欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

水库路基设计(合集7篇)

时间:2023-07-11 16:21:12
水库路基设计

水库路基设计第1篇

关键词:砂土地基;处理设计;高路堤;水库

中图分类号:U41 文献标识码:A1.概述

众所周知,砂土地基处理的优劣,关系到整个工程的质量。合理的砂土地基处理及适宜经济的路堤结构设计型式,可以减轻或消除砂土地基对路堤的不利影响。河流漫滩沉积的砂土常表现出以下不利的工程特性:高孔隙比、高压缩性、高渗透性、弱抗震性能(地震液化及震陷现象)及低抗剪强度等不利工程地质特性。再则水库区路基地质环境的复杂性、多变性、不确定性,导致营运路堤呈现不同类型及不同程度的地质病害,甚至经反复处治其效果仍然不佳,因此砂土地基处理设计的合理性就显得尤为重要了。

2.工程概况

高路堤砂土地基位于涪江上游在建某水利水电枢纽工程水库区回水尾段,按山重二级公路线形设计,沥青混凝土路面,路面宽8.5m,填高为11.0m~13.0m,路面设计标高667.33m,迎水面堤脚下地面标高655.50m,设计荷载为公路-Ⅱ级;天然河床水位653.00m;其水库主要特征水位:正常蓄水位658.00m,设计校核洪水位659.43m,死水位624.00m。

3.工程地质概况

①地形地貌

场地位于山区阶梯状斜坡与涪江河漫滩的交接部位之河流冲刷凹岸,以堆积型河流漫滩地貌单元为主,地形总体较为开阔平坦。

②地层岩性

地层主要由第四系冲积层(Q4al)及志留系韩家店组(Sh)地层组成:

砂土,青灰色、稍湿~饱和、结构松散,中上部粘粒含量略重,层厚为6.0m~6.5m。

卵石土,青灰色、饱水、结构稍密~中密,层厚为3.8m~6.8m。

志留系韩家店组地层,岩性以千枚岩为主,遇水易崩解软化(崩解速度快),抗风化能力较弱。

③地质构造

场地地质构造较简单,属相对稳定区;其地震基本烈度取决于强震对工区的影响;地震基本烈度为Ⅷ度,地震动峰值加速度值为0.20g,地震动反应谱特征周期为0.40s。

④水文地质条件

场地地下水以孔隙水为主,赋存于第四系砂土及卵石土孔隙中,主要接受上游江水补给,排泄于涪江或其下游;据水质分析报告表明,其水质类型为HCO3-Ca型水,PH=8.6,对混凝土和钢筋混凝土具微腐蚀性。

⑤场地地基土及路堤填料主要物理力学指标

砂土层:标贯击数标准值为3击,孔隙比1.15,粘粒含量12.16%,不均匀系数32.17,天然C值5.6KPa,天然φ值10.3°,压缩模量3.3MPa,承载力基本容许值[fa0]=60KPa。

卵石土层:超重型动力触探击数标准值为6击,饱和容重23.3KN/m3,变形模量23MPa,承载力基本容许值[fa0]=350KPa

路堤填筑料(千枚岩道渣填料):为高分散性的土料,压实后遇水极易崩解;天然固结不排水剪C值20KPa,φ值25°;天然容重19.8KN/m3;干容重19.2KN/m3,最优含水率13.5%,压缩模量12MPa。

4.砂土地基处理方案的选择与设计

4.1砂土地基处理方案选择

高路堤对地基的承载力及沉降量的控制要求较高,而天然砂土地基是不能满足其上述两方面的要求,因此务必对其采取工程措施进行处理,就目前的地基处理技术而言,对可应用于砂土地基处理的七种预案结合建筑物的荷载性质、基底反力特性、岩土工程条件、施工工期、施工机械设备及使用材料等进行综合分析,宜优选高压喷射注浆法及强夯法对地基进行处理。在基于高路堤砂土地基处理要求达到的预期目的:“消除或减小地基土沉降(差异沉降)并确保工后地基土沉降量在其允许的范围内;消除砂土的地震液化现象(液化沉陷),整体提高砂土地基承载力的同时,普遍提高地基土的抗剪强度指标值以确保高路堤及其地基的稳定性”。再结合经济对比分析(经收资调查与技术经济分析),最终选择强夯法加固处理砂土地基,因它具有施工简单、加固效果好、快速(能适应施工工期的要求)和经济等优点。

4.2砂土地基处理设计

本工程在类比参照区内砂土应用强夯法加固地基的有关试验资料的基础上,结合水库区高路堤运行的特殊地质环境(水库特征水位、特殊水文地质条件等)及计算结果提出如下设计与施工技术要点:

1、强夯设计参数的选定

应根据现场的工程地质条件和工程运行环境的要求,正确地选定各个强夯参数,才能达到有效而经济的目的。强夯参数包括:单击夯击能、最佳夯击能、夯击遍数、遍间间歇时间、加固范围和夯点布置。

(1)单击夯击能

据堤基覆盖层的厚度并结合加固影响深度,按梅纳经验公式估算出采用1000KN.m能级加固影响深度可达7.0m(α=0.7),能满足本工程加固的要求,因此确定采用1000kN.m的能级。大量的事实及研究文献资料指出从冲击能、锤重和落距三者关系分析,普遍认为增大锤重的效果优于增大落距,基于上述理论出发,设计中结合施工单位所能提供的机械设备及施工周边环境,设计因此

选用锤重100KN,落距10m,锤径1.8m的设备。

(2)最佳夯击能

恰当地选择夯击击数,是取得强夯效果的一个重要方面,击数少则达不到夯实效果,击数过多,超过夯击能的饱和状态,夯实效果增加不明显,也很不经济;大量的实践证明,砂土最佳夯击能一般以5000kN.m为宜;因此主夯击点的基本夯击击数为5击,同时还要求最后两击的平均夯沉量不大于5cm;夯坑周围地面不应发生过大的隆起,不因夯坑过深而发生提锤困难。

(3)夯击遍数

根据堤基砂土覆盖层厚度、岩土性质及建筑物的部位确定采用夯击遍数:第一、二序列强夯夯击点均采用2遍重锤跳夯;第三、四序列强夯夯击点夯击2遍;当每一序列每一遍夯毕平场后,再次复夯;最后进入2遍低能级满夯,落距3.0m-5.0m,夯击数一般不小于3击,锤印搭接,以确保夯击土表层密实度在空间上的均匀性。

(4)间歇时间

强夯的地基土为砂土,其上下又为卵石土,均为强透水层,强夯时只会产生瞬时超静孔隙水压力,故在强夯施工中遍间可不考虑间歇。

(5)加固范围

为避免在夯后的土中出现不均匀的"边界" 现象,从而引起建筑物的差异沉降及地基土抗剪强度指标空间上不均匀性;因此,其处理范围应大于建筑物基础外缘的宽度,宜为基底下设计处理深度的1/2至2/3,并不宜小于3.0m。结合地基及高路堤稳定性计算(最危险工况)确定临河方最小加宽值为6.0m。

(6)夯点布置

夯点按正方形布置,正方形布置给夯机留出通道,施工方便。结合堤基覆盖层土的性质及加固影响深度,确定夯距为5.0m,夯点布置详见图1。

图1强夯夯点布置平面图

(7)强夯试验

强夯施工前应进行强夯试验,据拟定的强夯参数,提出强夯试验方案,进行现场试夯。因为砂土地基,试夯结束一周后就可对试夯场地进行检测,一般采用钻探取样进行室内土工试验(若采样的确困难,可采用静力触探试验)、重型动力触探、标准贯入试验等,将检测数据与夯前测试数据进行对比分析,并为正式强夯施工提供可靠的强夯参数修正设计之依据及施工工艺作保障。

