理不严,并且操作失误和人工误差,经常会导致效率低下和出错率较高等问题。为了确保全国人民的食品安全,有效控制食源性疾病的爆发,在我国建立食品跟踪、管理、追溯的“源头到餐桌”的信息溯源体系,将对食品行业的发展产生巨大的影响,是我国解决食品安全问题的一种非常重要方法。

二、国内外研究情况概述

全球已有四十多个国家采用相关系统进行食品溯源,特别是英国、日本、法国、美国、澳大利亚等国,均取得了显著成效。我国食品安全问题不断出现,食品溯源体系建设与完善在我国越来越受到关注和重视。但目前我国整体上食品安全追溯技术体系仍然不尽完善,一旦食品安全出现问题,很难实施有效追溯,进行控制与召回,这一问题急待解决。

三、研究内容

(一)技术架构设计

WEB平台主要功能:对采集设备记录信息数据的查询、系统配置管理、溯源码/防伪码申请;数据采集设备主要功能:数据的录入;二维码打印系统(打印机 + 打印软件)主要功能:获取溯源码/防伪码图像进行打印输出;智能手机平台:扫描溯源码/防伪码,查询相关信息。

系统设计模式遵循以下原则:单一职责原则、开放闭合原则、里氏替换原则、依赖倒置原则、接口隔离原则。

系统多层结构的技术组成模型:表现层、中间层、数据层。

(二)功能设计

四、研究方法:主要技术路线

(一)RFID信息技术采集

食品追溯管理系统将利用RFID先进的技术并依托网络技术、及数据库技术,实现信息融合、查询、监控,为每一个生产阶段以及分销到最终消费领域的过程中提供针对每件货品安全性、食品成分来源及库存控制的合理决策,实现食品安全预警机制。

(二)WSN物联网技术

WSN(无线传感器网络)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。而构成WSN网络的重要技术,zigbee技术以其低复杂度、自组织、低功耗、低数据速率、低成本的优势,逐渐被市场所接受。

(三)EPC全球产品电子代码体系

EPC的全称是Electronic Product Code,中文称为产品电子代码。EPC的载体是RFID电子标签,并借助互联网来实现信息的传递。EPC旨在为没意见单品建立全球的、开放的标识标准,实现全球范围内对单件产品的跟踪与追溯,从而有效提高供应链管理水平、降低物流成本。EPC是一个完整的、复杂的综合的系统。食品溯源系统将结合EPC技术,把所有的流通环节(包括生产、运输、零售)统一起来,组成一个开放的、可查询的EPC物联网,从而大大提高对食品的追溯。

(四)物流跟踪定位技术(GIS/GPS)

要做到食品追溯,就要贯穿整个食品的过程,包括生产、加工、流通和销售,全过程必须严格控制,这样才能形成一个完整的产业链的食品安全控制体系,以保证向社会提供优质的放心食品,并可确保供应链的高质量数据交流,让食品行业彻底实施食品的源头追踪以及在食品供应链中提供完全透明度的能力。因此,物流运输环节对于整个食品的安全来说就显得异常重要。

参考文献:

物联网的技术开发第5篇

1 物联网技术

物联网其英文全称为“The Internet of things”,又称传感网。从字面上不难理解其含义为物品与物品之间的互联网。其中它包含了两层意思:1、物联网的基础仍然是互联网,它是在互联网的基础上的扩展和延伸的网络。2、其用户端可以衍生到任何物品与物品之间,使其进行信息交换和传递。

2 物联网技术下高校安全管理系统的设计

学校物联网说的是在以往的学校信息化的前提下,凭借学校的网络为基础,利用物联网技术对学校的各种环境、资源、建设等多个方面和阶段进行全面的管理,从而提高校园安全的管理,用最高的效果来实现学校的各个方面的所有活动。

