欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

基于模型的优化设计(合集7篇)

时间:2023-06-14 16:31:48
基于模型的优化设计

基于模型的优化设计第1篇

天线背架结构是反射面的主要支撑结构。一方面,面板的自重主要靠背架来承担,另一方面,背架的自重又有可能恶化反射面的变形,进而影响天线的电磁性能。因此,背架结构的设计是天线结构设计中的一个关键环节。人们很早就开展了天线背架结构的优化设计研究。从已有的文献来看,大部分的工作局限于背架的尺寸优化和下弦节点的位置优化。背架结构的拓扑优化问题的研究则相对较少,而且均以全基结构作为初始结构。

一般来说,背架结构是大型杆系结构。杆系结构的拓扑优化通常采用所谓基结构法。该方法在给定的节点位置下,首先确定节点之间的初始连接关系,即基结构,进而在优化过程中逐步删除不必要的杆件,最终得到结构的最优拓扑结构。对基结构法来说,基结构的确定是很重要的,基结构决定了设计空间的大小,从而会对优化结果产生较大影响。在理论研究中,通常将所有的节点两两连接起来,组成所谓的全基结构。对于天线背架这样大型的杆系结构而言,全基结构往往导致设计规模过大而不实用。一个较实用的处理办法是先根据结构的对称性和工程经验确定一个初始结构,在初始结构的基础上逐步增加杆件,最终形成一个合理的基结构。为了不使设计规模过大,所增加的杆件数目应尽可能的少,新增杆件应尽可能地改善当前结构的力学性能。为此,需要研究一个合理的杆准则。

在拓扑优化中,T.Hagishita 曾提出一个杆机制,即将拟新增的杆件用虚单元表示,利用当前结构的节点变形计算所有虚单元的潜在应力,并根据潜在应力的大小作为杆依据,潜在应力大的虚单元作为新增杆件。简单的算例表明该方法不以全基结构作为初始结构,也能得到较好的优化结果。该准则的缺点仅针对单工况,天线结构随着其俯仰角的变化,一般工作于多个重力工况。所以为了确定背架合理的基结构,应给出多工况下的杆准则。

首先阐述了场耦合理论的基础工作,即从结构位移场出发,给出主反射面变形、馈源位姿和副面位姿对天线远场方向图的影响关系。介绍了反射面天线结构位移场与电磁场的场耦合理论模型。在场耦合理论的基础上,建立了面天线机电综合优化模型,引入了拓扑变量进行优化设计。主要讨论了在机电综合优化模型设计存在的不足和问题,提出天线结构建立基结构时的增杆机制。目的是避免过多对提高电性能无益的杆件在基结构中出现,提高计算效率。随着深空探测、射电天文等科学领域的发展,反射面天线正朝着大口径、高频段和高增益的方向发展,这给反射面天线的设计带来了诸多挑战。反射面天线是典型的机电一体化系统,天线结构设计的最终目的是满足天线的电性能要求,因而,必须从机电耦合的角度对其进行机电综合优化。在国家重大科研项目的支持下,对反射面天线的机电综合拓扑优化问题进行了较为系统的研究。

一、赋形卡式天线主面变形的副面实时补偿首先,在保证拟合精度的前提下,用标准抛物线对天线主面的母线数据进行分段拟合,如果不作任何处理,在拟合过程中发现,相邻的抛物面可能是不连续的,而考虑到反射面实际的变形是连续变化的,所以在拟合过程中应兼顾实际情况对拟合程序作相应的调整。其次,基于该抛物环面对天线各典型工况下的主面变形进行吻合,又存在着另一个问题,即在各理论面的基础上进行吻合会导致各自的焦点是根据各环的变形情况处在不同的位置。所得出的吻合精度并不能正确的指导副面的调整。因此,我们在优化模型中施加了多段环面新焦点共线约束。换言之,将共线约束用数学函数的形式提出,这样能通过优化计算得到的一组主面吻合参数才能保证有准确的主副面匹配关系,从而真正实现副面对天线主面变形的补偿。

