欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

结构优化方法(合集7篇)

时间:2023-05-26 16:44:06
结构优化方法

结构优化方法第1篇

关键词:建筑;结构设计;优化方法

中图分类号:TU318文献标识码: A

一直以来,居民住房问题是整个社会的焦点问题,房屋建筑设计也成为大家关注的话题。建筑结构设计必须从多个层面去考虑,首先是对工程建筑成本的投入和预算,工程竣工后怎么使用,还要在设计的同时尽可能地满足居住、使用者对建筑的各种需求等,所以在建筑机构设计优化方面提出了更高更多的标准。

一、建筑结构设计优化的意义

国家宏观调控力度在不断加大,原材料价格在不断上涨,在工程建设前期挖掘潜力,节约建筑成本、科学优化设计,有利于节约建筑原材料、保护环境,符合国家“低碳、节能、环保”理念,利国利民。

建筑工程造价中建筑结构成本大约占到总造价的50%,对建筑结构进行优化设计可以在很大程度上降低上程总造价,节约工程造价成本。建筑结构优化设计能有效的节省房屋建筑的投资成本,具有巨大的经济价值。据统计因为在设计过程中,设计质量差,造成功能布置不合理,相关专业工程师没有相互沟通,导致在施工过程中出现进行修改及返工现象,更是没法控制施工工期。同时因为工程存在安全隐患、工程质量差等问题,使得投资经常被消耗浪费。所以通过建筑结构设计优化可以减少投资浪费、降低安全隐患,有效的提高工程设计质量。

二、满足建筑结构设计优化的要点

首先,在完成建筑结构优化设计时安全性是首先要考虑的因素;其次,在社会不断进步、科学技术快速发展的背景下,人们的思想也在随之发生改变,在这些改变的基础上,人类在建筑功能上的要求也越来越多;再次,在建筑结构优化设计方面,应该从节能环保建材、优化建筑结构整体布局来实现节能环保。在建筑施工过程中产生的废弃材料要做好科学处理,注意废水排放的方式;最后,在确保安全稳定、功能全面、节能环保的同时降低投资成本才是建筑结构优化设计的经济性所在。

三、结构设计优化技术在应用中的问题

结构设计优化方法应用于实践之中,是目前一个比较广泛的课题,利用结构优化的方法在适用性能不改变的前提下使工程造价有所降低。结构设计优化设计应用于项目的前期设计、整体设计,抗震设计、旧房改造等设计的各个部分,多种效益都是非常可观的。在模型进行实践以及按照结构设计优化方法过程中,要注意以下几个方面。

(一)前期的设计参与

建筑总投资受前期方案的直接影响,所以现在存在的问题大都是前期方案阶段结构设计并不参与进行,建筑师进行设计方案时大多也不考虑结构的可行性及合理性,而建筑设计的最终结果却直接对结构设计造成影响,某些方案可能会增加结构设计的难度,并使得建筑总投资提高。如果在方案初期,结构优化设计就能参与进来,那么我们就能针对不同的建筑类别,选择合理的结构形式,合理的设计方案,获得一个良好的开端。

(二)地基基础的结构设计

地基基础的结构设计优化首先就是选择最恰当的方案,如果为桩基础,一定得依据施工现场的具体情况选择桩基类型,节省成本,减少不必要的浪费。对灌注桩的选择影响较多的就是桩端持力层,应多进行比较以确定最合适的方案。

(三)细部结构设计优化

概念设计应用于没有具体数值量化的情况,设计过程中需要设计人员灵活运用结构设计优化方法,达到最佳的效果。与宏观把握相对应,设计过程同时要注意对于细部结构设计优化,比如现浇板中的异形板拐角处易出现裂缝,可划分为矩形板。注意钢筋的选择,I级钢和冷轧带肋钢市场价格差不多,但是他们的极限抗拉力却相差很大,所以在塑性满足要求的情况下,现浇板的受力钢筋就可选择冷轧带肋钢筋。在做立面设计的时候,外立面上的悬挑板及配筋,满足基本的规范要求即可,达到既安全又经济的目的。

三、建筑结构设计优化方法

我国社会经济不断发展,人们的生活水平也不断提高,对房屋的设计质量和居住舒适度要求也越来越高,但由于人口增长迅速和土地资源有限,再加上近几年房价迅速飞涨态势,人们对于居住的房屋设计,包括空间设计、成本控制等方面要求越来越高,若对民用建筑结构进行优化设计,可有效降低成本,从根本上实现经济效益。设计人员在设计民用建筑结构时,应严格遵守经济、合理等原则,采用先进的现代化房屋设计理念,制定经济合理的房屋建筑方案,以实现减少工程造价、达到经济利益最大化的目的。结合实际,从具体实际情况出发,选择正确、合理的计算参数,有效完成结构计算。