凭借着物联网技术为基础的学校安全管理系统,为学校创建新型、高效率的安全综合治理技术平台,找到用技术促进管理,用管理促进技术的发展的总体安全管理的最新方法。系统会为提高校园安全水平,降低安全潜在的危险,保障资金和财产安全,立刻发现事故并且马上通知警方,和事故发生之后责任的判定、审查和决定提供了技能的支撑,为我们国家的教育事业的蓬勃发展提供便利的条件。

物联网技术下的校园安全管理系统依靠了现如今就有的数字学校环境,着重创建以实现所有校园功效的物联网,而且在这个基础上创建视频监督控制、学校广播等系统,体现校园的整体管理。从体系的结构上可以分成:物联网基本设备、IP传递网络、管理和应用平台和安全认证等四个部分,示意图如图所示。

这个物联网技术下的平台是学校安全管理体系的指挥管理核心,是所有体系的中心。一般来说包括主要的数据库、安全管理网络站点和通知警察平台三个层面。安全管理网络站点可以让不一样身份的人来对安全进行管理和查询;数据库一般来说的用途是对于数据的保存,用这样的方式来记录、管理,并且在事故发生之后进行监督和管理;通知警察的平台的主要用途是在事故产生以后。按照类别、性质发动短讯息、广播和声音和光电信号;这个平台依靠整个数据库对于信息的筛选对安全管理创造便利的条件。

最后一个层次是认证层,这个平台的作用是为所有人提供安全的认证体制,它是用IDAP数据库为核心的,按照使用者不一样的目的来提供刚刚可以满足要求的界面。

3 物联网技术下的学校安全管理子系统的创建

3.1 学校车辆通行系统的创建

在物联网技术的支持下,能够在任意时间都可以知晓学校内部车辆的信息,对于来往学校的车辆进行整体的安全管理,而且还能够随时知晓学校停车位的使用状态。使用这样的一个系统能够对车辆进行动态的分析,使用者凭借这个系统就可以查询学校中还有多少个停车位,就能够对于车辆进行有效的引导。这个体统能够在很大程度上提高车辆的管理效率,降低人员管理的分配,并且也让学校中的车辆井井有条,能够做到停车有秩序、行驶有规律,收费有凭据。

可以系统可以运用FRID卡,并且分成长期卡和临时卡两个类别,功能如下:

长期卡一般来说提供给在校的员工和长期使用的人来使用,卡的里面记载着车主的信息;

临时卡只提供给临时进入学校的人员使用,只需记录好进出的时间、车位号等就可。

这个提供按照功能份还可以分成两个子系统:车辆进入校园管理子系统和停车位子系统。后者的原理是在停车位下面安装无线传感器,这样就可以感应到车位是否有车。而前者可以对车流量、状态等进行统计,具有效率高、安全措施强等特点。

3.2 学校门禁管理系统的创建

这个用学校的IC卡就可以实现,也是一种基本的设备。这种系统利用了CPU卡,运用了这种卡的授权、监督控制等功能,可以对学生在学校所有空间的进出管理进行监督和控制,现如今这种系统在高等学校进行了普遍的应用。

这种系统的工作方式是通过分析管理体制、同学的生活习惯、行为方法等特征,设计出一种符合高校时间规律的CPU卡的管理系统,这样就能够对于同学初入各种场所进行控制、监督、记录等,可以对学生的安全提供保证。

这种门禁系统分为三个层次,分别是IC卡、门禁调控系统和管理系统。这个系统的实用范围可以是学校的所有地点,比如说校园宿舍、教学楼、办公室、实验室等等,一旦实现覆盖,那么学校的安全将会得到极大的保障。

不同的地域的使用在管理调控方法、安全性需求、报警方法等方面都有着不一样的需求。门禁卡的使用人非常的广泛,可以是学校的老师、同学、服务人员、访客等等,不一样的使用者在使用的时间、次数、范围等方面也非常不一样,同时也具有不一样的特征。所以说,这个系统一旦投入使用要先制定要IC卡的分发程序,不一样的人员按照性质的不一样由不一样的机构提供不同的权限,这样才能保证卡的正常使用。