二、基于场耦合理论的面天线机电综合优化

阐述了场耦合理论的基础工作,介绍了反射面天线结构位移场与电磁场的场耦合理论模型。在场耦合理论的基础之上,建立了面天线机电综合拓扑优化模型。提出一种建立天线背架结构基结构的方法,避免过多对提高电性能无益的杆件在基结构中出现。

三、场耦合理论在某深空探测 65 米反射面天线的工程应用考虑到副面位姿对电性能有明显的影响,在场耦合理论的基础上,以结构尺寸和拓扑变量以及副面调整量作为设计变量,建立了机电综合拓扑优化模型。采用该模型对某 65 米口径的反射面天线结构进行了优化设计,给出了新的结构方案,电性能提升明显。通过计算我们发现,不对称结构不仅仅影响反射面面板最大位移量,而且影响位移分布,拓扑的改变同时对这两方面都有改善。拓扑改变以后的最大好处是降低了第一副瓣电平,使之达到工程设计要求,得出的结果可供工程实践参考。

四、基于交叉过滤的杆系结构拓扑优化方法

基于模型的优化设计第2篇

关键词: RFID;食品追溯;模型

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)19-4488-02

最近几年我们国家政府对食品安全问题越来越重视,人民群众也非常关心此类危害生命和健康的事件,该文研究食品追溯模型优化,希望能够从追溯方面对人名群众的食品安全进行保证,并最终达到食品的安全流通与即时检验。

由于我国地大物博,经济的快速增长、社会生活的稳定进步、人民生活水平的不断提高,形成了规模极为庞大的食品行业。同时,食品行业以中小企业为主,生产分散,生产环节到最终消费的质量管理很难进行,造成了食品安全的很多问题。

本模型构建统一的食品安全监管可追溯信息服务模型,希望能在政府、企业、食品消费者之间搭建完整的信息沟通通道。希望能以政府信息化网络为基础,辅以公共事务管理平台,结合食品安全这个民生相关的信息系统,进行资源与相关技术的整合,通过优化模型,形成一个完整食品安全追溯平台,提高食品安全追溯的效率与准确性,以更加统一、协调、共生、便捷的方式服务群众。

1 RFID工作原理

RFID的英文全称是Radio Frequency Identification,射频识别,又称电子标签,包含:无线射频识别、感应式电子晶片、近接卡、感应卡、非接触卡、电子条码等关键器件。

2.1RFID基本工作原理

首先我们把有标签的物体放入磁场后,此时物体就会收到读写器的射频信号,如果是无源标签或被动标签就会凭借感应电流所获得的能量发送出存储在芯片中的产品信息;如果是有源标签或主动标签就会主动发送某一频率的信号,最后由解读器读取信息并解码,然后送到相关应用系统进行数据处理其工作原理如图1所示:

1.2 射频识别

射频标签(RFID TAG)是射频识别的基础,它安装在被识别物体上。射频标签用来存储被识别对象信息,也称之为电子标签。射频标签是数据载体,是射频识别系统的核心,由它记录并存储的对象数据非常重要。射频识别标签的组成如下:天线、调制器、编码发生器、时钟及存储器等,具体构成如图2所示。

2 追溯设计

追溯系统的构成中,核心是信息识别标签。我们可以由信息识别标签来存储食品追溯所需的多种关键信息,如:食品的原材料来源、加工、运输、仓储、销售等供应链的各个阶段情况。追溯就是通过对原材料的来源、食品制造商、销售商作加工、仓储及销售的各项信息纪录来完成的,我们通过RFID标签记录信息就能对食品进行追究根源,从而实现粮食品质量追溯系统的建立。具体流程如下:

1)对食品的原材料进行跟踪、记录,把来源记录写入RFID标签,添加食品来源的各种基本信息如:产地、收获时间、净重、有机或化学保护等;

2)通过仓储、运输环节到达食品加工厂,我们需要在标签中添加仓储和运输环节的信息,如:车次、接货时间、到货时间、批号、产品重量等;

