欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

物联网信息安全论文(合集7篇)

时间:2023-03-16 16:30:32
物联网信息安全论文

物联网信息安全论文第1篇

1.1物联网信息特点

终端设备的异构性,使得物体属性在建模上存在差别,导致不同物体对数据的识别、对信息的描述产生较大差异;而终端数量的庞大规模,又会导致在采集和处理数据时,容易产生海量数据。数据受多种因素制约,产生位置的分散性、形式的差异性都给信息描述带来了不便之处。例如,以监测森林区域的着火点为例,对温度的描述,不同的采集系统可能采用华氏温度,或摄氏温度,作为采集单位,那么在处理时就面临数据统一性的问题。不同的应用对采集点的数量、存储空间的要求都有不同。大量的数据在不同采集点之间复制,由于传输线路、传输介质等客观因素,也会影响到网络通信带宽。在数据传输阶段,短距离的无线传输是物联网中普遍采用的技术,而无线传输由于其扩散性,使得信息、数据被盗窃的几率大大增加。物联网应用在不同层次对数据的使用都提出了复杂的要求,使得信息安全问题更为棘手,也更加受到重视。

1.2信息安全的传统要求

国际标准化组织把信息安全定义为“信息的完整性、可用性、保密性和可靠性”,控制安全则指“身份认证、不可否认性、授权和访问控制”。完整性强调数据的防篡改功能,可用性强调数据能按需使用,保密性强调数据在授权范围内使用,可靠性则强调系统能完成规定功能。在物联网信息处理的各个环节,这些要求应当得到满足。例如,在数据感知技术中普遍采用的RFID,在阅读器和RFID标签之间进行数据传输时,由于标签的运算能力非常弱,且两者之间采用的是无线方式通信,恶意用户通过克隆、重放、中间人攻击等手段,从而达到窃听、修改数据的目的。

2物联网应用对传统的信息安全提出的新要求

通常认为物联网中的实体都部署有具备一定感知能力、计算能力和执行能力的嵌入式芯片和软件,即“智能物体”。终端的智能化,使得物联网中的信息安全面临更多的挑战。下面列举几个实例加以说明。

2.1智能物体更易暴露隐私

近年来屡见不鲜的手机用户信息遭遇泄露,只是隐私权遭到侵害的实例之一。定位技术的日臻成熟,使得诸如智能化手机等智能物体的应用也日趋普及,与之相关的LBS(LocationBasedServices)为生活带来极大便捷。通过LBS,可确定移动终端所在的地理位置,更重要的是能提供与位置相关的信息服务。这些信息服务能够对“什么人”“什么时间”在“什么地点”从事过“什么活动”做出精确描述。如果攻击者通过某种途径获取到信息服务,那么,合法用户的隐私信息必将一览无遗。

2.2设备可靠性要求得到更高保障

传感技术是信息技术的支柱之一。经过VigilNet、智能楼宇等应用的验证,传感器在数据采集方面的功能已毋庸置疑。物联网应用中也普遍采用传感器作为感知层的重要设备。大量部署的无线传感器节点在传统的传感器基础上,集成了智能化的处理单元和无线通信单元,能够分析、处理、传输采集到的数据。无线传感器网络的部署方式影响传感器网络的覆盖质量、网络拓扑结构、网络的连通性和网络的生存时间等性能。受到通信能力和处理资源的限制,在传统的无线传感网络基础上,研究者开发出CSN(认知传感器网络),即“认知无线电传感器节点的分布式网络”。受传感节点的物理特性、部署环境等制约,且认知无线电所用频谱具有不确定性,CSN的安全问题也面临着更为复杂的挑战。

2.3无线接入增加了数据传输风险

日益成熟的无线通信技术,例如Wifi、3G、4G技术,因其具备的廉价、灵活、高速等特性,在数据传输中具备独到优势,成为物联网主流的接入方式之一。但也面临空间环境对无线信号传输的影响、同频信号之间的相互干扰问题,以及如何应对无线接入的开放性。无线信道的使用方式,决定了信息易被窃听,甚至被假冒、篡改。在物理层和链路层,采取相应的安全措施。

3对物联网信息安全的解决思路

海量终端节点的异构性、多态性,数据传输方式的差异化、立体化,高端应用的多样化、复杂化,涉及感知、存储、传输、处理和应用的每一个细节。完善物联网信息安全,需要从不同层次出发,综合运用多种安全技术。

3.1安全标准

技术意义上的标准就是一种以文件形式的统一协定。如本文前言所述,物联网本身缺乏统一标准,在一定程度上也影响了物联网安全的标准化进程,但是从另一方面,也更加证明了制定统一安全标准的必要性,使其能更加有效地服务于物联网建设。标准化工作的推进,需要有国家法律法规的支持、行业企业的率先垂范,并注重网络用户安全意识的培养。

3.2防护体系

物联网安全防护应考虑数据产生到信息应用的每个阶段,从分层、分级等不同维度,设计安全防护体系。

3.3技术手段与应对方法

不同层次、不同级别采取的安全措施不尽相同,彼此互为补充,形成整合性的安全方案。结合层次特点、级别要求,对关键安全技术做简要说明。

1)各类RFID装置、传感设备、定位系统等,为“物体”标识自身存在、感知外界提供基础保证,也是海量数据产生的源头。无线传感网络的脆弱性、受限的存储能力、频段干扰、RFID标签与阅读器之间的安全与隐私保护,通过采取PKI公钥体系、IDS系统、PUF等技术进行安全保障。