4 结束语

在物联网技术的支持下,所有的系统都在摸索的创建中,我们有理由相信在物联网技术已经发展到几天的条件下,能够让校园安全管理更加的成熟。在综合治理安全的统一平台的管理下面,结合以往的视频监督控制、报警设备和安全管理有关工作的体系,完全的发挥最前沿子系统和后台的数据库系统,能够在学校的安全防护方面有着一种质的突破。相信在现如今的物联网 技术的发展下,可以更好的为高校安全管理保驾护航,为学生的安全提供有力的保障。

参考文献:

[1]曾庆勇.基于物联网技术的校车安全管理系统[J].计算机系统应用,2012(8).

物联网的技术开发第6篇

关键词:物联网;监管安全;电子身份识别卡

于监狱而言,罪犯定位信息管理是监管安全工作中的一大难点。传统的人防要求,需要民警高度的责任心,同时也对监狱管理者提出了诸多难题。物联网技术正蓬勃兴起,借助物联网的有关技术,开发相关管理软件,网格化析分管理区域,可以实现准确、即时、有效的定位管理。该系统的开发对于创新监狱管理机制,提高监狱监管安全管控力度,实现“科技强监”、“科技强警”目标,有着积极的现实意义。

1 项目名称、研发背景及其意义

1.1 项目名称:基于物联网技术的罪犯网格化管控系统

所谓“基于物联网技术的罪犯网格化管控系统”,就是应用现代日益成熟的物联网技术,将监狱特定管理区域依照一定的标准划分成为单元网格,通过对单元网格内罪犯主动(被动)[1]携带的电子身份识别标签信息的读取,对该区域的安防信息进行巡查、监督和处置,以实现单元区域之间数据共享、信息共用、资源整合、动态跟踪、全面覆盖的软件系统。

1.2 项目研发背景

安全是监狱履行刑罚执行职能的首要前提,加强现场管控力度是实现监狱安全的最基本手段之一。近年来,随着信息化建设步伐的加快,各地监狱都相继建立起安全防范系统,与信息系统进行了关联应用,在一定程度上实现了安防信息化,但对狱内罪犯进行有效的定位和管理的水平还亟待提升。随着物联网技术的日益成熟,当前对罪犯进行定位管理、越界管理、行为识别管理,以及将各个安防系统进行有机整合等已经成为可能。

1.3 项目的实施意义

一是有助于提升“四防一体化水平”。该系统借助物联网技术,通过对罪犯的网格化管理,有效提高人员分布情况的自动化和智能化查询、管控水平,减少一线民警的简单重复、机械性劳动,降低民警的工作强度,提高警务效能,有效杜绝脱管失控的隐患和漏洞,将管理方式从被动处置问题向主动发现问题转变,并借助系统及时解决问题,从而促进监狱管理水平进一步提高,最终实现人防、物防、技防和联防“四防一体化”。

二是优化警力资源管理。无疑,借助该系统所构建的管理平台,可以有效减少一部分循环、重复的民警管理岗位设置,比如巡查、督察、零星罪犯的带进带出等,使警力得以投入到更需要的岗位,从而实现对警力资源的有效配置。

三是提升监狱信息化系统的应用水平。当前,各地监狱已基本完成了信息化的基本建设,但各信息系统的信息集成和共享的水平还有待于提高,借助现有的网络、信息数据库等基础系统,积极开发适用、小型、经济的软件系统,丰富系统功能,提升应用水平,有助于体现信息化的效益、秩序原则。

1.4 该项目解决的实际问题

当前针对在押犯的管理,普遍存在如下难题和问题:

一是难以准确、实时、动态地掌握罪犯位置和人数。狱内罪犯的流动区域涵盖监舍、教学场所、劳动车间、医院、会见室等多处,根据直接管理的要求,每个区域都需要民警准确掌握其数量、方位以及是否有非法进出特定区域、非法靠近关键设施等行为。当前该项管理工作主要靠民警人工清点,且无法提供历史轨迹情况。