2、强夯施工技术要点

(1)首先将强夯处理范围边界线、护脚墙的墙踵及墙趾线用测量仪器测放出,同时在范围边界线以外埋设控制基桩,将其范围线以内的砂土开挖至标高653.50m,并对护脚墙之墙踵及墙趾线各外延0.5m,且将其范围的砂土开挖至652.50m;再用级配卵石土,采用反挖机分三层摊铺;待整平至标高655.00m后进行强夯试验,以确定合理的强夯施工参数和工艺。

(2)夯击序次按第一、二、三、四序列顺序进行夯击,同时用测量仪器按上述夯击序列依次测放出夯点位置,并作好标识,并测量场地高程。

(3)强夯施工顺序须从路线左侧依次推进,止于路线右侧,有利于强夯产生的瞬间超静孔隙水压力的释放,消散时间只有短短数分钟,可不考虑遍间间歇,故可连续作业。

3、质量控制

(1)检查施工过程中的各项测试数据和施工记录,不符合设计要求时应补夯或采取其它有效措施。

(2)场地检测的数量,应根据场地复杂程度和建筑物的重要性确定,对于简单场地上的一般建筑物,每个场地地基的载荷试验检测点不应少于3点。

4、地基处理效果分析与评价

对试夯区进行了原位测试及采样室内试验(大型直接剪切试验),将测试的地质参数作为评价及设计的主要依据。

砂土层:标贯击数实测标准值为13击(稍密),饱和容重19.0KN/m3,孔隙比0.55,饱和C值11KPa,饱和φ值21°,压缩模量6.5 MPa,[fa0]=130KPa。

卵石土垫层:超重型动力触探击数标准值为8击(中密);相对密度Dr=0.75,饱和C值0KPa,饱和φ值33.5°;饱和容重23.3KN/m3;天然容重22.5KN/m3;压缩模量20MPa;干容重21.5KN/m3;最优含水率5.5%;[fa0]=350KPa。

(1)砂土地基承载力验算

在工后进行砂土地基承载力验算时,作了如下计算简化。先将车辆荷载换算成土柱高(当量高度0.79m);以654.50m高程面为计算控制基面,垫层上表面受其上覆路堤填土自重压应力的作用,其作用力通过一定厚度的卵石土垫层扩散后传给砂土地基,在进行自重压应力计算的同时,按《公路桥涵地基与基础设计规范》JTG D63-2007中的规范性公式,对砂土的承载力作验算时,选定竣工为其验算工况的同时,以路中土体结构层次及层厚作为计算的控制依据。其计算过程及结果如下。

等效于基础底面的压应力(路堤填土土体自重应力):

等效于基础底面处的自重压应力:

Pgk′=γh=22.5kPa

垫层底面处的附加压应力(按条基计算):

P0k=b(P0k′-Pgk′)/(b+2ztanθ)=83.09kPa

垫层底面处土的自重压应力:

垫层底面处经深度修正后的地基承载力容许值:

经计算并满足下式要求,P0k+Pgk≤γR[fa]

即83.09+62.90=145.99<1×188.3=188.3kPa

γi-参与计算的第i层填土的容重,地下水位以下的填土则采取浮容重(KN/m3);hi-参与计算的第i层填土的层厚(m);z-设计垫层厚度(m)。

(2)砂土地基沉降计算与评价

水库路堤所发生的沉降、位移和拉裂变形,是水库蓄水反渗于路堤在架空或疏松结构部位等首先产生湿陷及地基本身不均匀沉降叠加共同作用的结果。鉴于此,地基在使用期内不发生较大沉降和不均匀沉降的控制尤为重要,也是保证路堤安全、稳定的关键。基于水库路基运行的特殊环境,在对砂土地基实施强夯的同时,对路堤高程654.50~659.43m段回填透水性材料并采用冲击式压路机碾压,以确保路堤填料本身充分压实及产生微弱的沉降;事实上,对于砂土地基在施工期间即可完成其最终沉降量的80%以上,能确保路基工后沉降≤500mm(规定的允许值)。当正常蓄水至658.0m后,采用《公路桥涵地基与基础设计规范》JTG D63-2007中规范性公式进行了垫层压缩量计算,其中砂土地基沉降量采用《碾压式土石坝设计规范》DL/T 5395-2007中规范性公式按分层总和法计算,其计算过程及结果如下:

S=Scu+Ss;Scu=Pm.hZ/Ecu

分层总和法计算式:

式中:s-垫层地基沉降量(mm);scu-垫层本身的压缩量(mm);ss-下卧砂土层沉降量(mm);Pm-垫层内的平均压应力(MPa);hz-垫层厚度(mm);

Ecu-垫层的压缩模量(MPa);Pi-第i计算土层由路堤填土荷载产生的竖向压应力(MPa);Ei-第i计算土层的压缩模量(MPa);hi-第i计算层厚度(mm);

路基任一点的附加应力由路基矩形分布荷重和三角形分布荷重所引起的坚向应力叠加而得,附加应力按下式计算:Pz=KT.q

Pz--路基任一点的附加应力;q--矩形或三角形分布荷重;KT--应力系数,按《碾压式土石坝设计规范》DL/T 5395-2007中的表G1和G2查取。

①砂砾垫层:由m=0,n=2/8.5=0.235,查表G1并经内插计算KT=0.965;由m=15/20=0.75,n=2/20=0.1,查表G2并经内插计算KT=0.032;

堤基土自重引起的竖向应力:13.3×2=26.6KPa

矩形或三角形分布荷重:

Scu=0.25017×2000/20=25.0mm

②砂土层:由m=0,n=4.65/8.5=0.547,查表G1并经内插计算KT=0.791;由m=0.75,n=4.65/20=0.233,查表G2并经内插计算KT=0.0746;

堤基土自重引起的竖向应力:

13.3×2+9×2.65=50.45kPa

Ss=0.25945×2650/6.5=105.8mm

③砂卵石层:由m=0,n=11.55/8.5=1.36,查表G1并经内插计算KT=0.437;由m=0.75,n=11.55/20=0.578,查表G2并经内插计算KT=0.169;

堤基土自重引起的竖向应力: 13.3×2+9×2.65+13.3×6.9=142.22kPa

SL=0.27088×6900/20=93.45mm

沉降计算控制深度按规范应算至路堤附加应力等于路基自重竖向应力20%处的深度,但因下伏层为千枚岩,就不必在作沉降计算了;总之,工后沉降总和: S=25.0+105.8+93.45=224.25mm<500mm(规范规定的允许值)

(3)地基土地震液化评价

据强夯区测试的地质参数按《建筑抗震设计规范》GB 50011-2010进行地基砂土地震液化评价,在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算:

液化判别标准贯入锤击数基准值N0取12,经计算表明地基土砂土在地震作用下不液化。

结束语

地基处理方法繁多,如何从中选择经济可行的地基处理方案就显得极为重要了,需结合建筑物的功能、地形、地貌部位及运行环境等综合确定;本案例采用强夯处理高路堤砂土地基,在减少沉降量及抵抗液化能力等方面达到了预想的效果,达到了以土治土之目的。不失为一种经济、简便、快速有效的地基改良方法。只要条件允许(施工条件及周边环境许可),是值得在地基处理中首选的一种方法。

高填方路堤地基勘察的深度与广度应引起重视,力求其准确性;以确保地基处理设计的合理与经济性,力求避免设计方案的重大修改,酿成施工延误和不必要的经济损失。

参考文献

[1]JTG D63-2007.公路桥涵地基与基础设计规范[S].