2)IETF小组在设计IPv6时强化了网络层的安全性,要求IPv6实现中必须支持IPSec,使得在IP层上对数据包进行高强度的安全处理,提供数据源地址验证、无连接数据完整性、数据机密性、抗重播和有限业务流加密等安全服务。移动网络通信中使用的UMTS网络基于双向认证,提供对接入链路信令数据的完整性保护,并且密钥的长度增加到128bit。

3)未来的云计算服务将为用户提供“按需服务”,实现个性化的存储计算及应用资源的合理分配,并利用虚拟化实例间的逻辑隔离实现不同用户之间的数据安全。基于云计算的数据中心建设,为数据挖掘等数据的智能处理提供了高效、可靠的物质基础。

4)物联网提供多样化的集成应用,对业务的控制和管理比较突出。建立强大而统一的安全管理平台是实现业务有效管理的一个思路。基于上述安全模型和技术手段,用户、管理者可以从不同层次来开发或使用不同的安全措施。例如针对接入终端的差异性,采取基于身份标识的终端认证。终端认证机制为用户提供物联网终端与网络之间均双向认证。根据设备类型特点,设计终端设备与接入网网关之间的接口协议,并在此基础上根据不同的需求来设计共享密钥或随机密钥。一个直接的例子,是在应用日渐广泛的智能停车系统中,设计车锁与钥匙之间的安全通信。车锁与钥匙可以作为两个对等终端,配备存储器件、无线接口、密码SoC等功能模块,双方通过射频进行通信。密码SoC的安全性将直接影响到产品的功能和质量。

4结语

物联网信息安全论文第2篇

1.1物联网应用者隐私安全问题

日常生活中,物联网被应用到所有领域,所有的物品都可能随时随地的连接到网络上,而物品的拥有者不一定能觉察,他将不受控制地被定位、追踪,不可避免地带来许多个人隐私泄露问题,这无疑是对个人隐私的一种侵犯。这不只是涉及到网络技术问题,严重的还会上升到法律问题,从而产生纠纷等等一系列问题。所以,在现今的物联网时代,怎样预防财产信息、个人信息不被不法分子盗用,维护个人信息的安全性和隐私性,成为现今物联网发展道路上需要扫清的重大障碍。

1.2物联网感知节点的本地安全

物联网系统感知节点相对简单存在一定的安全问题。欠缺有效的监测管控手段以及相关设施,同时节点总量较为复杂庞大,传送的消息和信息也没有固定的标准,使得它们无法具备复杂的安全保护能力。但物联网技术可以代替人来实现一些繁琐、机械和危险的工作,因此物联网为了减少人力消耗和危险性大多数用来做一些远程控制,机器设备基本上会安置在无人监管的环境中。这样便可令进攻者、入侵者快速地找到并影响该类设施、设备,从而进一步对其造成破坏影响,高手还可以利用本地操作进行相关软硬件系统设施的变换,势必将造成很严重的后果。

1.3射频识别技术(RFID)的安全问题

射频识别技术(RFID)是一种非接触式的自动识别技术,在物联网应用中起到非常重要的作用,由于射频识别技术(RFID)标识缺乏自身保证安全的能力,这种非接触式的无线通信存在非常严重的安全问题,致使攻击者或者入侵者可以通过发射干扰信号使读写器无法接收正常的标签数据,造成通信拒绝服务。同时射频识别技术(RFID)读写器要与主机通信,那么射频识别技术(RFID)本身也可以成为攻击的对象。因此,射频识别技术(RFID)本身存在很多安全问题,影响了物联网的应用。

2物联网信息安全的防范措施

根据物联网的组成及其特点,结合物联网信息安全隐患的具体情况,提出以下几个方面加强物联网信息安全防范的措施:

(1)完善的感知层操作规章制度。首先要保证物联网具备一定的自我修复功能,即便物联网的感知层或者设备受到不法攻击,物联网可以通过自身的修复系统对其进行修复,以降低由此造成的损失,同时还需要在节点的建设过程中适当的增加备用节点的数量。而且还需要对物联网的管理权限进行合理的设置,避免非专业人员对物联网的关键环节进行更改,同时还需要严格加强物联网管理人员的身份认证制度。

(2)物联网的安全防护。物联网自身的安全性能决定着物联网的安全防护能力,因此需要从物联网的协议、设备等方面予以加强。要从物联网信息传输的协议层出发提高其安全协议的级别,以更好的增强物联网的自我保护能力。同时还要提高物联网传感器节点相关硬件设备的安全协议级别,以降低物联网遭受攻击的机率。

(3)物联网信息安全的制度建设。物联网的大规模普及亟需相关配套制度的建设,因此相关的政府和管理需要尽快出台和完善相关的法律法规,对破坏物联网信息安全的行为做出具体的惩罚措施,以更好的规范物联网的发展,降低物联网发生破坏的机率,保障物联网更好的发展。