二是对陌生罪犯身份进行即时识别。监狱督察组成员遇有单独活动的罪犯,仅靠罪犯口述及番号牌比对,无法准确验证真伪。对于本监区人员,民警实现全部、准确掌握,也有难度。

三是对临时离群的罪犯的监控难度大、成本高。尤其是在个别罪犯临时离开集中管理场所,如接见、就诊等,都需要民警单独带押,人数变化无法及时准确统计并实现最大范围的周知。

2 项目的基本功能

系统可以实现罪犯的定位管理,借助自动点名、报警管理、轨迹回放和查询统计等辅助功能,改善监狱管理方式,提高民警工作效率,提升安全系数。

2.1 自动点名功能

系统定时自动对指定区域内罪犯进行扫描,读取该罪犯所佩带的电子标签身份信息,自动上传至系统后台,与后台数据进行比对,从而实现自动点名及罪犯的区域定位,从而帮助民警即时掌握其管理区域内的人员流动情况。

2.2 巡更功能

系统根据监狱实际区域分布,划定单元范围,经民警手持点名机,实现补点名和确保人、卡和座位三者合一。点名时,手持点名机按照路线对3-5米范围内持卡罪犯进行点名扫描,待手持点名机放回终端时,系统对罪犯姓名等基本信息进行自动检索,建立巡更记录,并及时显示漏检、漏巡方位。手持点名机还具备及时提醒民警点名和即时报警、显示人数功能。

2.3 人员定位信息功能

系统自动实时、动态显示各指定区域内的罪犯及动态信息。

2.4 报警功能

如出现异动情况,如人数无授权异常流动、人数比对不符等情况,系统自动逐级上传报警信息,民警根据分级授权,进行相应处理。

3 项目的系统架构

3.1 物联网的技术架构

物联网是一种内容复杂、形式多样的系统技术。根据信息生成、传输、处理和应用的原则,从技术架构上物联网可分为三层:感知识别层、网络层、应用层。其技术架构如图所示:

⑴感知识别层。感知识别是物联网的核心,是联系物理世界和信息世界的纽带。感知识别层既包括射频识别(RFID)、无线传感器、摄像头等信息自动生成设备,也包括各种智能电子产品用来人工生成信息。RFID是能够让物品“开口说话”的技术:RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现识别和管理。另外,作为一种新兴技术,无线传感器网络主要通过各种类型的传感器对物质性质、环境状态、行为模式等信息开展大规模、长期、实时的获取。

⑵网络层。物联网的网络平台建立在现有的移动通信网、因特网和其他专网的基础上,通过各种接入设备与网联网感知层相连接。物联网接入技术包括有线(双绞线、光纤和同轴电缆等)和无线(2G、3G、卫星通信以及蓝牙、Wi-Fi、ZigBee、WiMax等)接入两大类型。

⑶应用层。应用层主要包含应用支撑平台子层和应用服务子层。其中应用支撑用于支撑跨行业应用、跨系统之间的信息协同、共享、互通功能,包括公共中间件、信息开放与信息交换平台、云计算平台和数据存储、数据处理和智能分析智能决策等服务支撑平台。应用服务子层包括精确农业、智能交通、智能家居和公共安全等行业应用。应用层利用经过分析处理的感知数据为用户提供丰富的特定服务,以实现智能化识别、定位、跟踪、监控和管理。

3.2 物联网技术在监狱罪犯网格化管理中的应用

物联网各层之间既相互独立又联系紧密。在应用层以下,同一层次上的不同技术互为补充,适用于不同环境,构成该层次技术的全套应对措施。而不同层次提供各种技术的配置和组合。总而言之,技术的选择应以应用为导向,根据具体的需求和环境,选择合适的感知技术、联网技术和信息处理技术。因此,根据监狱场所的特殊行业要求以及罪犯特殊群体的管理特点,可依托物联网技术建构“监狱罪犯网格化智能管控系统”。该系统的总体架构如下图所示。具体架构相应如下:

⑴感知识别层技术的采用。参照物联网的技术架构,针对监狱工作的实际状况和具体应用需求,结合各种识别与定位技术的研究分析,可选用基于RFID(Radio Frequency Identification)射频识别技术以实现自动身份识别、位置跟踪、预警和自动报警、应急指挥,规范狱内罪犯的行为,使用安全可靠的信息采集方式来监控、追踪、识别罪犯,将信息系统中的个人信息和现实中的个人真正关联起来,实现实时追踪和报警。

⑵网络层技术的选用。各种不同类型的网络适用于不同的环境,合理提供便捷的网络接入,是实现物物互联的重要基础设施。根据当前监狱网络安全需要,一般不采用无线接入技术。

⑶应用层技术的选用。RFID子系统负责采集佩戴在罪犯身上的射频卡或电子腕带中的数据,获取并保存人员的实时位置,将实时报警信息传递给报警管理服务;人员网格化智能管理应用子系统提供对人员位置信息的应用服务与管理,包括人员出入受控区域的监控、自动点名、人员定位、人员动态监控、行动轨迹回放、报警管理服务等。此系统还可以支持继续升级,例如,将来可借助该技术,建立罪犯行为分析系统,通过对罪犯长期行为进行对比分析、关联分析、分类和预测等数据挖掘方法,了解到高危人员的一些违规、危险行为,或者反映特定心理特征的行为,并对这些行为进行监测,及时提出预警,以达到预防和及时处置重大事故发生的目的。

4 项目的关键技术

4.1 射频识别技术(RFID技术)

该技术是一种非接触的自动识别技术,其利用了射频信号或空间耦合(电感或电磁耦合)传输特性的基本原理,通过无线射频方式实现非接触双向数据通信,识别并获取目标的相关数据,实时、准确、快速采集与处理目标物品的信息。该技术具有非视觉范围读写、寿命长、信息量大和抗干扰能力强等优点,在交通运输控制管理、商业自动化、防伪、工业自动化和门禁管理等众多领域有广泛应用。该技术涉及到能耗管理技术、射频定位技术、RFID中间件、系统防碰撞和安全防护等相关技术。

4.2 基于J2EE架构的面向服务的体系结构SOA技术

Java EE是开发可伸缩的、具有负载平衡能力的多层分布式跨平台应用的理想平台。J2EE技术为平台的可移植性、独立性、安全性提供了保障,并且提供了并发的机制,具有较高的性能。基于J2EE平台,可有效提升系统的可靠性、可复用性和可移植性。Java EE体系内的EJB、Java Servlet、JSP、JDBC、JNDI、JTS/JTA、JMS等技术,为构建基于B/A/S(浏览器/应用服务器/数据库服务器)纯三层架构的应用系统提供了稳定的平台。面向服务的体系结构(SOA)是互相通信(例如从一个服务向另一个服务传递数据或协调一个或多个服务之间的活动)的服务的集合,是一个灵活的体系结构,是在计算环境下设计、开发、应用、管理分散的逻辑(服务)单元的一种规范。该系统将分布在网络中的软件资源看作是各种服务,旨在提供面向技术的解决方案,而不必考虑其后台实现的具体技术、具体运行平台、具体物理位置甚至其内部的通讯协议,从而表现出更好的业务灵活性。J2EE是一套全然不同于传统应用开发的技术架构,包含许多组件,可简化且规范应用系统的开发与部署,进而提高可移植性、安全与再用价值。J2EE核心是一组技术规范与指南,其中所包含的各类组件、服务架构及技术层次,均有共通的标准及规格,让各种依循J2EE架构的不同平台之间,存在良好的兼容性,解决了以往用户后端使用的信息产品所存在的无法兼容的弊端。