水库路基设计第2篇

关键词:水电站库区复建道路道路设计 措施

中图分类号:TV文献标识码: A

1.概述

随着我国基础设施建设以及社会的发展,对能源的需求越来越大。同时国际社会以及我国政府越来越重视环境保护的重要性。选择清洁的可再生的能源(如水电、风电、光伏发电)成为了我国大力发展的能源建设的重点。而水电因为受外界自然环境影响小、可持续利用年限时间长、对环境基本无影响、可调峰等诸多优点,是我国能源的主要来源之一,近些年国家大力投资建设水电站。

水电站建设的主要道路有:对外交通、场内交通和库区复建道路。对外交通主要研究对外运输线路,通过经济技术论证选择合适的线路。场内交通主要根据电站施工总布置的运输需要,选择合适的路线、等级进行布设,以满足电站建设的需要。本文所讨论的库区路属于水电站建设的场内道路,是主要根据水库的“三原则”(原规模、原标准、原功能)对水库淹没的库区原有道路进行复建。根据水库的“三原原则”以及交通量分析,确定复建道路的标准、等级。

水电站库区复建道路作为库区建设的主要道路,对移民安置点建设、移民搬迁乃至水电站的蓄水发电都起着至关重要的作用。

2. 水电站库区道路设计的原则

水电站库区复建道路的整体设计特点是结合库区两岸布置的移民安置点和集镇,对由于水库蓄水淹没的现有交通工程按照水库复建的“原等级、原规模、原标准”的标准进行复建。其设计特点是首先应在满足设计规范的基础上,满足水库蓄水的安全性要求,即路基设计应以水库常蓄水位和设计洪水位作为设计的首要考虑因素,其次,该项目是服务于安置后的水库移民点当地群众,不但要满足村庄附近的道路的公路建筑限界要求,满足群众的出行需要,同时也要兼顾生产、生活的需要,要与现有的田间机耕道、通村路、灌溉设置有较好的结合。而现场的周边人文地质情况一般较为复杂,这也就成为设计过程中的重点和难点。

受水库蓄水影响库区复建路线线位提高,路线经过的路段地形陡峻、地质条件复杂,不良地质段增多,设计难度较大。设计时应考虑水库蓄水的影响以及地形地质情况的因数。并且在越岭路线的设计中,应利用地形自然展线,尽量避免设置回头曲线,鉴于库区道路在自然展线无法争取需要的距离并且克服高差,可在适当的地方设计回头曲线减少工程量。当设置回头曲线时,回头曲线的前后线性应连续、均匀、通视良好,两端宜布设过渡性的曲线,且设置限速标志、交通安全设施等。

3.建设中出现的问题以及解决措施

(1)水电站库区复建道路往往是沿河路基,水电站库区蓄水后,水位大幅度的变化以及沿河水流的冲刷引起浸水路基坡脚的后退,沿河路基边坡稳定性将受到严重的的威胁,应对沿河路基进行防治,以确保路基在水流的侵蚀下与水位的涨落下功能的可靠性。沿河凹岸路基的防治措施按其构造和作用可分为两种形式:一是直接防护,用抗冲材料直接覆盖在凹岸路基边坡上,以抵抗水流的淘刷而引起的崩塌;二是间接防护,如丁坝,通过在凹岸布设丁坝或丁坝群,来改变水流性质,减轻水流对路基的作用。

(2)水电站库区复建道路作为连接移民安置点的通道,在勘察设计过程中应与其他相关专业的沟通,根据移民安置点的规划布置,满足移民安置点建设的要求以及能够与移民安置区主要干道顺接。

(3)设计现场调查阶段应与当地政府沟通,了解当地居民意愿。避免因当地居民意愿与设计思路不同意,阻挠施工,造成施工建设无法开展,不得不进行变更以满足当地居民的意愿,造成投资浪费甚至出现废置工程。

(4)注重水库塌岸区的影响,由于水电站在运行过程中,水位受季节、气候、梯级电站调节要求等,水库的蓄水位在一定范围内波动。而处于这范围内的水库库岸常年处于保水及过保水的状态,处于不稳定状态。路基如果通过此路段可能处于失稳的不利状态。所以通过水库塌岸区时,应根据地质报告确定的水库塌岸区范围,进行避让,并保证不小于10m的安全距离。

(5)充分考虑农田灌溉的需要。应结合当地的灌溉系统及地形条件,组成完成的灌溉排水网路,避免因公路建设对原有灌溉系统造成破坏。通过农田段的路基做低填路基(1~2m),横穿路基灌渠做涵洞联通,既可保证灌溉系统的完整性,同时也可处理道路部分废方。

(6)注重地质勘查工作。水电站库区复建公路一般因受水库蓄水影响,线位抬高。路线往往出路较为陡峻的地段,边坡开挖、填方高度较高。在地质勘查阶段,应重点对高填深挖地段进行勘查工作,避免因施工开挖过程中实际揭露的地质情况与地勘报告出现较大的差异,引起防护工程数量增多,甚至路线的调整。

(7)注意路基防护设计。一般库区复建道路工程所经地区内外力地质作用强烈,地质构造较复杂,新构造运动表现为大面积整体间歇性急速抬升为主,岩体破碎,风化强烈,暴雨集中,山高坡陡,各种外动力地质现象发育,主要的不良地质现象有风化碎落、崩塌、滑坡等。

风化碎落主要发生于在部分公路及小道边坡出露的各种岩质边坡,由于风化剧烈,普遍可见风化碎落现象,但规模小,易于清除,对工程影响不大。

崩塌主要发生于河谷、沟谷两岸,部分公路及小道的边坡出露的硬质岩类边坡,由于纵横交错的节理裂隙发育,破坏了岩体的完整性和稳定性,在陡坡处易产生崩塌,但仅与个别工点有关,具有低频特征,规模小,易于清除,对工程影响不大。

库区复建道路路段,地形多为山地斜坡,地形横坡较陡,岩面起伏大,坡面覆盖层及基岩全风化层较厚,加之区内雨量集中且频繁,在雨水及沟水对坡面、坡脚的集中冲刷下,往往产生表浅型松散堆积层滑塌(土溜),但规模小,设计、施工易于清除或处治,对拟改建公路影响不大。

公路沿线覆盖层厚度变化较大,局部可能存在路基不均一沉陷及红粘土膨胀等问题。

对深挖路基以及高填方浸水路基主要采用以下几种防护形式:边坡喷锚支护;边坡设置SNS主、被动防护网;开挖边坡顶部设置截、排水沟;土工格栅处理高填方浸水路基;高填方浸水路基采用填石路基;填方路基设置挡土墙等。

(8)注意道路安全设施的布设。库区复建道路线路采用的设计指标较低,且遇到的道路实际的问题较多,如:淹没水位,复杂地质,山岭重丘,移民安置等。做好其安全设施的布设是行车安全、民众安全的重要保障。如遇到非单独设置的标志需要并列设置时,应优先保留禁令和指示标志。

水库路基设计第3篇

关键词:水库;公路;路线;设计;

中图分类号:X734 文献标识码:A 文章编号:

地球上最多的资源就是水资源,而我国水资源总量占世界首位,主要集中在国内四川,,云南3省。其中自治区境内,大山中大江大河蕴含的水资源占国内总水资源的60%。所以为了最大程度开发水资源,就要建设各种大型大坝。这样导致了库区内(所谓的库区是指水库淹没影响区)水位急剧升高,导致当地的建筑,公路,农田等被淹。而本文中主要解析水库淹没影响区公路路线设计要点。结合四川三、四级公路路线设计实践为背景,进行分析讨论。

库区公路路线设计要点

不同于一般公路之处

由于四川地理环境及地质条件因素的影响,库区公路路线设计上和一般公路有所不同,主要表现在:

自然条件限制与资金限制,一般公路施工要求指标并不是很高,而库区公路路线因为地质条件关系对公路施工指标要求非常高。

公路路线设计十分重要,并且精细。一般公路路线设计,可以专业分段设计,然后在整合起来。但是库区公路路线设计要求,比一般公路路线设计要求还要高。尤其是在四川省内,山路悬崖过多,在设计上只要稍微有一点偏差,就会因为实际地理环境给工程造价带来明显差异,在1:2000比例上只要偏差误差在8%左右就很可能会影响整个工程进行,或者无法施工。因此,为了保证总库区公路路线达到最佳合理状态,要求在库区公路路线设计上,一定要精确,同时还要确保其它有关专业技术可以正常施工。