3结语

物联网信息安全论文第3篇

关键词:物联网;信息安全;教学内容;教学方法

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)13-0078-02

物联网(Internet of Things)是一个交叉性学科。物联网产业在中国得到了蓬勃发展,但就物联网技术本身来讲,物联网并非是全新的技术应用,它是信息技术发展到一定阶段的必然产物。一方面,人民对美好生活的不断追求提出了人物互联和物物互联的需求;另一方面,现代信息技术的快速发展也使得各类物体连入互联网成为可能。物联网是一种聚合性技术应用创新,其关键技术,如射频识别技术(Radio Frequency Identification,RFID)、传感器技术、无线网络技术等大多都是前些年都已经出现并得到深入研究的技术。这些技术也在物联网大发展的环境下得到了更深入的研究和更广泛的应用。物联网人才的培养是物联网发展的根本要素。我国非常重视对物联网专业人才的培养,教育部早在2011年起增设了“物联网工程”新专业,不少高校都已经开始招收“物联网工程”专业的学生。在物联网产业繁荣发展的背后,物联网的安全问题也逐渐显现并引起了人们的重视。物联网是建立在互联网基础上的,互联网本身存在的诸多安全隐患在物联网时代依然存在。并且由于物体也直接连入互联网,物联网的安全问题会直接影响到实体安全,所以物联网所面临的安全问题比互联网更加复杂和严重,成为了物联网进一步推广应用的主要障碍。考虑到物联网对未来我国经济和社会发展的重要性,以及物联网安全对未来我国信息安全和国家安全的重要意义,高校有义务和责任重视培养物联网安全方面的人才,物联网安全相关课程也应该成为“物联网工程”专业学生的必修课。物联网安全课程的教学没有成熟的经验可以借鉴。通过对物联网安全问题的研究,以及对信息与网络安全课程多年教学经验的积累,经过多方调研,我们对物联网安全课程的教学有自己的一点浅见,下面分别就物联网安全课程教学内容和教学方法进行探讨。

一、物联网安全课程教学内容

物联网是一门交叉学科,涉及到RFID技术、无线传感器网络技术、通信技术、计算机技术等。物联网安全也涉及到各种技术自身的安全和整个系统聚合应用的安全。对比互联网,物联网大致可以划分为三个层次。第一个层次是感知层,负责信息的感知和采集。第二个层次是网络层,负责远距离信息的可靠传输。第三个层次是应用层,负责对信息的分析、处理和利用。应分层讨论物联网的安全问题。另外对于信息安全的一些共性技术,如数据加密技术、安全协议理论和技术、认证技术、隐私保护技术等,也是物联网安全的核心技术,也应该作为重点进行讲授。物联网安全课程的主要内容安排如下。

1.信息安全核心技术。物联网安全是信息安全的一个特殊领域,掌握信息安全的一些核心技术,如数据加密技术、认证技术、安全协议理论和技术等,以及信息与网络安全的一些基本概念,是正确认识和理解物联网安全的前提。其中重点在于数据加密技术,这不仅是信息安全研究的重点,也是保障物联网安全的核心技术,其他安全技术或理论大多都建立在数据加密技术的基础上。

2.感知层安全技术。感知层主要通过各类感知设备和技术,如传感器、RFID、二维码、GPS设备等,从终端节点感知和收集各类信息或标识物体,并可通过短距离无线通信方式完成一些复杂的操作。相应的安全问题主要是终端设备的物理安全和短距离无线传输的安全。物联网中感知层的安全是最能体现物联网特性的部分。由于感知层终端设备一般都具有电源有限、存储空间有限和计算能力有限的特点,传统信息安全中的解决方法不能直接用于解决感知层安全问题。如在RFID系统中,传统的安全协议就不能直接用在RFID标签和RFID读写器的通信中,并且传统的安全协议设计理论和模型也不适用于设计RFID系统的安全协议。对这部分内容的教学应充分体现物联网特性,并作为物联网安全课程的重点进行讲授。

3.网络层安全技术。物联网是建立在互联网的基础上,传统的网络安全问题在物联网中仍然存在。这部分内容主要讲授传统网络安全问题,同时应兼顾物联网的特性。由于物联网系统中,大量终端节点都接入网络,导致数据量激增,并且物联网呈现多元异构的特点,在这种复杂的网络环境下保证信息的机密性、可用性、完整性、不可否认性、可控性等安全属性会带来新的挑战。

4.应用层安全技术。应用层的安全主要是多种平台、多种业务类型、大规模物联网络的安全架构设计和建立的问题以及数据安全和用户隐私保护问题。这部分讲授的重点应放在用户隐私保护方面。在物联网时代,各类物体都连入网络,而这些物体都附属于某人或组织,如果没有有效的隐私保护措施,那么通过获取物体信息就可以获得物主的某些信息或实现对物主的追踪。

二、物联网安全课程教学方法

作为新的课程,物联网安全课程的教学方法没有成熟的经验可以借鉴。我们通过深入分析和广泛调研,认为应该坚持以下原则。

1.统筹考虑,突出特色。物联网安全涉及面比较广,内容杂,教学中应该统筹考虑,突出重点和特色。不同院校“物联网工程”专业课程设置应突出优势学科和特色行业,相应的物联网安全课程教学也应突出院校的特殊行业安全需求。

2.理论与实践并重。必须重视实践环节的教学,培养学生的动手能力,坚持理论与实践并重,着力培养具有创新精神的应用型物联网安全技术人才。

3.充分发挥多媒体教学优势。利用多媒体技术演示对物联网的各类攻击以及各种安全技术在物联网中的应用,将加深学生对物联网安全技术的理解,激发学生对课程的学习兴趣,培养学生的实践动手能力。

物联网安全问题的解决对物联网未来能否在各个领域大规模应用具有决定性的作用。物联网安全有区别于传统网络安全的特性,并且物联网安全问题更加复杂紧迫。探讨物联网安全人才的培养问题,对我国物联网的健康持续发展具有重要意义。

参考文献:

[1]黄桂田,龚六堂,张全升.中国物联网发展报告[M].北京:社会科学文献出版社,2013.