4.3 服务总线技术

服务总线(Enterprise Service Bus,ESB)是用于将异构应用集成在一起创建业务流程的新的基础设施,它通过将消息、XML、Web服务、数据路由技术来等完成多个应用节点连接,并协调应用间的互动,是一种灵活的、可扩展的分布式计算模型。采用服务总线技术,所有的应用都被作为服务来对待,它们之间通过消息进行交互,应用者不需要知道基础的通信协议或者物理位置,从而更能适应需求的变化。ESB支持多种标准接口,有更好的伸缩性,而不像Web服务那样仅仅利用SOAP/HTTP协议传递服务请求和应答的信息。一方面,它可以用于部门内部应用的集成,如通过JMS、JCA组合已有的J2EE应用,以及通过某些专有的适配器连接专有应用(如SAP),由于无需跨越防火墙,这种集成方式具有较高的效率;另一方面,它也可以用于部门对部门的应用集成,通过包括SOAP在内的各种接口方式连接异构应用,可以跨越部门之间的防火墙,而无需为此编写额外代码,实现多个应用系统之间应用的无缝集成。ESB是从逐步出现的企业通信、互联、转换、面向服务的应用构建、可移植性和安全性等标准中演化而来的,其目标是创建一个真正基于标准的企业级应用骨干网,用来部署业务过程处理系统、协同系统和分布式业务解决方案。ESB是一个实现了通信、互连、转换、可移植性和安全性标准接口的企业基础软件平台。ESB由中间件技术实现并支持SOA的一组基础架构功能,支持异构环境中的服务、消息以及基于事件的交互,并且具有适当的服务级别和可管理性。

4.4 Web Service技术

Web Service不是一种框架,而是一种技术。Web Service是由企业的完成其特定商务需求的在线应用服务,其它公司或应用软件能够通过Internet来访问并使用这项在线服务,它是一种构建应用程序的普通模型,可以在任何支持网络通信的操作系统中实施运行。它是一种新的web应用程序分支,是自包含、自描述、模块化的应用。Web Service是一个应用组件,它逻辑型地为其他应用程序提供数据与服务。各应用程序通过网络协议和规定的一些标准数据格式(HTTP、XML、SOAP)来访问Web Service,通过Web Service内部执行得到所需结果。Web Service可以执行从简单的请求到复杂商务处理的任何功能。一旦部署以后,其它Web Service应用程序可以发现并调用它部署的服务。官方的解释就是:Web Service主要是为了使原来各孤立的站点之间的信息能够相互通信、共享而提出的一种接口。Web Service可以执行从简单请求到复杂业务处理的任何功能。Web Services要使用两种技术:XML和SOAP。XML提供在Web上传送结构化数据的方式,Web Service以一种可靠的自动方式操作数据,XML可以使Web Services十分方便地处理数据,可以使内容与表示方式进行分离;SOAP使用XML消息调用远程方法,这样Web Service可以通过HTTP协议的post和get方法与远程机器交互。

4.5 电子地图技术

电子地图是20世纪80年代初利用计算机辅助地图制图技术而形成的地图新品种,又称为数字地图,是地图制作和应用的一个系统,是一种数字化了的地图。其显示的信息量远远大于普通地图。它可以非常方便地对普通地图的内容进行任意形式的要素组合、拼接,形成新的地图;可以与卫星影像、航空照片等其他信息源结合,生成新的图种;可以利用数字地图记录的信息,派生新数据。电子地图技术科学、准确、直观,大大提高地图应用效率。

4.6 数据挖掘技术

数据挖掘(Data Mining,DM)是20世纪80年代末期新崛起的一门学科,是目前国际上数据库和信息决策领域最前沿的研究方向之一。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘技术伴随着数据仓库技术的发展而逐步完善;以数据库、人工智能、数理统计、可视化四大支柱技术为基础;数据挖掘主要涉及三个方面:挖掘对象、挖掘任务、挖掘方法,挖掘对象包括若干种数据库或数据源,例如关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据库、多媒体数据库、历史数据库,以及万维网(WEB)等,挖掘方法可以粗分为:统计方法、机器学习方法、神经网络方法和数据库方法,数据任务是指从数据集合中自动抽取隐藏在数据中有用信息,其表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现(KDD Knowledge Discovery in Database)的过程,它是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。