库区公路路线考虑因素

库区公路路线除了与一般公路路线一样的考虑因素外,还有一些是属于库区公路路线必须要重点考虑因素。

库区公路路线设计上应该重点考虑地形、地质

库区公路路线设计应该重点考虑地形以及地质两个主要因素,地形选择路线是库区公路路线设计最基本的基础。但是由于四川库区公路地质条件种类繁多,有很多不良的地质因素存在,所以库区公路路线设计上必须受地质条件因素控制。在面对大型成片的不良地质环境应该完全规避,对于可以预防或者可以处理的小型不良地质环境,可以选用其中有利部分进行施工,同时做好好相应的公路安全措施。

库区水位升降对公路路线的影响

全面综合考虑因为库区水位升降带来的地质灾害问题。由于四川地理位置关系,当库区蓄水后,水压和水浮力不断发生变化,导致库区岸边地质应力场受到影响,破坏其原本均性,将会发生山体滑坡等地质灾害。所以在库区公路路线设计上应该重点考虑库区水位上涨后所带来的地质变化,尽量将公路路线设置在库区淹没影响区外边,或者受库区水位升降压力影响小的地质环境当中。

库区公路路线浅基的影响

库区公路路线,路基浅基础的稳定性。由于受到很多不同种类因素的限制,特别在四川这种地质环境下,有些地方难免公路路线要建设在库区淹没影响区内。当无法避免的时候,我们要重点考虑路基浅基的稳定性。保证水位上涨淹没公路路线时,毛细水对路基浅基的影响,保证公路的稳定性。

不同地质条件下库区公路路线的参考因素

在库区公路路线设计上,还要结合不同地形地质条件,通过不同的路基形式进行铺设。平缓的地形条件可以用土基形式铺设,地质条件好的山路可以通过半山洞路基形式铺设,地形差,不容易支撑的地方可以用桥梁形式通过等等。总而言之在库区公路路线设计上设计人员要综合当地不同地形地质条件对公路路基要求做到充分了解。

库区公路路线安全因素

加强对后期运营安全。由于公路路线设计上很多都是规避不良地质,在库内影响范围内很容易造成集中升降坡现象,在加上四川多变的天气,处于库区影响范围内的路线应该加大重点监控,对运行后期的检查测速一定要到位,在指标上应该高于一般公路路线指标。

库区公路路线设计流程及方法

库区公路路线设计基本上和一般公路路线设计相同,都是从宏观到微观,从整体结构逐渐缩小细节的过程。不同的是库区公路路线设计更加注重“时间方案细部优化”“与其它专业沟通”“实践方案再争强优化”三个部分,而一般公路路线设计上对这三个环境相对来说不是很重视。

库区公路路线控制点分析

库区公路路线控制点分析主要分为:制定路线的起点和终点,中间控制点,三大部分。对于库区公路路线来说,由于四川本身地形险峻,不良地质规模比较大,水位上升或者下降都会给周围地质条件造成变化,使周围原本不良的地质遭受更大的危险,因为路线设定显得格外重要。在库区公路路线设计前,应该充分了解该地区地质条件与地形环境,探查清除所有不良地质条件,来为最终确定路线提供有利的数据支持。

库区公路路线,线形设计

当库区公路路线控制点设定以后,可以根据技术标准进行路线设计。通常情况下分:“由大到小”“由小到细”“由细到微”,三个部分进行路线线形设计。

“由大到小”具体是指在整个要铺设公路路线范围内找出合理的通行路线走廊带,在对这些通行路线走廊带进行对比分析。通常情况下工程研究阶段在1:10万或者1:5万地形图上就可以进行研究对比。

“由小到细”在确定公路路线走廊带范围内,找出所有可实行的路线进行技术与经济比较,选择最佳路线出来,这一步通常在1:1万或者1:3500地形图上进行研究对比。

“细到微”是指具体确定路线方案后,对每一小段进行逐一研究。由于四川地理环境因素影响,此段研究通常在1:2000或者1:1000地形图上进行研究分析。

库区公路路线设计与其他专业组互动设计与沟通

通过前面所讲述的办法,可以基本上确定了库区公路路线可行方案,但是路线的设计工作还没有结束,下一步工作就是与其他专业组进行沟通,例如:路基,隧道,桥梁等专业人员进行必要的沟通。由于公路路线在现场施工的时候有很多地方是受到现场地形地质因素影响,对公路施工标准也不一样,大大的增加了施工难度,很多地方可能无法达到施工要求,所以跟其他专业组的沟通成为关键。

库区公路路线放样后在优化调整

根据以上所说的办法,库区公路路线就可以进行实地放样测量。因为地图上精准度与数据对照真实情况来看还是存在一定模糊性,很多地图上体现出来的高度与位置,往往跟现实上还存在一定的差距,所以需要结合现实情况不断的修改调整,直到合理为止。

库区公路路线安全问题

当最后确定库区公路路线时,通常要用运行速度对整条路线进行线形验算,并且根据实际得到的结果对库区公路线行进行细致的调整。如果实在无法调整的,可以采用安全措施进行保证后期正常运行。尤其是四川境内崇山峻岭地方特别多,重点防护对象也多,安全措施一定要到位,尤其是对突发事情的预防上,应该综合全面的考虑。库区弯道附近更是要多家注意加强防范措施防止车辆坠落。另一方面还需要考虑到工程结构本身安全问题,同时库区水位上升或者下降对工程结构造成的影响。

总 结:

库区公路路线建设与一般公路路线建设有很大的区别,最大的区别体现在于工程量的庞大与复杂,整体项目设计要求非常精细。在设计理念上应该遵循,“由大到小”“由小到细”“由细到微”三个过程。同时库区公路路线方案粗略完成后,要协同其他专业组进行沟通与协商,并且根据其专业人士对现场分析后,重新修改库区公路路线方案。一条优质的库区公路路线是靠不断优化调整方案才能设计出来的。

参考文献:

[1]朱剑红.全国水力资源家底查清[N].人民日报,2005(5).

[2]李国并.水电站库区路线设计要点探讨[J].四川林勤设计,2007(2).

[3]王文祖。水库库区公路路线设计及过程地质问题[J].青海交通科技,1999(2).

水库路基设计第4篇

关键词:路线设计;方案论证;优化;理念

1.概况

澄海樟林至海丰公平公路海丰段是整条路线的末段,海丰境内路线长16.l公里,其中平东镇辖区内9.763公里。樟公线连接揭阳、汕尾两市,是粤东地区九五期间公路工程主要项目之一。樟公线海丰段原由省内的一家设计部门设计,路线按平原微丘区二级公路标准设计,路基宽12米,水泥混凝土路面宽9米,桥涵荷载汽车20-挂100。原设计方案显示,在跨过公平水库库区段需建造大桥一座,总长379米,桥型设计为15×25m预应力T型梁桥,全路段预算总造价为2140.49万元。

2.路线设计方案比选

于原设计单位远离海丰,对下列问题了解或考虑不足:

a、平东镇是海丰县的边远山区镇,位于海丰东北部,陆丰、陆河、海丰三县交界处。平东镇集老、山、边、穷于一身,全镇总人口2.3万人,人均收入1929元,筹资修路困难较大。

b、公平水库是大型水库,原路线设计通过库区段,最大水深超过15米,对水下的地质、地貌没有勘察测定。

c、原设计对地形的利用不充分,过于追求施工方便,对工程挖方互相调配缺乏全局性的考虑,同时对公路近、远期的经济效益和社会效益也缺乏全面考虑。

鉴于上述原因,考虑当地政府的经济能力、公路的社会经济效益等因素,平东镇和海丰县两级政府认为原设计方案仍可优化,要求地方公路部门在原设计方案的基础上重新勘察,提出最佳方案。