[2]雷吉成.物联网安全技术[M].北京:电子工业出版社,2012.

[3]张海涛.物联网关键技术及系统应用[M].北京:机械工业出版社,2012.

[4]施荣华.物联网安全技术[M].北京:电子工业出版社,2013.

物联网信息安全论文第4篇

《物联网信息安全》教学大纲

课程代码:

0302040508

课程名称:物联网信息安全

分:

4

时:

64

讲课学时:

64

实验学时:

上机学时:

适用对象:物联网工程专业

先修课程:《物联网工程概论》、《通信原

理》、《计算机网络技术》

一、课程的性质与任务

1.

课程性质:

本课程是物联网工程专业一门重要的专业课。

课程内容包括物联网安全特

征、物联网安全体系、物联网数据安全、物联网隐私安全、物联网接入安全、物联网系统安

全和物联网无线网络安全等内容。

2.

课程任务:

通过对本课程的学习,

使学生能够对物联网信息安全的内涵、

知识领域和

知识单元进行了科学合理的安排,

目标是提升对物联网信息安全的

“认知”

和“实践”

能力。

二、课程教学的基本要求

1.

知识目标

学习扎实物联网工程基础知识与理论。

2.

技能目标

掌握一定的计算机网络技术应用能力。

3.

能力目标

学会自主学习、独立思考、解决问题、创新实践的能力,为后续专业课程的学习培养兴

趣和奠定坚实的基础。

三、课程教学内容

1.

物联网与信息安全

1)教学内容:物联网的概念与特征;物联网的起源与发展;物联网的体系结构;物联网安全问题分析;物联网的安全特征;物联网的安全需求;物联网信息安全。

2)教学要求:了解物联网的概念与特征,了解物联网的体系结构,了解物联网的安全特征,了解物联网的安全威胁,熟悉保障物联网安全的主要手段。

3)重点与难点:物联网的体系结构,物联网的安全特征;物联网的体系结构,物联网的安全特征;物联网安全的主要手段。

2.

物联网的安全体系

1)教学内容:物联网的安全体系结构;物联网感知层安全;物联网网络层安全;物联网应用层安全。

2)教学要求:

了解物联网的层次结构及各层安全问题,

掌握物联网的安全体系结构,掌握物联网的感知层安全技术,

了解物联网的网络层安全技术,

了解物联网的应用层安全技术,了解位置服务安全与隐私技术,

了解云安全与隐私保护技术,

了解信息隐藏和版权保护

1

欢。迎下载

精品文档

技术,实践物联网信息安全案例。。

3)重点与难点:信息隐藏和版权保护技术,物联网的感知层安全技术,物联网的网络层安全技术,物联网的应用层安全技术。

3.

数据安全

1)教学内容:密码学的基本概念,密码模型,经典密码体制,现代密码学。

2)教学要求:掌握数据安全的基本概念,了解密码学的发展历史,掌握基于变换或

置换的加密方法,

掌握流密码与分组密码的概念,

掌握

DES算法和

RSA算法,

了解散列函数

与消息摘要原理,

掌握数字签名技术,

掌握文本水印和图像水印的基本概念,

实践

MD5算法

案例,实践数字签名案例。

3)重点与难点:数据安全的基本概念,密码学的发展历史;基于变换或置换的加密

方法,流密码与分组密码的概念,

DES算法和

RSA算法;数字签名技术,文本水印和图像水印的基本概念。

4.

隐私安全

1)教学内容:隐私定义;隐私度量;隐私威胁;数据库隐私;位置隐私;外包数据

隐私。

2)教学要求:掌握隐私安全的概念,了解隐私安全与信息安全的联系与区别,掌握

隐私度量方法,

掌握数据库隐私保护技术,

掌握位置隐私保护技术,

掌握数据共享隐私保护方法,实践外包数据加密计算案例。

3)重点与难点:隐私安全的概念,隐私安全与信息安全的联系与区别;隐私度量方法,数据库隐私保护技术,位置隐私保护技术;数据共享隐私保护方法。

5.

系统安全

1)教学内容:系统安全的概念;恶意攻击;入侵检测;攻击防护;网络安全通信协

议。

2)教学要求:掌握网络与系统安全的概念,了解恶意攻击的概念、原理和方法,掌握入侵检测的概念、原理和方法,掌握攻击防护技术的概念与原理,掌握防火墙原理,掌握病毒查杀原理,了解网络安全通信协议。

3)重点与难点:双音多频信号的概念以及双音多频编译码器工作原理;信号编解码器芯片引脚组成与工作原理,信号编解码器芯片的典型应用电路图及软件编程。

6.

无线网络安全

1)教学内容:无线网络概述;

无线网络安全威胁;

WiFi

安全技术;

3G安全技术;

ZigBee

安全技术;蓝牙安全技术。

2)教学要求:掌握无线网络概念、分类,理解无线网络安全威胁,掌握

WiFi

安全技

术,掌握

3G安全技术,掌握

ZigBee

安全技术,掌握蓝牙安全技术,实践

WiFi

安全配置案

例。

3)重点与难点:

无线网络概念、

分类,理解无线网络安全威胁;

WiFi

安全技术,

WiFi

安全配置案例;

3G安全技术,

ZigBee

安全技术,蓝牙安全技术。

2

欢。迎下载

精品文档

四、课程教学时数分配

学时分配

序号

教学内容

学时

讲课

实验

其他

1

物联网与信息安全

8

8

2

物联网的安全体系

12

12

3

数据安全

12

12

4

隐私安全

8

8

5

系统安全

10

10

6

无线网络安全

10

10

7

4

4

64

64

五、教学组织与方法

1.