3)由加工厂完成食品加工,将原料和辅料的原始记录以及加工过程、质量检测的信息写入RFID标签;

4)最后到批发市场、大型超市,然后将这一层信息写入电子标签,实现跟踪链的最终环节。

在设计追溯系统时候,考虑到工作效率,采用自动数据采集技术为支撑,将条码、射频识别等技术应用到供应链管理中。我们采用了条码技术进行信息传输,它作为供应链管理现代化的关键的信息技术,具有信息采集速度快、可靠性高、灵活、实用等特点。而在追溯系统设计中,广泛使用了射频识别技术,因为它识别速度快、保密性强、可同时识别多个对象等特点,所以主要采用了它来进行信息识别。

3 食品追溯优化模型

食品追溯系统包含了一个完整的供应链,任何一个环节出问题,都会导致食品的追溯达不到预期效果。所以本研究从根本上进行食品追溯系统的模型优化设计,尽可能完善追溯系统,提高追溯效率,对食品从来源地、加工、包装、销售以及仓储、运输等环节构成进行整体监控,实现全过程跟踪。在设计追溯模型时,需要实现各个环节的无缝衔接,使物流与信息流达到统一,这样整个食品的供应链处于透明的状态,从而使系统追溯功能顺利完成。

首先为使信息流能顺利联通,需要在各个环节如:材料来源、运输、加工、包装、销售等供应链进行标识。在此时,由于我们需要采用统一标识代码进行记录,所以对相关供应链中的操作,如数据采集、交换,对编码的唯一性、通用性提出了更高的要求。

在设计追溯模型是,我们会对各环节全过程的每一个节点进行有效的标识。通过标识建立完整的,各个环节信息管理、传递和交换的方案,这样我们就可以对供应链中来源、运输、加工、包装、贮藏、销售等环节进行跟踪与追溯,及时发现存在的问题,进行问题追溯。如图3是我们设计的食品追溯优化模型图:

4 结论

在食品跟踪与追溯系统设计中,涉及了供应链中的每一个环节,需要对食品进行完整的标识,还要能及时采集与录入标识信息,整个环节不能出现差错要求系统可靠性高。如果任何一个环节出差错了,都会导致整个追溯系统的错误,所以在设计系统时候,需要供应链中的所有参与方达成一致,在目前情况下,最好是政府牵头,以政府信息化网络为基础,辅以公共事务管理平台,完成整个供应链的整合。

参考文献:

[1] 付骁,傅泽田,张领先,等..基于Web的蔬菜质量安全可追溯系统[J].计算机工程与设计,2009(1): 85-87,128.

[2] 白红武,胡肄农,王立方, 等.基于GIS的生猪及产品物流与追溯平台构件化设计[J].江苏农业学报,2008,24(5):711-715.

[3] 刘鹏,张万昌.基于Web GIS的流域洪水风险信息系统 [J].计算机与数字工程,2008,36(7):134-136.

[4] 于锐华,益晓新,于全. ZigBee与Bluetooth的比较及共存分析[J].测控技术,2005,24(6):50-56.

基于模型的优化设计第3篇

关键词:给水管网;管网优化;数学模型

1 引言

自从60年代Carmelita以及Shake等人提出利用系统分析的方法,尤其是优化算法进行给水管网设计的课题以来,前人在如何建立管网优化模型方面已经做了大量的研究和探索工作。

给水管网的优化设计,应考虑到4个方面:即保证供水所需的水量和水压、水质安全、可靠性和经济性。管网技术经济计算就是以经济性为目标函数而将其余的作为约束条件,据此建立目标函数和约束条件的表达式以求出最优管径或水头损失。由于水质安全性不容易定量的进行评价,正常时和损坏时用水量会发生变化,二级泵房的运行和流量分配等有不同方案,所有这些因素都难以用数学式表达。因此,管网技术经济计算主要是在考虑各种设计目标的前提下求出一定设计年限内管网建造费用和管理费用之和为最小时的管段直径或水头损失,也就是求出经济管径或经济水头损失。