(一)不可盲目依赖计算机

计算机功能毕竟不是绝对万能的,计算机程序本身也存在很多漏洞,所以结构设计人员不可完全依赖计算机完成结构计算,否则很容易出现计算结果出错的情况。设计人员应该对结构计算做出基本分析,还要清楚了解计算机程序的应用范围、理论基础与限制条件等。

(二)合理运用材料

材料是建筑结构的最基本物质,对材料选用必须要求合理、规范。所有材料都是宝贵的物质财富,都必须充分利用起来,不可浪费。将材料合理运用到结构构件的具体空间、环境特点以及力学特性上来,正确处理好一些边角材料,提高材料的利用率,降低投资成本。

(三)做到数据录入精准无误

建筑实施过程中数据的作用是十分重要的。结构尺寸、荷载及几何图形等数据记录,做的时候必须耐心核对,认真仔细。尽量避免因数据计算结果出现误差或错误,不然一定会为其付出悲痛的代价。

(四)加强建筑结构设计深度

民用建筑结构设计时,存在设计粗糙、标注不全、图纸偷工减料、图纸缺漏等问题,这主要由于设计师设计水平有限或缺乏责任心,严重影响了结构设计的安全性和整个建筑工程的质量。因此,为提升建筑结构设计深度和质量,设计师应注重自身设计能力的提升,并端正工作态度,做到认真负责。

(五)注重整体意识和具体空间的结合

整体把握好结构同结构之间,以及结构同构件之间的关系。来创造你自己与大自然、与这个场所、与这里的传统的对话,并将它们融入你心中的童话。同时将建筑物的空间性、时间性、安全性等纳入其中,让建筑物发挥出时代气息、科技气息、人文气息,从某种意义上应该更具有生物气息,要使建筑与人类、与自然相互衬托,实现社会与人类、自然的和谐发展。

(六)注重提高结构体系设计水平

在民用建筑结构设计中,普遍存在抗震结构不合理、规则性差以及楼层错层等情况,这与选用结构体系不合理有很大关系,因此,优化结构体系设计很有必要。

(七)重视实际结构与计算模型的差异

计算机所使用的结构计算程序从理论上来讲,是一种虚拟的计算模型。尽管这种虚拟的计算模型非常科学、严谨。因为现实的结构受力不是计算机可以直接处理的,所以用到现实中来又存在一些差异。必须从实际出发,不能忽视计算模型与实际结构的差异,将各种可能影响建筑结构的因素综合参考,确定好它们之间的约束关系,反复核对计算结果,仔细检查计算过程。确保结构设计和计算结果的正确性。

结语

总而言之,结构设计是个系统、全面的工作,需要扎实的理论知识功底,灵活创新的思维和严肃、认真、负责的工作态度。通过概念设计、正确的计算及合理的构造措施来保证,设计要在实践过程中不断的研究、探索和创新,使其经济性和适用性的目标得以实现。

参考文献:

结构优化方法第2篇

【关键词】结构设计;结构优化;结构类型

0引言

建筑结构优化,即在一些建筑结构的设计方案中选取最优的或最适宜的设计方案,它参照数学中的模型最优化原理应用到建筑工程结构设计方案的优化比选中。研究发现,建筑结构在使用过程中是否稳定、耐久、合理等,主要决定于在建筑结构设计时选定的结构类型是否最优、是否最符合工程结构的需要。对于同一座建筑工程项目,不同的结构设计师知识储备不同,因此可能会设计出不同的结构类型、结构体系,但经过结构方案的优化、从而选取最优化的结构类型,提高建筑结构的使用寿命、稳定性能。

1建筑结构优化的主要因素

1.1荷载设计

研究发现,任何一座建筑结构都需要受到水平力和竖向荷载的作用,同时建筑还要承受较大的风荷载、地震力的作用等。当建筑结构的整体高度比较低时,由结构本身的重力引起的竖向荷载对结构的作用比较明显,而水平荷载作用在结构上,产生的内力和位移比较小,往往在计算时不考虑水平荷载的作用;若在较高层建筑设计中,虽然所受到的竖向荷载仍对结构产生较大程度的影响,但水平荷载对建筑结构本身的影响比竖向荷载产生的影响更加强烈。研究表明,随着建筑结构整体高度的逐渐增加,水平荷载对建筑结构产生的影响越将会越来越大,因此,在建筑结构高度较高时,结构所承受的水平荷载对结构的影响则不可忽视。