课程具体实施主要采用课堂理论讲授方式,以传统黑板板书的手段进行授课。

2.

在以课堂理论讲授为主的同时,

适当布置课后作业以检验和加强学生对讲授知识的理解和掌握;

适时安排分组讨论课,

鼓励学生自行查找资料设计电路,

并在课堂上发表自己的设计成果。

六、课程考核与成绩评定

1、平时考核:主要对学生的课程作业、课堂笔记、课堂表现进行综合考核。平时考核

的成绩占学期课程考核成绩的

30%。

2、期末考核:是对学生一个学期所学课程内容的综合考核,采用闭卷考试的形式,考

试内容以本学期授课内容为主。考试成绩占学期课程考核成绩的

70%。

七、推荐教材和教学参考书目与文献

推荐教材:《物联网信息安全》

,桂小林主编;机械工业出版社,

2012

年。

参考书目与文献:

《物联网导论》

,刘云浩主编;科学出版社,

2013

年。

《物联网技术与应用导论》

暴建民主编;

人民邮电出版社,

2013

年。

《物联网技术及应用》

薛燕红主编;清华大学出版社,

2012

年。

大纲制订人:

大纲审定人:

3

欢。迎下载

精品文档

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,

策划案计划书,

学习资料等等

打造全网一站式需求

物联网信息安全论文第5篇

【关键词】物联网;可信认证;服务

1.引言

随着信息技术的逐步深入日常生活,物联网、云计算等高新技术越来越受人们的普遍关注[1,2]。在信息技术不断发展的过程中,网络的安全性问题[3]在很大程度上影响先进技术的推广与应用。物联网作为下一代网络的重要应用,它不仅受到来自网外的恶意节点攻击,而且还来自其网络本身的安全威胁[4]。针对上述安全威胁,许多学者研究了认证机制[5]等相关的安全策略。因此安全机制从物联网的感知层、传输层和应用层三个方面加强了物联网信息传输的安全性。

通过分析物联网感知层、传输层和网络层的信息安全威胁,本文提出了基于数据服务的可信认证方案,该方案提高可信认证服务器的效率。理论分析表明,上述方案在不降低网络数据传输可靠性的同时,提高了安全机制的执行效率。

2.网络模型

根据服务器的地理位置的分布情况,文献[5]提出了基于分层的物联网安全传输模型。该模型通过物联网管理中心统一调度,实现了物联网异地安全信息传输。由于物联网是实现M2M的信息链接方式,因此实体之间信息传输十分复杂且数据量很大,因而分布式信息安全管理模型更有利于物联网的信息安全管理。

图1 物联网可信拓扑架构模型

可信的物联网拓扑架构包括:终端设备、路由器、服务器、可信认证服务器、本地服务器、数据服务器,其中一个本地服务器、一个数据服务器、一个可信认证服务器和多个服务器以及它们连接的所有终端构成一个服务单位,如图1所示。

针对可信的物联网存在终端用户的不可靠性等问题,本文提出了基于扁平化设计的服务认证机制。该方案在保证数据传输安全性的同时,保证认证服务的有效性。

3.认证机制

为了实现认证服务功能,可信物联网由三个设备实现终端设备认证服务,包括:可信认证服务器、服务器和终端设备,因此各种终端的认证过程由与之直接相连的服务器认证,认证信息来自可信认证服务器。

设可信物联网由m个服务单位构成,且每个服务单元含有终端个数为n;IDij表示终端用户的唯一身份识别,其中i=1,2,…,m;j=1,2,…, n。消息Request和Ack分别表示发送消息和接收消息。Ekey(.)和Dkey(.)表示加密算法和解密算法,其中key表示密钥。本方案将采用对称密钥算法对终端设备进行身份识别。假设相互连接的设备之间共享密钥keyij。可信物联网认证模型步骤如下:

第一步:终端设备i发送一数据报Ekey (Request,IDi,IDj)给服务器j,当服务器j收到请求信息报时,通过对应的密钥解密,获得终端设备i的数据请求;

第二步:服务器j将发送数据请求报Ekey(Request,IDi,IDj,IDk)给可信认证服务器k。当可信认证服务器k收到消息之后,通过对应的密钥解密,获得服务器j发送的消息。

第三步:可信认证服务器k返回消息报Ekey (ACK,IDi,IDj,IDk)给服务器j,服务器同样通过解密获得反馈消息,经过验证之后,获得确认消息。

第四步:服务器j返回消息报Ekey (ACK,IDi,IDj,),当终端设备i收到消息之后,利用相应密钥解密,获取通信的联络。

4.安全性分析

认证过程采用对称密钥加密机制,保证了认证信息的机密性和可靠性。同时利用服务器来完成对终端设备的认证过程,它能有效替代可信认证服务器的认证过程,从而在保证认证过程安全的同时,提高认证效率。

5.结论

通过分析可信的物联网存在终端用户的不可靠性等问题,本文提出了基于扁平化的服务认证机制。该方案在保证数据传输安全性的同时,保证认证服务的有效性和服务单位的安全性。

参考文献

[1]张丽,余华,马新明.基于物联网的农产品质量安全信息系统平台[J].中国科学:信息科学,2010,40(增刊):216-225.

[2]柯.物联网技术在道路交通安全预测中应用研究[J].计算机仿真,2012,29(1):335-338.