优化方案必须符合如下几项原则:A、路线的线型设计必须符合平丘区二级公路标准。B、工程的预算总造价必须最大限度节省。C、公路的经济效益必须得到充分的发辉。

(1)调整线型布设。原设计路线通过的平东段村庄稀少,为了发挥公路的最佳效益,我们把路线布设在尽量靠近村庄的地方通过,力求以交通促进经济的发展。

(2)改库区大桥为路、桥并举。本路段跨过公平水库库区总长379米,原设计方案建大桥1座379米,在水库区内的工程总造价893.07万元。为降低投资和保证建桥质量,优化方案把库区大桥的深水段(321m)改为填坝筑路,在库区的浅水段建一座长58m的中桥。更改后的优化方案在库区的路、桥,总造价仅需392.89万元,可节省资金500.18万元。

3.路线设计方案的论证分析

3.1?设计方案论证的步骤

要勘测设计一条合格的路线,影响的因素很多,而做好方案优化,又是其中最重要的环节。路线方案可分为整体方案(大方案)与局部方案(小方案)。大方案一定,这条路线的整体走向就决定了。至于路线所经地段的局部走向,则可放到初步设计或施工图设计中去解决。

在大方案确定之后,如何处理好局部方案就成为关键的问题。而选好局部方案,应该做到下面几点。

(1)首先应该有该地区的地形图(比例尺应尽可能大些)。先在地形图上根据山脉、河流的走向、居民点分布情况,以及农田、植被、娅口位置等研究路线可能有哪几种走法。因为在地形图上观看比较明确,整体性强。

(2)在以上基础上根据初拟的方案到现场详细踏查核对。还可以通过实地详细察看,发现沿线是否有不良工程地质现象,及时引起注意。如果没有可资利用的地形图时,现场勘查就显得更为重要。同时为了取得相对可靠的数据资料,还必须辅以必要的导线测量。

(3)为了避免疏漏,还需要邀请当地年长的居民进行座谈,了解当地的一些风土人情,地理风貌,洪水灾害,事物变迁等。并可由他们带领到现场察看。因为当地居民长年累月生活在这块土地上,对当地的情况最了解。通过这些来弥补不足和防止偏面。

(4)在掌握第一手材料的基础上,根据所确定的公路等级,规划布置各方案。并通过必要的计算比较,列出各路线方案的主要优缺点,从中确定较为合理的推荐方案。

3.2?方案的论证与实施

3.2.1?筑坝方案可行性的调查

公平水库是多功能型的水库,起着防洪、灌溉、发电、供应生活用水等作用,在库区内修筑水坝,对水库的安全、水质污染、生态环境和功能作用是否影响,我们进行了实地详细的调查,公平水库最大库容量1.633亿m3,枯水期库容量为2778万m3。水坝修筑后,根据水库部门的水利技术人员测算,筑坝不会对水库安全造成影响,水坝采用山石掺砂筑坝,水坝两侧库区保持流通,水质不会受到污染,因此在库内修筑水坝公路可行。

3.2.2?线型方案的论证

在初步设计的基础上,我们对路线的布设作了部分调整,从地形的利用、挖填方的调配、料场的选用等诸方面作了充分的考虑,路线方案广泛征求了当地群众、政府、水利等部门的意见,一致认为该方案切实可行,认为是最佳方案。

3.2.3?效果

(1)显著降低工程造价:公平水库库区大桥改筑水坝并建中桥一座,同时通过合理利用地形,挖填方的合理调配利用,使工程总造价大大下降,为当地政府和群众节省投资500.18万元、降低造价达23.3%;平均每公里造价由原方案的219.25万元降至168.01万元,即每公里节约了51.24万元。

(2)建设周期缩短:库区筑坝材料运距不足1公里,自采自运,施工单位只需足够的机械设备,基本上不受天气影响,浅滩建中桥,地质良好,施工方便。初步设计的施工周期为20个月,路线调整设计后,总工期12个月,比原来缩短8个月,使公路提前投入使用。

(3)社会效益良好:镇、县、市各级政府有关部门反映,该路段的路线变更设计方案符合当地实际,既节约了投资和缩短了工期,公路路线也靠近沿线村庄,有利于村庄交通和经济发展。

4.结语

公平水库库区填坝筑路,在水深15米以上,水下地貌尚不明确的情况下,进行带水大填方,大坝筑成几年来,坝基稳定,坝坡冲刷微小,这在我县公路建设史上尚属首次,为今后类似地形的公路建设积累了一定的经验。因此,若要一条高速公路的路线方案达到最优效果,只有不断通过多方案比选、优化,最终才能找到合适的路线方案。

参考文献:

[1] 张航. 高等级公路路线方案优化研究[J]. 武汉理工大学学报, 2002, (4): 481- 484.

水库路基设计第5篇

关键词:公路 设计 选线 方案

引言

台山核电厂淡水水源工程的新松水库位于台山市赤溪镇的曹冲河,水库距台山市约60km,距台山核电厂约15km。坝址距新台高速浮石立交出口约28km,距西部沿海高速都斛出口约18km,现有外部交通条件较好。台山核电厂淡水水源工程通过在曹冲河建设水库,用输水管道将淡水输送至核电厂淡水厂,拟建进库道路连接水库坝址与台山核电厂的进场道路。目前,从旧赤溪镇到水库坝址,只有一条长约8km的简易泥结石道路可走。但该现有简易道路等级低,平面弯道多、转弯半径小、会车时错车困难,不能满足本工程施工期与运行管理期的交通使用要求,故须对进库道路进行配套建设。

1进库道路技术标准的确定

1.1道路等级标准的确定

进库道路是台山核电厂淡水水源工程的专用道路。经过对枢纽日常交通量的分析,对于设计水平年,预计对外交通道路的双向通行交通量小于1000辆/日。双车道四级道路可满足本工程施工高峰期的最大交通量。考虑工程的建设规模、重要性和施工期车辆交通情况,根据规范要求,结合当地实际情况,经综合分析,进库道路按四级公路标准设计。

1.2路线主要设计指标确定

进库道路按四级公路标准设计,设计速度为20km/h,设两车道,路面宽为6.0m,每侧土路肩宽为0.5m,路基宽7.0m。根据交通量组成与项目交通量、地质条件及主体工程施工的具体特点,施工期间行驶施工运输车辆较多,故采用高级路面。汽车荷载等级按公路等级采用公路-Ⅱ级,并采用施工运输车辆的实际最大荷载(约50t)进行复核。路基设计洪水频率参照《公路路基设计规范》(JTGD30-2004)的规定,路基设计洪水频率为1/25。

1.3道路横断面结构型式

进库道路路面结构:采用水泥混凝土路面。路堑挖方边坡根据地质报告资料,按岩体风化程度不同来选取相应的开挖坡比值。挖方边坡高度大于10m时,采用分级边坡,第一级边坡高度为8m,其余每级均为10m。路堤填方边坡填筑坡比值根据路基填料种类、地形等条件而定。第一级边坡坡比采用1:1.5,第二级至起其坡比采用1:1.75。地面横向坡度较陡路段在路堤下方设置挡墙,其中涵洞则与挡墙结合。

2进库道路路线方案设计比选

2.1选线原则

选择路线方案进行初步设计时需要充分利用地形、地势,尽量少出现回头弯;

选择地质稳定、水文地质条件好的地带通过,避开软基、泥沼、排水不良的低洼地等不良地段,避免穿过密集居民区、村庄;少占耕地、少拆迁,多利用山地,有条件的地方结合现有道路,使路线总里程较短、地形坡度较平缓、转弯舒顺;减少开挖量,避开高边坡等地段,减少水土流失;结合主体工程建筑物布置。