1.2选取结构类型较轻的

在建筑结构优化过程中,要尽量选取结构体较轻的。在现代结构优化设计中,设计人员越来越重视选用轻质高强材料,从而做大程度上减轻整体结构的自重。由于在多层建筑结构中,水平荷载对结构产生的影响处于较次要地位,结构所承受的主要荷载是竖向荷载。由于多层建筑楼层较少,整体高度相对比较低,结构自重相对来说较轻,对材料的强度要求不是特高。

但随着建筑结构高度的增加,在较多的楼层作用下,结构产生的自重荷载则会比较大,使得建筑结构对基础产生较大的竖向荷载,同时在水平荷载的作用下,结构的竖向构件(柱)中会产生较大的水平剪力和附加轴力。为了使得结构满足刚度和强度的要求,通常采取加大结构构件的截面尺寸,但是加大构件的截面尺寸会使得结构的整体自重增加。因此在高层建筑结构首先应该考虑如何减轻结构的自重。

研究表明,当在高层或超高层建筑结构优化设计时,选用结构强度高、自重较轻的钢结构、高强混凝土结构可以很大程度上减小建筑结构的自重。

1.3 侧向位移

据相关资料表明,建筑结构的侧向位移随着建筑高度的增加而逐渐增大,因此,在建筑结构的优化设计中,对层数较少、高度较低的结构,可以不考虑其侧向位移对结构的影响。但随建筑结构高度的增加,整体结构的侧移对结构产生的影响则不可忽视。

研究表明,由于水平荷载对结构作用产生的侧移随着建筑高度的增加而逐渐增大,且侧移量与结构高度成一定的关系。

在进行高层建筑结构优化设计时,既需要充分考虑建筑结构整体是否具有足够的承载能力,能否承受风荷载的冲击作用,又要求结构具有足够的抗侧移性能,当建筑结构受到较大的水平力作用下,其可以很好地控制产生过大的侧移量,确保结构整体的稳定性能。

与低层或多层建筑相比,高层建筑结构的刚度稍微差一些,在发生地震灾害时,结构的侧向变形更大。为了确保高层建筑结构在进入塑性阶段后,结构整体仍具有较强的抗侧移性能,保持结构的稳定性,则需要在高层建筑结构的构造上采取合适的措施,确保结构具有足够的延性,从而满足结构的刚度要求。

2建筑优化方法综述

2.1基本假设

(1)弹性体假设

目前,对建筑结构进行工程分析时,均采用弹性的分析方法。当结构受到风荷载或竖向荷载时,假设结构处于弹性工作状态,符合建筑结构的实际受力状态。但是当受到地震灾害或台风袭击时,结构产生较大的侧向位移,更甚出现裂缝,使得结构进入到塑性阶段,此时不可以再用弹性变形计算,应采用弹塑性理论进行分析。

(2)小变形假设

小变形假设普遍应用于结构变形分析中。但当结构顶点的水平位移与结构的高度比值大于0.002时,就不可以忽略P―Δ效应对结构的影响了。

(3)刚性楼板假设

在高层建筑结构分析时,假设楼板的自身平面内刚度无限大,而自身平面外的刚度则忽略不进行计算。采用这一假设,在很大程度上减少了高层建筑结构位移的自由度,减小了计算的难度,并为筒体结构采用空间薄壁杆的计算理论提供了保障。研究发现,刚性楼板假设一般适用于框架结构体系和剪力墙结构体系中。

2.2结构优化方法

(1)并行算法

由于高层建筑结构的主要因素是结构的抵抗水平力的性能。因此,抗侧移性能的强弱成为高层建筑结构设计的关键因素,且是衡量建筑结构安全性、稳定性能的标准。

由于在建筑结构中,单位建筑结构面积的结构材料中,用于承担重力荷载的结构材料用量与房屋的层数近似成正比例线性关系。此外,用于建筑结构楼顶的结构材料用量几乎是定值,不随结构的层数变化;但是用于墙、柱等结构构件的材料用量随楼房的层数成线性正比例增加;而对于抵抗侧向移动的结构材料用量,与楼房结构层数的二次方的关系增长。图3-1表示在风荷载作用下的5跨钢框架结构,不同的结构层数结构材料各个构件用量。