[3]任伟.物联网安全架构与技术路线研究[J].理论研究,2012(5):70-73.

物联网信息安全论文第6篇

关键词:物联网 改革 教学改进 建议

中图分类号:G642.0 文献标识码:A 文章编号:1003-9082(2016)11-0150-01

物联网是最近才发展起来的一个新型专业方向,由于它相对于传统的互联网而言增加了感知层,因此显得更加神奇。物联网信息安全相对于已经存在的互联网信息安全而言,又多了些新鲜元素的加入,主要是感知层设备和通讯的安全。由于物联网是一门新兴的学科,因此教学体制需要改进。

一、物联网信息安全的教学现状

1.学生对课程的困惑

对于物联网专业的学生而言,物联网和互联网的区别到底在哪里;物联网信息安全和互联网信息安全到底有什么区别。他们往往是非常困惑的,分不清它们的区别,甚至不知道为什么要把它们两者分开来讲。因此,在给学生传授这门课程的开始,就要明确告诉学生两者的区别。从讲课的经验来看,传统的文字表述或者PPT表述都不足以引起学生的兴趣,而以Flas或短片的形式传达效果更佳。

此外,学生对于学习这门课程到底有什么用处也不是很了解,因为从上课情况来看,有相当一部分学生的系统居然没有装安全软件。这部分学生中有人表示从未中过病毒,也未被人攻击过,所以,安全没有必要。

2.教师对知识的全面把握

物联网信息安全是一门涉及到密码学、计算机科学、数学、电子通讯等多门学科专业领域的课程,它需要教师自身的专业知识非常广泛,因此,对主讲教师的专业素养要求也非常高。主讲教师必须自己全方面的掌握了这些专业知识,更全更新去了解物联网信息安全动态,才能更好的传达给学生。这就需要教师本身的不断充电、更新已有知识。

3.实验环境的局限性

除了学生的不理解,教师专业功底的自我加强,还有非常重要的一个硬性条件就是:实验室操作环境的局限性。目前,这门课程的实验课基本是在实验室虚拟机上模拟操作,最开始学生还有点兴趣,基本一次课两个小时左右,学生的兴趣就快消失了。

大部分的高校实验现状是关断了实验室外网的,对于一般的编程或课程设计类课程影响不大,但是对于物联网信息安全类课程,没有实际的感知层设备,没有能引起学生兴趣的可供攻击的网站,确实有点纸上谈兵的感觉。

4.学生的主观原因

此外,有一部分学生的前期专业功底没打好,导致非对称密码学这一部分内容听不懂,后面就不愿意听;有些学生沉迷于手机创建的互联网,上理论课不听,上实验课更不主动去动手操作。这些都造成了上好这门课程的难度。

二、物联网信息安全的教纲现状

物联网信息安全这门课程一般是在大三下学期开设,放到这个学期来学习本身是没有问题的,也是合理的。但是,要学好物联网信息安全,首先必须具备一定的数学功底,因为密码学是整个信息安全的核心内容。高等数学、概率论与统计、线性代数这些课程在低年级的时候必须要掌握好。可是,有些高校物联网专业却没有系统学习概率论这些课程,这就给物联网信息安全课程的学习带来了隐患。另外,计算机网络、通讯原理、高级编程语言也必须要掌握,缺一不可;数据库理论和网站的开发也需要了解,因为在攻击网站或数据库时,如果没有专业功底,无法理解其中的原理。

三、教学改进建议

1.传达安全隐患无时不在

在给学生讲授这门课程的开始,一定要让学生明确,网络上安全隐患无时不在,不论是物联网最低层的感知层,还是中间的传输层,或是最高的应用层。小,则信息丢失;大,则经济利益损失惨重。并且,拿出实际的案例让学生清楚的了解到不注意安全带来的严重后果。

2.教师跟上科技的进步

教师首先要全面提高自己的专业素质,从基本的加解密原理,再到网络攻防技术。同时,经常逛逛黑客论坛和贴吧,关注黑客微信群和最新技术。在上课的时候鼓励学生积极主动的去接触与物联网信息安全相关的内容。感兴趣的学生可以加入到中国黑客联盟,进行更深层次的专业知识学习。

时时发生的黑客攻击事件可以传达给学生,让学生了解安全的重要性,激起学生求识的欲望。

此外,与安全相关的法律法规也有必要让学生了解,避免学生走入歧途。

3.教学大纲的改革

学校在编写教学体制大纲时,一定要明确学好这门课程的基础。在低年级学习期间,类似概率论、数据库原理、高级程序设计(任何一种编程语言都可以)、计算机网络、通讯原理等这些基础课程,必须全面系统的学习掌握。

4.实验环境的改善

开放外网是一个必需引起重视的问题。在这个智能手机横行的时代,断开实验室外网的意义真的没有那么大了。相反,如果教师创建几个可供学生实验去攻击的网站,通过外网学生能访问到,并且能对网站的相关漏洞发起攻击,这样能大大激起学生的兴趣。同时,在上实验课时由于学生较多,并且解决单个学生的问题往往耗时较长的情况下,教师未必能及时回答每个学生的问题。开放了外网,学生可以很方便的自己去搜索他们感兴趣的内容。

四、邀请安全有关公司人员介绍实例

在学校允许的情况下,可以充分利用学校教师的人脉资源,邀请与物联网信息安全相关的公司一些了解安全事件实例的专业人员,来给学生讲解系统如何被攻陷,他们又是如何应对的,以及相关公司正在进行的相关产品的研究,充分调动学生的积极性。如果条件允许,可以让学生去参观或者参与有关项目产品的开发。相比于单个教师的讲授,这种形式带来的积极影响是巨大的。

五、课程的应用前景传达

教学过程中发现学生往往不知道学习了这门课程有什么用,也不知道可以从事哪些方面的工作,或者说以后就业可以应聘哪些公司的哪些岗位。因此,上课过程中可以引导性的告诉学生,学习了这门课程可以应对哪些工作,从事哪方面的研究,或者可以去哪些高校继续该领域的深造。这些与学生切身利益相关的问题都能引起学生极大的兴趣,从而让学生更加积极主动的去学习。

参考文献

[1]邓淼磊, 刘宏月. 对物联网安全课程教学内容和方法的探讨[J]. 教育教学论坛, 2014(13):78-79.