2.2路线方案布置

根据以上选线原则,及道路技术标准的约束,结合核电厂规划进场道路、主体工程建筑物布置及现场地形等具体情况,本阶段初步拟定设计了2条进库道路路线方案,其示意图见图2.2-1。

图2.2-1进库道路路线方案示意图

路线1:从核电厂规划进场道路东阳村南曹冲小学附近接入,经约0.2km海边虾蟹塘边后,沿曹冲河约2.2km,绕过新松村沿曹冲河约1.5km,经西坑,沿山边爬坡约0.8km至水库坝址左坝头,经大坝沿库边0.9km至输水隧洞进口。该路线全长约5.6km,其中0.2km为海边路,3.7km为原河边村路改造,1.7km为新建山边公路。

路线2:从核电厂规划进场道路南阳村南附近接入,经约0.2km海边虾蟹塘边后,沿原村路约1.4km至山边村,过村后沿山边小路0.8km,沿山边爬坡约0.7km至水库右岸垭口,沿库边经0.65km至坝址右坝头;另从垭口修支路0.25km至输水隧洞进口。该路线全长约4.0km,其中0.2km 为海边路,2.2km为原村路改造,1.6km为新建山边公路。

依据确定的道路技术标准根据选线原则对两个路线布置方案在已有1:2000地形图上进行设计并计算路面工程、路基土石方工程、路基防护工程等主要工程的工程量并形成工程量清单,对各路线方案估算其投资。

各路线方案特性见表6.5-1,各路线方案估算投资比较见表6.5-2。

表2.2-1进库道路路线方案特性表

2.3路线比选

由表2.1-1及表2.2-1可知:

从布置上看,路线1和路线2均有局部海边道路连接核电厂进场道路,距核电厂均较远,并需要进行软基处理。其中路线1沿曹冲河边,目前现有道路高程在3m~4m之间,曹冲河10年一遇洪水位高程为6.8m,25年一遇洪水位高程为8.0m,路面高程需加高5m左右,且需要按堤防标准建设,涉及水利设施等其他复杂问题;路线2长度最短,并利用现有的村路,线路较顺畅;从征地移民上看,路线1需要征用路边田地,路线2需要拆除少量房屋;从施工条件上看,路线2最短,但道路施工有可能受当地村民交通影响;从投资上看,路线2投资最少,比路线1少1810万元;综上所述,路线1的其中一段经过曹冲河边,其路面需按堤防的防洪标准进行加高,征用农田较多,涉及水利设施等其他复杂问题;路线2的路线需穿过村庄,但结合主体建筑物布置最合理,长度最短,路线较顺畅,投资最少。经综合比较后,推荐路线2为进库道路的首选方案。

3 结语

台山核电厂淡水水源工程进场道路外部交通条件较好,道路功能特殊,在明确道路的功能后由确定的道路技术标准,按照基本选线原则拟定设计出2条进库道路路线方案,通过方案比较发现路线2对结合主体建筑物布置最合理,长度最短,路线较顺畅,投资最少是符合本道路工程投资和运输效率的路线设计方案。

作 者 简 介

水库路基设计第6篇

关键词:库周道路,三原原则,低等级

Abstract: in order to realize the gorge water control project in the overall construction lechang goal, coordinate with reservoir resettlement in the submerged area of the work, according to the general command gorge lechang construction requirements, the library weeks as emergency special project road, following the principle of extrattrestrial "to carry on the design, design standards for mud stone pavement simple road cycling trails. This article through the library weeks road design process generalizations, low level of road design points are discussed.

Keywords: library weeks road, the principle of extrattrestrial, low level

中图分类号:TV文献标识码:A 文章编号:

1引言

乐昌峡枢纽水库的正常蓄水位为154.5m高程,比蓄水前的武江天然水位壅高五十多米。故水库蓄水后,水库左、右岸的大部分现有道路将被淹没或受淹没影响。库周沿线为林场,零星分布有村庄、小学、小水电、武警部队驻地、电力与通讯设施等,库区两岸的现有道路是当地群众生活、生产与交通出行的主要陆路通道,另外,库周沿线布置有管埠集中安置点、白鸡滩集中安置点及许多分散的移民安置点,移民安置点的施工设备、建筑材料运输与移民搬迁等也需利用该库周道路。尤其是施工围堰挡水后,10年一遇洪水淹没线以下的库区移民必须提前搬迁。水库蓄水前,为了便于主体工程施工使用,并有利于按期完成移民的搬迁安置工作,减少因淹没道路而需对部分移民进行额外搬迁安置;水库蓄水后,便于两岸居民的交通出行,便于库区客运、木材运输、汛期防洪抢险的交通使用,便于当地的社会经济协调发展,因此对水库蓄水淹没区的库周道路进行新建或垫高恢复并尽早建成交付使用是非常必要与迫切的。

2设计要点

水库蓄水后,左岸的京广旧铁路、大源镇、大源镇至大长滩简易道路大部分路段、从九峰水口附近至坪乐公路的部分机耕路及其它零星分散的机耕路与连接便道将被淹没或受淹没影响,需进行道路恢复;右岸从坪石镇至乐昌市沿武江边的永新路大部分路面高程低于淹没线,也需进行道路恢复。

2.1库周道路建设内容

结合水库蓄水后的淹没外包线,经过前期对原有交通现状的详细勘查,由于沿武江两岸地形陡峭、条件局限,路线基本是沿两岸山坡布置,方案较为单一,路线位置可基本确定下来。

库区左岸:新建库周道路总长26.824km;

库区右岸:新建库周道路总长42.438km。

新建桥梁:左岸大长滩中桥(48m);右岸年九坑中桥(32m)、洪源中桥(48m)、太坑河中桥(80m)、庙坑河中桥(60m);连接左右两岸的新秦过江大桥(165m)。

2.2选线原则

新建道路拟定路线时主要考虑以下几条原则:

(1) 应满足库区居民生活、生产及防汛抢险的要求,尽量结合移民安置点布置,有利于道路的布置与衔接;

(2) 充分利用地形、地势;

(3) 选择地质稳定、水文地质条件好的地带通过,尽量避开软基、泥沼、排水不良的低洼地等不良地段;

(4) 路线总里程较短、地形坡度较平缓、转弯舒顺;

(5) 尽量减少环保方面的不利因素;

(6) 尽量避免大开挖,尽量减少弃渣,避开高边坡等地段,减少水土流失。

2.3设计标准

根据《水利水电工程建设征地移民设计规范》(SL290-2003)及《公路工程技术规范》(JTG B01-2003),结合日常交通量、行车安全、经济等因素以及当地实际情况,对受淹没影响的库周道路,按原道路标准(为单车道简易道路)进行恢复:

(1) 原路面高于淹没线的路段,仍然保留,并考虑库周道路施工期间的维修养路费用;

(2) 原路面淹没路段,在淹没线以上地带重新布置新建道路,路面结构采用厚20cm的级配碎石垫层与厚20cm的泥结石路面,行车道路面宽3.5m,路基宽4.5m,靠山坡侧增设边沟、另一侧设置柱式C25砼护栏;

(3) 根据现场地形每隔300m左右设置一处错车道,错车道的泥结石路面宽6.0m,路基宽7.0m,错车道长度为30m,并选择有利地点设置回车场。

汽车荷载等级:公路-Ⅱ级。

路基设计洪水频率:参照《公路路基设计规范》(JTG D30-2004)的规定,库周道路的路基及桥涵设计洪水频率为20年一遇,库区新秦过江大桥设计洪水频率为50年一遇。