2 数学优化模型

2.1 压力流单水源环状网的优化设计数学模型

起点水压未给的管网需要供水动力费用,而动力费用随泵站的流量和扬程而定,扬程则决定于控制点要求的最小服务水头,以及输水管和管网的水头损失等。水头损失又和管段长度、管径、流量有关。所以,管径由管网的建造费用和管理费用之和为最低的条件确定,这时目标函数为:

该数学模型是以经济性为目标函数,将其余条件作为约束条件(水力约束和可靠性约束)。由于水质的可靠性指标难以量化,故未考虑水质的约束条件,同样由于可靠性指标的度量问题,水压的约束也仅仅是要求水源泵站扬程必须满足控制点的水压要求,只要控制点的压力在最高用水时可以达到最小服务水头,整个管网就不会存在低压区。此外,也要考虑管径的范围约束,以保证管网的水量和水压。

2.2 多水源环状网的优化设计数学模型

多水源管网供水安全,可以节省造价和电能。其优化设计计算原理与单水源时相同,目标函数为:

该数学模型与上述系统不同的是,每一水源的供水量,随着供水区用水量、水源的水压以及管网中的水头损失而变化,从而存在各水源之间的流量分配问题,即要考虑到水源的水量约束条件。

2.3 设加压泵站环状网的优化设计数学模型

为满足管网中局部地区的水压应在管网中设置加压泵站。当加压泵站位置靠近水源泵站时,水源水泵降压快,而加压泵加压流量大;加压泵站远离水源泵站时,水源水泵降压慢,而加压泵加压流量小。这样,目标函数在进行优化设计计算时应考虑水源泵站和加压泵站两项动力费用。因此建立如下数学模型:

该数学模型与上述系统不同的是:在满足管网水力约束和可靠性约束的同时要满足加压扬程约束。加压泵站流量属于待求的未知数,可近似取为所属管段的管段流量。

对上述系统采用优化的方法进行实现,最终求得系统最优时的管径、管段流量、流速、水力坡度、水泵扬程、各节点的水压等。

3 结束语

给水管网是给水工程中投资最大的子系统,一般要占到工程总造价的50%-80%。在工程总投资有限的前提下,在保证整个供水系统中水量、水压、水质安全以及供水可靠性的基础上,以整个系统的总造价或年费用为目标函数进行管网优化设计,寻求目标函数最小的设计方案,对加强安全可靠性、降低工程成本、提高经济效益和社会效益有着重要的现实意义。

参考文献

[1]王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究[J].中国给水排水,1988,4,(2).

[2]俞国平.城市配水管网的优化设计[J].中国给水排水,1987,(5):48-53.

基于模型的优化设计第4篇

关键词:给水管网;管网优化;数学模型

中图分类号:TV212.2 文献标识码:A 文章编号:1672-3198(2007)09-0249-01

1 引言

自从60年代Carmelita以及Shake等人提出利用系统分析的方法,尤其是优化算法进行给水管网设计的课题以来,前人在如何建立管网优化模型方面已经做了大量的研究和探索工作。

给水管网的优化设计,应考虑到4个方面:即保证供水所需的水量和水压、水质安全、可靠性和经济性。管网技术经济计算就是以经济性为目标函数而将其余的作为约束条件,据此建立目标函数和约束条件的表达式以求出最优管径或水头损失。由于水质安全性不容易定量的进行评价,正常时和损坏时用水量会发生变化,二级泵房的运行和流量分配等有不同方案,所有这些因素都难以用数学式表达。因此,管网技术经济计算主要是在考虑各种设计目标的前提下求出一定设计年限内管网建造费用和管理费用之和为最小时的管段直径或水头损失,也就是求出经济管径或经济水头损失。