[2]王兴华. 物联网信息安全解决方案[J]. 科技资讯, 2014, 12(16):12-12.

物联网信息安全论文第7篇

关键词:3G;物联网;安全;加密

中图分类号:TP393文献标识码:A文章编号:1009-3044(2011)31-0000-0c

Research on the Security Mechanism of Internet of Things Based on 3G Networks

SUN Chang-ming1,3, LI Ya-ping2, ZHOU Jian4

(1.School of Computer Science Hefei University of Technology, Hefei 230009, China; 2.Dept. of Information Science, Anhui Economic Management Institute, Hefei 230059, China;3. Anhui ZHONG-AO Insititute of Technology, Hefei 230031, China; work Center, Hefei University of Technology, Hefei 230031, China)

Abstrct: Security issue is an important factor in the development of Internet of Things.Internet of things based on 3G networks has its own characteristics. It has significant theoretical and practical significance that building security architecture of Internet of Things based on 3G networks,from security risk analysis, and analyzing the perception layer, transport layer security technology and implementation.

Key words: 3G; internet of things; security; encryption

1998年,“Internet of Things”的概念首次被提出,构想了一种基于射频识别(RFID)的,将任何物品与互联网相连接,进行信息交换和通信的网络。2005年11月27日,物联网的概念在国际电信联盟(ITU)了《ITU互联网报告2005:物联网》正式被提出了。原有基于RFID的构想,被扩展到通过射频识别、红外感应器、全球定位系统、激光扫描器等数据通信技术。可以看出物联网从某种意义上是互联网、移动通信网和传感网等网络的一种融合,因此,第三代移动通信系统3G通信网络也将是物联网发展的重要支撑平台。

对于网联网安全机制的研究方面,2009年,Leusse P从模块的功能的角度给出了一个物联网服务安全模型[1]。HamadF着重对物联网安全体系中的数据安全及隐私保护进行了研究[2],2010年,杨庚,许建等从信息安全的机密性、完整性和可用性等三个基本属性出发,分析了物联网安全的特征和面临的安全问题,讨论了物联网安全的系统架构[3],武传坤,从不同层次分析物联网的安全需求,搭建物联网的安全体系架构 [4],孙玉砚、刘卓华等提出了一种面向3G接入的物联网安全架构,最后详细介绍了已实现的面向3G接入的物联网安全验证系统[5]。

本文对基于3G平台的物联网安全保护问题进行研究,从网联网区别于传统IT系统的安全风险分析入手,探讨其安全需求和安全技术,形成相应的安全体系结构,并着重探讨分布式认证、无线加密技术。

1 安全风险分析

网联网在体系结构上主要分为:应用层、支撑层、传输层和感知层4个层次,不同的层次面临着不同的安全风险和安全需求,从物联网与传统的IT系统比较看,物联网应用特有的安全问题主要有:在末端设备信息被非法读取;末端设备及其数据的非法冒名;末端阻塞、损坏或无法连接。由此可见,物联网与传统IT系统在安全保护方面,主要的不同之处集中于物联网的末端设备和末端网络。可以说感知层的安全问题是物联网发展应用的首要问题[6]。

因此,本文将研究的重点放在物联网感知层、传输层的安全研究上。对于基于3G平台的物联网感知层、传输层安全风险,本文主要将其分解两个部分,一是3G的接入风险,二是末端无线传感网络的信息安全。

1.1 3G接入风险

3G的接入风险主要集中在物联网的传输层和感知层,这部分的安全机制主要为用户和无线传感器网络的网关节点提供安全的3G移动通信网络服务,因此面临的主要安全风险有:

1)分布式拒绝服务攻击(DDOS)

随着互联网的不断发展,利用一批受控制的机器向另一台机器发起攻击成为可能,DDOS攻击就是通过使网络过载来干扰甚至阻断正常的网络通讯。作为物联网应用的载体3G通信网络,互联网遇到的DOS攻击和分布式拒绝服务攻击(DDOS)也将在3G网络中继续存在。

2)身份仿冒攻击

当物联网把海量的客观物品与信息传输网相连接,从而进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理时,身份仿冒、中间人仿冒等风险将不可避免。同时,由于物联网更加直接地获取、存储、传递、处理个人或组织的信息,因此如何正确、可靠地标识客观物品或主体,抵御仿冒攻击是确保物联网信息安全的重要环节。