研究表明,楼房结构所采用的结构体系是否具有较好的抗侧力性能,在很大程度上影响结构材料的用量,综合考虑各方面的条件,通过精心设计确定结构的最优化设计方案,使结构体系的材料用量降低到最小程度。从上图中的虚线以上阴影部分就是结构优化设计节约的钢材用量,因此高层建筑结构方案的优化设计可以在很大程度上节约工程的总造价。

(2可靠度优化法

在建筑结构的优化设计时,必须进行结构的整体可靠度优化。在地质灾害发生不活跃的地区,风荷载是主要的水平荷载。因此,在非地震灾害区高层建筑结构的方案选型时,应优先选用抗风性能比较好的结构体系,也就是选用风压体型系数较小的建筑结构体系。比如结构外形呈曲线流线型变化的建筑结构圆形、椭圆形等,或是结构从下往上逐渐减小的截锥形体系的风压体形系数较小,有利于很好地抗风。此外,在对结构进行平面布置时,适合选取结构平面形状和结构刚度分布均匀对称的结构体系类型,这样可以在很大程度上减小风荷载作用下的扭转效应引起的结构变形和内力的影响。同时,还要限制高层建筑结构的高宽比,避免结构发生倾覆和失稳现象。

(3)高层体系优化法

由于建筑使用性能的不同,所以其对内部空间的要求不同。同时,高层建筑结构使用功能不同,则其平面布置也发生改变。通常,住宅和旅馆的客房等宜采用小空间平面布置方案;办公楼则适合采用大小空间均有;商场、饭店、展览厅以及工厂厂房等则适宜采用大空间的的平面布置;宴会厅、舞厅则要求结构内部没有柱子的大空间。由于不同的结构体系可以提供的内部空间的大小不同,因此,在建筑结构设计阶段,应该首先根据建筑结构的使用功能,选用合适的结构类型。

3结束语

综上所述,在确定高层建筑结构方案时,要全面考虑结构的使用功能、场地类别、设防烈度、建筑高度、地基基础类型、结构材料和施工工艺,同时还要考虑结构的设计、技术以及经济保障等,选择最优化的结构体系。

参考文献

[1] 谢琳琳.关于高层建筑结构选型决策的研究[D],重庆:重庆大学硕士学位论文,2001

结构优化方法第3篇

【关键词】工业建筑;结构设计;优化方法

1工业建筑结构优化设计的探讨

1.1工业建筑优化设计的目的。目前,在工业建筑优化设计的过程之中,依据各类建筑,其优化需求目标基本上可以分成两类:(1)传统概念之上的建筑结构设计与优化,其主要就是针对成本结构来进行优化设计,在最大限度之上来充分的保障设计的质量以及结构设计的科学合理性,最终于现代社会低碳环保的各项要求相符。(2)主要就是利用建筑结构的设计优化来满足企业工业生产的各项目标,达到建筑整体而结构的布局及设备置放的部位、分析与处理施工流程之中的各项数据,来最大程度之上加大工业生产作业的效率,提升企业的市场竞争力。

1.2工业建筑结构设计优化中的常见问题。在目前建筑结构设计优化设计的施工经验之中来进行分析,一般问题都是出现在优化之中。现如今,应用钢结构的范围逐渐的加大,这对于概念性设计与空间美学产生了较大的影响。此外,大部分工业建筑结构设计优化之中,设计人员对于整个结构规划布局缺乏一个全面化的认识,最终相应的也就引发了优化效果不显著情况的出现以及大部分企业对工业建筑结构设计优化不认可。

2工业建筑设计优化

2.1建筑结构优化的注意事项。现如今,在进行建筑结构设计的时候,我们国家大多建筑师基本上都不会参前期方案的设计,针对结构可行性与合理性来进行分析,在后期工程建设与方案设计相应的也就加大了难度,当然这也就需要增加对于工程的投入及应用。在工程结构设计前期就得要及时的引入结构优化的设计理念,这样一来不仅仅可以统筹兼顾来分析出工程优化设计的各项需求,而且还可以缩减企业资金的投入量,那么就可以在工程的初期进行合理的控制。