5 项目的应用前景

一是该项目可集成于监狱安防平台,通过对罪犯的定位管理,强化对其动态控制,突出区域管控,提高监管安全系数,提高民警工作效率,实现“科技强警”目标。

二是该项目可应用于对劳务外协人员及车辆的定位管理。

三是该系统可吸收、集成视频监控、门禁控制、生物识别、智能分析、数据挖掘等新型技术,建立以人员管理为核心的监狱综合管理业务模型。

物联网的技术开发第7篇

根据司马煤矿企业设备管理的需求分析,设计了界面友好、操作方便的点检仪应用系统,该系统基于物联网技术,可以实现人员定位,可读取点检区域设备的RFID标签,并根据RFID标签采集无线传感器节点数据,显示设备的温度、振动等状态信息,然后将测量结果通过WiFi网络实时传输到B/S系统,由云计算服务器分析统计设备信息,并将设备维护工作指令回复到终端装置,使现场工作人员能够正确维护设备,保证设备长期在最优状态下运行。整个应用系统按功能分为6个模块:人员登录模块、RFID区域卡模块、点检工作模块、系统通信模块、辅助功能模块、本机设置模块,通过图形界面的方式实现人机交互,如图1所示。(1)人员登录模块:分为账户密码模式和RFID识别模式,点检人员身份验证成功后,可下载点检任务数据和故障体系数据。(2)RFID区域卡模块:点检数据根据点检区域卡划分人员点检任务,每个区域卡规定一个RFID号,通过RFID区域卡模块读取RFID卡号,并与点检数据进行匹配,匹配成功后可进行点检数据采集。(3)点检工作模块:通过点检作业标准进行数据采集,对点检异常数据进行故障表查询,并按照作业单标准进行检修作业。(4)系统通信模块:实现点检基础数据、点检作业标准、故障体系和检修作业标准的下载和点检采集数据的上传。(5)辅助功能模块:实现振动、温度数据的采集,并可通过输入法模块实现Win CE软键盘界面的切换。(6)本机设置模块:实现电压数据的采集并显示电量信息,通过时间设置模块校准点检仪时间,通过参数设置模块完成数据存储时间、位置等的设置。

2系统的测试

点检仪应用系统开发完成后进行测试,验证点检的各项功能是否实现。在测试环境下建立Win CE仿真器平台用于运行软件界面,并建立SQLCE服务器平成客户端和服务器的连接和同步。在数据库中录入人员信息登录成功后进入点检工作界面。首先测试区域卡读取是否正常,区域卡的读取有RFID读取和软键盘输入两种方式。区域卡RFID号读取后进行验证,验证正常则自动回到点检工作界面,验证失败则显示“验证失败”并需要进行重新输入,如图2所示。点检区域卡读取成功后即点检员已经到位,点检仪界面切换到点检工作界面。点检工作界面主要有4种工况:观察值的读取、数值数据的读取、温度值的测量、振动值的测量,如图3和图4所示。在点检仪各项功能测试正常的基础上,需要对点检仪与服务器进行通信功能的测试,完成点检仪从服务器端下载基础数据、点检作业标准数据等工作,最后点检仪将点检完成数据上传至服务器端数据库的点检交互作业。首先打开点检仪的WiFi连接进入无线网络,再打开数据同步页面连接服务器,输入服务器IP、端口号、数据库用户名和密码,登录成功后进入CERP设备管理点检定修系统,如图5所示。同时点检仪端可下载基础数据和点检作业标准,图6显示了成功下载设备类型、部门信息、人员信息等基础数据的状态,图7显示了全部岗位点检工作标准下载完成,数据下载成功的测试状态。

点检任务完成后与服务器端连接并进行上传操作。图8显示了主通风机房日检区域上传数据完成后,点检仪显示“全部上传成功”。此时登陆后台ERP系统查看,可清楚地看到该区域点检数据已经上传,并显示了漏检的数据以及异常的数据。

3结论