1.2 无线传感网络的信息安全风险

物联网是互联网、移动通信网和传感网等网络的融合,因此无线传感网络的信息安全风险主要体现跨异构网络的网络攻击,从信息安全的角度可以将无线传感网络的信息安全风险界定为以下4个方面:1)信息被窃取:非法用户或程序进入网络系统,占用合法用户的资源,非法获取机密信息。2)信息被篡改:对于加密的信息,非法用户的窃取并不能直接损害机密信息,但是非法用户或程序可以通过修改、删除、插入等方式破坏原有信息,从而达到损害他人利益的目的。3)信息被丢失:信息的丢失主要有传输故障、终端设备故障以及非法删除等原因而丢失。4)信息被仿冒:信息仿冒与3G接入风险中仿冒攻击在本质上是相同的,不同之处在于,接入中的仿冒主要体现为身份仿冒。

2 安全体系架构

由于物联网中不同的层次存着这不同的安全风险、安全需求和安全技术,因此物联网的安全体系结构从层次上看也应分为应用、支撑、传输、感知4个层次,同时基于3G网络平台的物联网应用,也将具有3G传输网络的基本特征,基本架构如图1所示。

图1 基于3G网络平台的物联网安全体系架构

考虑到在应用层、支撑层的安全体系与其他承载网络差异不大,因此本文着重探讨传输层和感知层的安全体系架构。感知层安全主要是3G网络平台终端的无线信息采集、交互的安全,主要依靠3G接入认证、无线加密技术、PKI公钥基础设施来保障。其中PKI公钥基础设施,主要是指基于公钥加密技术的一套安全基础平台的技术和规范,包括相应的软件、硬件和策略。传输层主要是保障3G传输网络的信息传输安全,主要以加密技术为基础,以签名技术、摘要算法等保障信息安全的机密性、完整性、可靠性和保密性需求。

3 安全技术研究

3.1 接入认证

按照上述分析,有效控制一个3G智能终端接入相应的物联网系统是感知层安全控制的重要内容,一个典型的接入认证系统如图2所示。

图2 3G终端接入认证系统组成

在此,本文仅讨论3G智能的认证实现。当智能终端需要对特定网关节点内的传感信息进行访问控制时,由于这些信息往往直接与相应主体的隐私相关,因此,对于合法控制端的接入认证显得尤为重要。单纯使用密码验证或是数字证书已经不足以保障对物联网中3G终端的接入认证,借鉴合址认证技术,将密码口令与3G智能终端硬件信息进行捆绑验证,这样可以可以大大提高接入认证的有效性和安全性。主要步骤如下:

1)将密码口令信息合法智能终端节点的硬件信息(SIM卡编号或终端网络地址)存放于服务器端;2)智能终端接入时,提供密码口令;3)移动运营商向服务器端提供终端节点的硬件信息;4)服务器端对比验证终端的合法性,并确定移动终端对传感网络的控制权限。

3.2 信息安全的实现

信息安全的基本需求主要包括:保密性、完整性、可靠性和真实性,主要实现的手段包括对称加密、非对称加密、摘要算法等技术。这些加密技术主要应用在图2的无线传感网络和3G网络平台中,一个典型的实现方案如图3所示。

图3 信息加密方案

传感网络采集的信息,需要经过相应的加密方案才能在无线传感网络和3G网络中传输,方案描述如下:

1)采集信息通过预定的HASH函数处理,生成相应的摘要信息;利用传感终端私钥非对称加密摘要,生成签名信息;

2)传感终端,随机生成会话密钥,用于加密采集信息,生成信息密文,以此保障信息的机密性;

3)传感终端通过预定的3G智能终端的公钥,通过非对称加密生成密钥的密文;

4)3G智能终端接收到签名信息、信息密文和密钥密文,通过预定的3G智能终端的私钥,解密密钥密文,生成密钥密文;

5)用密钥明文解密信息密文,生成信息明文;用相同的HASH函数处理信息明文,生成新的信息摘要;

6)利用传感终端公钥解密签名信息,以此验证信息的来源真实性,并得到原信息摘要;

7)将生成的新摘要与接收的原摘要比较,验证信息完整性,相同则信息完整,反之信息不完整。

4 总结

3G网络平台的发展,将进一步推动物联网的广泛应用,目前物联网的实现并不仅仅是技术方面的问题,还涉及到政策、法律、网络基础设施、规划管理等多个方面的问题,就其安全问题而言,也同样涉及技术、非技术的不同方面。本文在探讨基于3G网络的物联网安全风险、安全需求的基础上,构建了相应的安全体系框架,并给出了3G接入认证的基础方案和信息传输中的加密方案。在此基础上,进一步探索具体方案的细化实现以及实际应用是本文的后续工作。

参考文献:

[1] LEUSSE P,PERIORELLIS P,DIMITRAKOS T,et a1.Self ia,_iaged Security Cell,a security model for the Internet of Things and Scrvices[C]//Proc of the 2009 First International Conference on Ad.VSllce8 in Future Intemet.Piscataway:IEEE,2009:47-52.

[2] HAMAD F,SMALOV L,JAMES A.Energy-aware security in M-commerce and the Intemet of Things[J].IETE,TechmeM review,2009,26(5):357-362.

[3] 杨庚,许建,陈伟,等.物联网安全特征与关键技术[J].南京邮电大学学报:自然科学版,2010,30(4):20-29.

[4] 武传坤.物联网安全架构初探[J].战略与决策研究,2010,25(4):411-419.

[5] 孙玉砚,刘卓华,李强,等.种面向3G接入的物联网安全架构[J].计算机研究与发展,2010(47):327-332.

[6] 刘利民,肖德宝,李琳,等.物联网感知层中RFID的信息安全对策研究[J].武汉理工大学学报,2010,32(20):80-87.

收稿日期:2011-09-08