2 数学优化模型

2.1 压力流单水源环状网的优化设计数学模型

起点水压未给的管网需要供水动力费用,而动力费用随泵站的流量和扬程而定,扬程则决定于控制点要求的最小服务水头,以及输水管和管网的水头损失等。水头损失又和管段长度、管径、流量有关。所以,管径由管网的建造费用和管理费用之和为最低的条件确定,这时目标函数为:

该数学模型是以经济性为目标函数,将其余条件作为约束条件(水力约束和可靠性约束)。由于水质的可靠性指标难以量化,故未考虑水质的约束条件,同样由于可靠性指标的度量问题,水压的约束也仅仅是要求水源泵站扬程必须满足控制点的水压要求,只要控制点的压力在最高用水时可以达到最小服务水头,整个管网就不会存在低压区。此外,也要考虑管径的范围约束,以保证管网的水量和水压。

2.2 多水源环状网的优化设计数学模型

多水源管网供水安全,可以节省造价和电能。其优化设计计算原理与单水源时相同,目标函数为:

该数学模型与上述系统不同的是,每一水源的供水量,随着供水区用水量、水源的水压以及管网中的水头损失而变化,从而存在各水源之间的流量分配问题,即要考虑到水源的水量约束条件。

2.3 设加压泵站环状网的优化设计数学模型

为满足管网中局部地区的水压应在管网中设置加压泵站。当加压泵站位置靠近水源泵站时,水源水泵降压快,而加压泵加压流量大;加压泵站远离水源泵站时,水源水泵降压慢,而加压泵加压流量小。这样,目标函数在进行优化设计计算时应考虑水源泵站和加压泵站两项动力费用。因此建立如下数学模型:

该数学模型与上述系统不同的是:在满足管网水力约束和可靠性约束的同时要满足加压扬程约束。加压泵站流量属于待求的未知数,可近似取为所属管段的管段流量。

对上述系统采用优化的方法进行实现,最终求得系统最优时的管径、管段流量、流速、水力坡度、水泵扬程、各节点的水压等。

3 结束语

给水管网是给水工程中投资最大的子系统,一般要占到工程总造价的50%-80%。在工程总投资有限的前提下,在保证整个供水系统中水量、水压、水质安全以及供水可靠性的基础上,以整个系统的总造价或年费用为目标函数进行管网优化设计,寻求目标函数最小的设计方案,对加强安全可靠性、降低工程成本、提高经济效益和社会效益有着重要的现实意义。

参考文献

[1]王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究[J].中国给水排水,1988,4,(2).

[2]俞国平.城市配水管网的优化设计[J].中国给水排水,1987,(5):48-53.

基于模型的优化设计第5篇

关键词:给水管网;管网优化;数学模型

1 引言

自从60年代carmelita以及shake等人提出利用系统分析的方法,尤其是优化算法进行给水管网设计的课题以来,前人在如何建立管网优化模型方面已经做了大量的研究和探索工作。

给水管网的优化设计,应考虑到4个方面:即保证供水所需的水量和水压、水质安全、可靠性和经济性。管网技术经济计算就是以经济性为目标函数而将其余的作为约束条件,据此建立目标函数和约束条件的表达式以求出最优管径或水头损失。由于水质安全性不容易定量的进行评价,正常时和损坏时用水量会发生变化,二级泵房的运行和流量分配等有不同方案,所有这些因素都难以用数学式表达。因此,管网技术经济计算主要是在考虑各种设计目标的前提下求出一定设计年限内管网建造费用和管理费用之和为最小时的管段直径或水头损失,也就是求出经济管径或经济水头损失。

2 数学优化模型

2.1 压力流单水源环状网的优化设计数学模型

起点水压未给的管网需要供水动力费用,而动力费用随泵站的流量和扬程而定,扬程则决定于控制点要求的最小服务水头,以及输水管和管网的水头损失等。水头损失又和管段长度、管径、流量有关。所以,管径由管网的建造费用和管理费用之和为最低的条件确定,这时目标函数为:

该数学模型是以经济性为目标函数,将其余条件作为约束条件(水力约束和可靠性约束)。由于水质的可靠性指标难以量化,故未考虑水质的约束条件,同样由于可靠性指标的度量问题,水压的约束也仅仅是要求水源泵站扬程必须满足控制点的水压要求,只要控制点的压力在最高用水时可以达到最小服务水头,整个管网就不会存在低压区。此外,也要考虑管径的范围约束,以保证管网的水量和水压。

2.2 多水源环状网的优化设计数学模型

多水源管网供水安全,可以节省造价和电能。其优化设计计算原理与单水源时相同,目标函数为:

该数学模型与上述系统不同的是,每一水源的供水量,随着供水区用水量、水源的水压以及管网中的水头损失而变化,从而存在各水源之间的流量分配问题,即要考虑到水源的水量约束条件。

2.3 设加压泵站环状网的优化设计数学模型

为满足管网中局部地区的水压应在管网中设置加压泵站。当加压泵站位置靠近水源泵站时,水源水泵降压快,而加压泵加压流量大;加压泵站远离水源泵站时,水源水泵降压慢,而加压泵加压流量小。这样,目标函数在进行优化设计计算时应考虑水源泵站和加压泵站两项动力费用。因此建立如下数学模型:

该数学模型与上述系统不同的是:在满足管网水力约束和可靠性约束的同时要满足加压扬程约束。加压泵站流量属于待求的未知数,可近似取为所属管段的管段流量。

对上述系统采用优化的方法进行实现,最终求得系统最优时的管径、管段流量、流速、水力坡度、水泵扬程、各节点的水压等。

3 结束语

给水管网是给水工程中投资最大的子系统,一般要占到工程总造价的50%-80%。在工程总投资有限的前提下,在保证整个供水系统中水量、水压、水质安全以及供水可靠性的基础上,以整个系统的总造价或年费用为目标函数进行管网优化设计,寻求目标函数最小的设计方案,对加强安全可靠性、降低工程成本、提高经济效益和社会效益有着重要的现实意义。

参考文献

[1]王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究[j].中国给水排水,1988,4,(2).

[2]俞国平.城市配水管网的优化设计[j].中国给水排水,1987,(5):48-53.

基于模型的优化设计第6篇

【关键词】旅游线路;优化设计;数学模型

一、引言

旅游线路是指在一定的区域内,为使游人能够以最短的时间获得最大观赏效果,由交通线把若干旅游点或旅游区域合理地贯穿起来并具有一定特色的路线。假设江苏徐州有一位旅游爱好者从2011年五月一日上午八点出发,预选了表1中所示的十个景点。在以下的几种需求下分别建立相应的数学模型,优化设计出最佳的旅游线路。

表1预选的十个省市旅游景点

旅行中的必要假设:车票或机票可预订到;旅行期间天气良好,交通顺畅;晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时必须住宿,住宿费用不超过200元/天,吃饭等其它费用60元/天;景点的开放时间为8:00至18:00。符号说明:m:总的旅游费用;T:总的旅游时间;cij:第i个城市到第j个城市所需的交通费用;dij:第i个城市到第j个城市所需的交通时间;Zi:第i个景点的住宿费用;T12:交通花费总时间;ti:在第i个景点的停留时间;yi:第i个景点的住宿时间;n:游览景点的数目;rij值为1表示从第i个景点直接到第j个景点,为0表示其他情况;Si值为1表示在第i个景点住宿,为0表示其他情况。

二、不同旅游需求下的数学模型

1.需求一:时间不限,花费费用最少。总的旅游费用由交通费用、门票费用、住宿费用和吃饭及其他费用4部分组成,而门票费用、吃饭及其他费用已经确定,只需在游客游览完十个景点的条件下使交通费用和住宿费用最少即可。通过在网上查询可得到:十个景点门票总费用为1225元,市内交通总费用为224元。

由于该问题是典型的TSP(旅行商问题)问题。我们以旅游费用最少为目标建立一个单目标优化模型,引入两个0-1变量分别表示是否游览某个景点和是否在某景点住宿,从而得出旅游费用的目标函数表达式,并给出相应的约束条件。目标函数:

根据此模型,使用LINGO编程进行求解得到的旅游线路如下:徐州->黄鹤楼->庐山(住宿)->黄山->普陀山->恐龙园(住宿)->崂山->八达岭长城->乔家大院->西安市秦始皇兵马俑->洛阳市龙门石窟->徐州。通过制定详细的旅游行程表表明此路线可行,确定总费用在2880元左右,在可接受范围之内,表明此模型可用。

2.需求二:费用不限,花费时间最少。需求二不限制旅游费用,而要求在最短时间内游遍十个景点。旅游时间由交通花费时间、景点停留时间、住宿时间3部分组成。考虑飞机时刻安排以及在景点停留最短时间要求,我们尽量使景点停留时间和住宿时间最少。从网上收集各城市交通情况,并根据常规车速估计,各城市机场或车站与景点间的市内交通总时间为:T2=25小时。在需求一基础上,改变目标为时间最少,调整约束条件,建立如下模型。目标函数:

使用LINGO编程求解,得到最短时间为9天。推荐最佳旅游路线为:徐州->乔家大院->崂山(住宿)->普陀山(住宿)->八达岭长城(住宿)->龙门石窟(住宿)->秦始皇兵马俑(住宿)->黄山(住宿)->庐山(住宿)->黄鹤楼(住宿)->恐龙园(住宿)->徐州。通过制定详细的旅游行程表表明此路线可行,且时间安排合理。

3.需求三:限定费用,尽可能多游览景点。需求三限定旅游费用,时间不限,设计在此条件下能游览最多景点的最佳路线。使用单目标优化模型,以景点数最多为目标,在需求一基础上加上总费用小于2000元的约束条件,建立模型如下。目标函数:Max n,约束条件:在需求一约束上加上总费用约束,m≤2000元。然后编程求解,得到最多景点数为7,时间为8天。推荐最佳旅游路线为:徐州->恐龙园->庐山->黄鹤楼->八达岭长城->乔家大院->秦始皇兵马俑->龙门石窟->徐州。旅游花费费用为1217元左右,但程序在求解时未考虑每天吃饭费用60元这个定值,所以总的旅游费用为1217+60×8=1697元。通过制定详细旅游行程表表明此路线可行且合理,总的旅游花费满足要求。

4.需求四:限定时间,尽可能多游览景点。需求四限定时间,旅游费用不限,我们建立以游览景点数为目标的单目标规划模型,并在需求二基础上加上总时间不大于5天的约束条件,建立模型如下。目标函数:

编程求解,得到5天时间内最多游览6个景点。推荐最佳旅游路线为:徐州->八达岭长城->龙门石窟(住宿)->秦始皇兵马俑->乔家大院(住宿)->黄鹤楼(住宿)->恐龙园(住宿)->徐州。同样制定了详细的旅游行程表,表明此路线可行,且在5天内游览景点数最多。

5.需求五:限定时间和费用,尽可能多游览景点。把旅游费用作为新的约束加入约束条件,模型如下。目标函数:Max n,约束条件:

利用模拟退火算法思想设计算法,并编程求得结果:5天时间内游览5个景点,共花费1910元左右。推荐最佳旅游路线为:徐州->八达岭长城->乔家大院->秦始皇兵马俑->黄鹤楼(住宿)->恐龙园->徐州。同样可以利用此线路设计结果制定详细且安排合理的旅游行程表。

参考文献

[1]马勇.区域旅游线路设计初探[J].旅游学刊.1990,V5(3)