2.4线型设计

(1)平面线型:按照路线设计规范,根据平曲线半径与超高值的关系来设置平曲线的超高值。

按公路等级,路面采用第1类加宽标准设置加宽值。

本路线超高缓和段长度与加宽缓和段曲线长度一致。

(2)纵面线型:纵断面拉坡及横断面设计过程中,注意控制土石方的挖填平衡,发现局部路段挖填方过大,则重新调整路线平面、纵断面,力求设计过程中挖填土石方尽可能平衡。

2.5路基边坡设计

路堑挖方边坡:由于沿线山坡地形较陡,大部分坡度陡于1:1,因此新建道路均采用路堑形式。根据地质情况,按岩体风化程度不同来选取相应的边坡值。弱、微风化坚硬岩质边坡采用1:0.3;强风化岩质边坡采用1:0.5,对特殊路段采用挂网锚喷混凝土护坡加固措施。路堑土质边坡一般采用1:0.5,对特殊路段采用挂网土钉喷混凝土护坡加固措施。若边坡地质条件差时,适当放缓至1:1进行开挖。挖方边坡高度大于10m时,采用分级边坡,第一级边坡高度为8m,其余每级均为10m。如果第一级边坡岩性为硬质岩时,第一级边坡高度可为10m~12m。每级之间设一边坡平台,一般边坡平台宽为1m,但边坡高度超过20m时,边坡平台宽为2m。

路堤填方边坡:填方边坡根据路基填料种类、地形等条件而定。低填方路基(≤8m)边坡坡比采用1:1.5。在地面横坡陡于1:5的填方路段,做内倾2%的台阶处理,台阶宽度不小于1m。地面横向坡度较陡路段在路堤下方设置挡墙,其中涵洞则与挡墙结合。

2.6路基防护

(1)路堑挖方边坡防护:

对于路堑挖方高边坡,采用分级边坡防护。根据边坡岩土性质、坡比及坡高情况,对岩质边坡较陡且岩石较破碎的特殊路段,进行挂网锚喷混凝土护坡;对土质边坡的特殊路段,采用挂网土钉喷混凝土防护或砼框格护坡。局部出现黄粘土滑坡段采用M7.5浆砌石挡墙支护。边坡高度超过20m时,边坡平台宽为2m。

(2)路堤填方边坡防护:

对于路堤填方边坡,在正常蓄水位154.5m高程以下边坡坡面采用浆砌石护坡进行防护,154.5m高程以上边坡坡面则采用植草或铺草皮防护。

2.7桥梁设计

库周道路沿线的中桥,按照路线走向结合实际地形布置,桥梁法线尽量与水流方向平行,并且在满足过流前提下使跨度尽量最小,以达到经济的目的。为了尽可能利用标准图集的设计资料,各中桥采用标准化跨径进行设计。为了节省投资,中桥采用预应力砼简支空心板桥与桩柱式墩台的结构型式。按规范要求,桥梁设双车道,全桥宽7.5m =6.5m(桥面净宽)+2×0.5m(护墙宽),不设人行道,桩基采用嵌岩桩。具体设计为:左岸大长滩中桥为3跨16m、右岸年九坑中桥为2跨16m、洪源中桥为3跨16m、太坑河中桥为3跨16m、庙坑河中桥为3跨20m的预应力砼简支空心板桥。中桥的结构型式安全耐用、施工方便、景观协调。各中桥采用统一的结构型式还能大大提高设计效率。

经过水文、地质、河道断面等多方面综合考虑选定桥址以及多方案论证比较后,确定新秦过江大桥主桥上部结构为三跨现浇预应力混凝土连续刚构桥,全桥跨径组合为45m+65m+45m,加上右岸现浇空心板连接跨10m共长165m(不含桥台搭板长)。在桥台处各设一道仿毛勒式D120型伸缩缝。桥宽8.5m,为单箱单室结构。下部结构主墩采用双肢薄壁墩身,墩高40m,墩身截面采用矩形截面,肢距320cm,单肢墩身纵桥向宽80cm。

桥面布置:桥面设双车道,桥面净宽为6.5m =2×3.0m(行车道宽)+2×0.25m(侧向宽度)。桥梁两边各加1.0m宽的人行道,人行道高出桥面0.48m。桥梁全宽8.5m=6.5m(桥面净宽)+2×1.0m(人行道),设置双车道。

桥面纵坡和竖曲线指标:纵断面为平坡。

桥面横坡:由桥面铺装形成1.5%双向横坡。

桥面高程:根据通航水位、桥下净空与梁高,并考虑受风浪的影响,中心桥面高程为166.0m。

新秦过江大桥结构外观优美、接缝少、刚度大、变形小、自重小、整体安全性好、抗震能力强、行洪通航条件好、施工占地少、施工方法先进、施工工艺成熟、工期有保证、投资少等优点。

2.8涵洞设计

沿线根据集雨面积与汇流量大小及实际情况设置钢筋混凝土圆管涵、盖板涵或箱涵,涵洞出口尽量高于水库蓄水位以保证涵洞排水顺畅,因此大部分涵洞基础需在回填方上进行施工。要求基础部分采用石渣进行填筑并分层碾压密实至设计高程。涵洞出口至填方坡脚的坡面采用浆砌石进行防护以保证路基的稳定。若设置涵洞的冲沟不是太深,则设置路肩挡土墙与涵洞进行结合防护。

水库路基设计第7篇

关键词: 小型水库; 除险加固; 设计

中图分类号: TV697.3 文献标识码: A 文章编号: 1009-8631(2012)01-0040-02

永寿县现有小(一)、小(二)型水库14座,其中:小(一)型水库4座,小(二)型水库10座。这些水库在农业生产、人民生活用水和工业用水、养殖业以及防洪等方面发挥着重要作用。然而,由于这些工程大部分建于50-70年代,工程运行时间长,淤积严重,许多水库都不同程度存在一些病险问题,特别是上世纪六七十建成的水库问题尤为突出,一直成为水利行业的工作重点之一。现以永寿县三分岔河水库为例对水库除险加固及运行管理上存在问题和解决的对策进行了分析。

一、水库概况

三岔河水库位于永寿县三岔河中游的御驾宫乡营里村,距县城12公里。三岔河是泔河左岸的一条支流,地处渭北黄土高原沟壑区,植被较差。沟道全长15km,流域面积62.5km2,沟道平均比降23.2‰。三岔河水库位于三岔河下游,控制流域面积52km2,坝址以上沟道长13.75km,沟道平均比降42‰。

水库始建于1976年,土坝工程从1976年10月动工,于1977年9月份全部填筑完毕。溢洪道1978年衬砌了陡坡和消了池,1982年5月对剩下96m未衬砌平流段进行了衬砌。放水设施和大坝同期完成。受当时政治条件和技术力量限制,由当时永寿县水电局边勘察、边设计,由民工大会战完成的水库工程。是一座典型的“三边工程”。由于原设计标准低,施工质量差,近40年来,一直带病运行,存在多处隐患。整个工程的病险状况已经十分严重。

2008年12月,咸阳市水利局组织有关专家对三岔河水库大坝进行了安全鉴定,鉴定结论为三类坝,并建议“尽快完成除险加固,使大坝能够安全、正常运行”。

水库由大坝、溢洪道、放水洞组成,属Ⅳ等小(1)型水库,主要建筑物4级,地震设防烈度VI度。原防洪标准为按30年一遇设计,300年一遇校核。水库原设计总库容193万m3,其中有效库容110万m3,死库容20万m3,滞洪库容63万m3。设计正常蓄水位926.00m,校核洪水位928.50m。

大坝为碾压式均质土坝,原设计坝顶高程929.00m,最大坝高26m。坝顶宽2.5m,坝顶长121m。上下游坡分别设有两级戗台。下游坡脚设有排水棱体。

溢洪道位于大坝左岸,为河岸开敞式,溢洪道进口高程926m,长199.2米,总落差22.96m。其中平流线长96m,宽15m,设计水深2.0m,校核水深2.5m;陡坡长80m,比降1%,宽11.5m,墙高2.0m,比降为0.25;消力池长20.75m,深1.5m,尾墙宽2.45m,全部用块石衬砌。