[2]姜启源.数学模型(第三版).高等教育出版社,2003

[3]谢金星,薛毅.《优化建模与LINDO/LINGO软件》.清华大学出版社,2005

基于模型的优化设计第7篇

关键词:发动机悬置系统;能量解耦;Pareto遗传算法;稳健优化设计;Monte Carlo法

中图分类号:U464.12 文献标志码:A 文章编号:1005-2550(2012)04-0016-04

Robust Optimal Design of Engine Mounting System Based on Tolerance Model

WANG Xin-kan1,2

(1.Institute of Noise and Vibration Research,Hefei University of Technology,Hefei 230009,China;2. Anhui Key Laboratory of Automobile NVH and Reliability,Hefei 230009,China)

Abstract:Considering the influence of the uncertainty of design variable on the results,the robust optimization design theory is used to build robust model. Pareto Genetic Algorithms is adopted to optimize the stiffness of mounting of engineer mounting system which takes the decoupling of energy distribution as a target,and the Monte Carlo method is used to analyze the optimized results. The results show that the method can improve the robustness of mounting system.

Key words:engine mounting system;energy decoupling;Pareto genetic algorithms;robust optimal design;Monte Carlo method

人们对汽车乘坐的舒适度要求越来越高,发动机是汽车主要的振源,其振动经悬置系统传递给车架或车身,因而发动机悬置系统的参数设计对汽车整车减振来说非常重要。对于发动机悬置系统的优化设计,可以从不同角度提出目标函数和约束条件,并建立不同的数学模型。常见的目标函数主要有:发动机悬置系统六自由度完全解耦或是部分解耦,移频使系统固有频率处在合理的区间,系统的支反力(矩)最小或是传递率最小。考虑到研究的车型上的悬置位置和安装角度已经确定,因而以悬置的刚度为设计变量,主要从移频且使悬置系统部分解耦来进行多目标参数优化设计。悬置厂商提供的悬置垫,悬置刚度参数一般都有很大的可变性,主要来源于悬置材料的变化和悬置几何形状的变化。另外在悬置与支架等的装配过程中,往往会产生预应力以及悬置形状的扭曲,也将造成悬置刚度值的变化[1]。传统的确定性解耦优化方法往往忽略了悬置刚度值的可变性,忽略了刚度偏差对悬置系统解耦的影响,使实际的工况下解耦效果很不理想。基于对悬置参数不确定因素影响的考虑,应该选择一种方法一方面寻求目标函数的最优值,另一方面应该考虑设计变量的误差等不确定因素,这就需要我们在优化设计中结合稳健设计的思想,即稳健优化设计。本文将稳健优化设计应用于发动机悬置系统的解耦优化中,充分考虑了各种干扰和设计变量的变差情况,不仅保证设计结果的合理性,同时也保证设计结果对悬置参数的不敏感性。同时利用Monte Carlo方法对结果进行分析验证,对悬置刚度对系统性能的影响程度进行研究。

1 稳健优化设计模型

传统确定性优化模型为:

min f(x)s.t. gi(x)≤0 i=1,2,L,m xL≤x≤xu(1)

式中:x,xL,xu分别为设计变量及其上下界; f(x)为目标函数;gi(x)(j=1,2,L,m)为m个约束函数。

稳健优化设计中,不仅考虑目标函数均值?滋f变化,而且要考虑目标函数的标准差?滓f的变化。均值?滋f和标准差?滓f的计算,可以通过泰勒级数展开来近似。考虑变量相互独立,则目标函数的均值和标准差分别为:

?滋f =f(?滋x)+■■■?滋xi?滓2xi?滓f =■ (2)

对于约束函数,由于变量变化因而引起约束的变化,于是原问题的约束变为:

?滋g i(x)+n?滓g i(x)≤0 (3)

同时为了表示设计变量偏离的可行性,相应的设计变量的边界变为:

xL-n?滓x≤x≤xu+n?滓x (4)

(2)、(3)式中n为任意常数,当n=3,x随机变差时,其设计的可行率可达到,能满足实际要求。

综上,稳健优化模型为[3]:

min ?滋f ?滓ff(x)s.t. ?滋g i(x)+n?滓g i(x)≤0 i=1,2,L,m xL-n?滓x≤x≤xu+n?滓x(5)

2 发动机悬置系统优化模型