卧管和涵洞夹角为60°,卧管共有20个台阶,每个台阶高0.4m,每个台阶1个孔,孔径上口0.3m,下口为0.25m。涵洞全长96m,底宽0.8m,高0.8m,涵洞顶部为半圆形,半径为0.4m,洞底比降1%,流量0.23m3/s。

二、工程存在的主要问题

目前水库大坝主要存在以下问题:

1.大坝迎水坡及背水坡坡面局部出现冲沟和塌坑;坝后排水棱体石块风化固结严重,且排水棱体淤积堵塞,左坝肩存在绕坝渗漏;坝面排水系统不完整,现有排水渠冻融损毁,衬砌破坏严重,排水不畅。

2.溢洪道砌石风化滑塌严重,两岸高边坡没有按稳定进行边坡削坡处理,土体大量滑塌,大量土方堆积在溢洪道内,影响了溢洪道的正常泄洪。进口右岸侧墙因长年垮塌,现仅剩余不到2.0m宽的墙体,且多出存在裂缝。陡坡段砌石底板冲毁、风化严重,陡坡段末端右岸边坡绕坝渗漏。

3.水库年久失修,多年淤积,放水卧管几乎淤死,最大淤积高度达7.0m左右。放水涵洞出口引水渠因坝后高边坡滑塌而被掩埋,涵洞出口退水渠冲毁破坏严重,现已在坝后坡脚处形成深约2.0m,宽1.5m的冲沟,直接威胁大坝安全。

4.无监测系统、水情测报系统、无防汛抢险硬化道路。

三、水库除险加固的必要性

1.防洪减灾的需要。三岔河水库地理位置十分重要,担负着水库下游马坊镇仇家村、郭门村及御驾宫乡营里、御西、御中、庄头、寨子、九龙咀等村的防洪安全,使下游河道内耕地免受洪水威胁;灌溉方面,三岔河水库为当地2500亩农田提供灌溉生产用水,为当地农业增产及灌区农民脱贫致富奔小康发挥着重要作用。总之,三岔河水库综合效益显著。所以该水库对下游的防洪相当重要。

2.水库正常运行的需要。三岔河水库原设计总库容193万m3,有效库容110万m3,正常蓄水位926.0m。水库建于70年代,因工程设计标准低,施工质量差,且多年来工程管理和维护不到位,枢纽建筑物多处存在安全隐患,使水库一直带病低水位运行,没有发挥应有的工程效益。

3.满足工程安全运行的需要。三岔河水库属Ⅳ等小(1)型水库,主要建筑物4级,地震基本裂度为VI度。水库原按30年一遇洪水设计,300年一遇洪水校核,因水库属“三边”工程,工程建设标准低,质量差。现有坝体损坏严重,溢洪道因淤积造成泄洪能力不足,放水洞坍塌,放水设施失效,这些隐患给下游人口、耕地及公路交通带来潜在的威胁,严重影响当地农业、工业及交通运输业的发展。

4.水资源充分利用的需要。三岔河水库是永寿县很重要的农业生产的水利灌溉设施,给三岔河灌区0.25万亩农田提供灌溉水源。渭北地区缺水严重,为充分利用有限的水资源,保证三岔河灌区的农田稳产、高产,促进灌区经济发展和社会稳定,尽快实施三岔河水库除险加固是十分必要和紧迫的。

四、水库除险加固工程设计

(一)大坝加固工程

大坝加固工程主要包括排水棱体改建、坝顶加固、大坝上、下游护坡加固、坝面排水改建及左坝肩防渗处理等工程。

1.大坝下游坝体排水改建工程。由于原排水棱体部分掩埋并且淤堵严重,以失去功能,本次加固拆除原排水棱体在原位置新建排水设施。新建排水体顶高程905.69m,顶宽1.5m,为棱体排水,上游坡比为1∶1,下游坡比为1∶1.5。

2.大坝坝顶改造设计。实测坝中坝顶高程为929.07m,宽2.7m,本次经复核计算现状坝顶高程不满足防洪要求,为了降低工程造价本次设计不加高坝顶顶高,采用坝顶上游增设C25钢筋砼防浪墙,满足防洪需求。防浪墙顶宽0.3m,高0.9m,墙顶高程为929.97m。由于坝顶过窄,无法满足防汛抢险需要,如果仅是为了增加坝顶宽度采用培厚坝坡工程量较大,不经济。本次设计结合上游设置防浪墙,在下游侧设置M7.5浆砌石挡土墙,将坝顶加宽至3.5m。坝顶道路为3.5m宽泥结碎石路面,路面为15cm厚的泥结碎石,路基为12cm厚砂砾石垫层。

3.大坝上、下游护坡设计。本次设计在上游增设干砌石护坡,护坡下做砂砾石保护层。加固平整下游坡面,设草皮护坡,改建坝面排水渠。

4.左坝肩渗漏出口反滤设计。左坝肩坝后渗漏出口处增设砂砾石反滤层,保护渗漏出露点砂砾石层,提高稳定性。对出口处高程912.0m以上范围边坡削坡处理。912.0m~919.0m范围内做M7.5浆砌石护坡。护坡内填砂砾石反滤层厚20cm,底部间隔1.5m设φ50PVC排水管,渗水经排水管排入溢洪道。

(二)溢洪道改造工程

针对溢洪道目前存在的问题,改造内容如下:

1.清除溢洪道内原施工弃渣、弃土及塌岸堆土等;

2.对损毁的砌石边坡按计算高度重新砌护,对进口右岸的边墙延伸至坝侧。其余砌石段重新进行勾缝处理。

3.对陡坡段原砼底板和消力池底板进行加固处理,在原底板上加锚筋并浇筑30cm厚的C25钢筋砼,以提高抗冲能力。

4.对溢洪道左岸高边坡进行削坡治理。

(三)放水设施改建工程

1.卧管改造设计。本次改造仅对淤积高程925.00m以上卧管进行改造,卧管台阶高度由0.4m改为1.0m,共改造两级台阶,水平放水圆孔改为立式放水方孔,增设铸铁放水闸门及配套启闭设备。

2.输水洞加固设计。原放水涵洞采用块石砌筑,经多年运行,放水洞基本完好,但目前涵洞内局部存在破损、裂缝现象,本次加固拟采用M7.5水泥砂浆对裂缝封堵,然后表面抹平。对涵洞壁存在的裂缝用水泥砂浆封填处理,用水泥砂浆回填、压实、抹平。

(四)防汛道路改造工程

该防汛道路是在原有土基的基础上整修,全线长2940m。经复核原路线转弯半径等基本符合规范要求,所以整修道路基本维持原路线不变,仅对局部进行调整,最大纵坡不大于10%。路基宽度维持原路基宽度不变。路基宽度4.5m,路面宽3.0m,路面结构由两部分组成:泥结碎石面层(厚150mm)及级配碎石基层(厚120mm)。

(五)大坝安全监测工程

重新布设大坝变形监测网,增设大坝渗流观测,完善大坝相应的观测设施。

(六)工程管理

三岔河水库现由永寿水利局管理,共有管理人员5名,其中工程师1人,助工2人,技术员2人。根据水库管理人员编制规定,本次维持管理人员5人不变。

五、国民经济评价

水库加固改造后,保证了大坝的正常安全运行,经计算,年防洪减灾效益为46万元,灌溉效益为13.2万元;本工程的内部收益率为10.1%,大于经济基准收益率8%;经济净现值58.53万元,大于零;经济效益费用比1.10,大于1.0。可见实施本工程项目具有一定的社会效益,国民经济评价是合理的。