2.2建立完善的工业建筑结构优化体系。在工业建筑结构优化设计的过程之中,因为各个工业建筑结构的设计缺失统一的指导方案,那么就会使得建筑内部结构优化无法满足工业建筑结构的各项要求。所以在进行优化设计之前,首先要做的就是得完成的管理体系建立起来,利用管理体系以及工业建筑结构优化设计之中出现的各项问题来进行分析,并及时的制定出来行之有效的措施来解决,逐渐的工作的内容完善起来,最终在最大限度之上来充分的满足工业建筑结构优化设计质量管理的目的,加大工业建筑结构优化设计质量及其后期正式应用的使用效率。

2.3建立工业建筑结构设计优化模型。为了进一步科学、合理化的实现工业建筑结构优化设计的工作可以有条不紊的进行,在真是开展优化工作之前,要将结构优化设计模型建立起来,在众多变量参数之中选择出来其中的重要参数,逐步将函数模型建立起来,最终实现最佳的优化方案。

2.4吊车水平载荷。大部分工厂的生产均要利用吊车来进行输送体积偏大的获取,吊车荷载主要可以分为水平与竖直。SAP2000在结构分析之中可以将吊车的水平荷载利用等效静载负荷的方式来加到排架桩之上,另外竖直荷载主要就是利用移动式的静载负荷来进行施加的。

2.5电厂煤斗。煤斗是一种大型设备,其主要特征表现在:高度高以及体积大,并且有水平地震的重要性。针对支承构建而产生附加的扭矩以及弯矩,那么就得要利用相应的计算来进行补偿附加的内力。其主要步骤为:首先在设备的重心位置加设相应的支承结构,将附加的内力进行缩减;其次则是在与支承梁杆的轴心位置垂直的部位加设梁结构,使得支承梁的扭矩转变成为作用在梁上的弯矩;再者就是这个时候梁的抗弯能力十分的强,最终转移危险;最后则是支承结构抗扭配筋在不断的强化,楼板强度也随即加强。

2.6磨煤机隔振。对于火电厂而言,其发电过程之中始终无法离开煤炭,那么其中的关键工具就是磨煤机。振动的程度也会在很大程度之上影响到其他设备,特别是配电装置以及发电机组所处的控室。为了可以有效的避免这些问题的出现,那么弹性支承系统也因此而出现。(1)应用了弹簧振系统之后,磨煤机基础台座的重量约为一般基础快的二分之一。由于将之前的占地空间缩减,这对于工艺布置而言十分的有利。(2)应用了弹簧隔振系统之后,降低了磨煤机振动的频率,另外最为关键的就是有效的降低了磨煤机对于周边厂房及人员的影响。(3)因为磨煤机基础台座和锅炉厂房结构之间出现分离的现象,磨煤机基础施工的灵活性偏大。磨煤机基础施工的进行交叉是的施工,可以有效的缩减施工周期。(4)调平磨煤机,基础沉降可以通过弹性弹簧隔振器来进行相应的调整。(5)应用弹簧隔振系统之后,磨煤机自身受到荷载影响偏小,减小了磨煤机磨损的程度,使得磨煤机的运行可靠性进一步的提升。另外还可以有效的延长磨煤机的使用寿命,加大磨煤机大修的周期。(6)和一般基础相比之下,在应用弹簧隔振系统之后,磨煤机基础的振动具备可控制性,最为关键的就是传递到基础下荷载量减小了,所以可以适当的缩减地基基础处理的资金。综上所述,工业建筑结构设计是一项较为繁杂的工作,那么需要考虑各个方面的因素,从选择原材料到工程设计以及设计优化等等各个部分,依据工业建筑结构的特征来来具体的进行操作。逐渐的优化设计方案,在最大限度之上设计出来经济合理的方案。

参考文献

结构优化方法第4篇

1.1基于拉格朗日方程的刚柔耦合动力学建模在对硅片传输机器人动力学模型过程中,需要对实际机器人进行如下合理的假设:①将硅片传输机器人手臂等效为均质杆,将关节质量等效为集中质量;②将同步带以及谐波减速器等效为无质量线性弹簧,系统阻尼采用比例阻尼进行简化。经过上述假设后,硅片传输机器人手臂可由如图2所示的简化模型表示。硅片传输机器人手臂简化模型中各物理量参数定义及其数值见表1。1.2硅片传输机器人动态特性分析柔性系统一般有多阶固有频率以及模态,但并非所有阶固有频率和模态会对末端轨迹精度造成影响。为了有效地选取优化变量,首先应先对柔性系统进行固有频率及模态等动态特性分析,从中寻找对末端轨迹精度有影响的模态以及对应的固有频率阶数,从而将优化重点放在为对末端轨迹精度影响较大的固有频率阶数上。由于固有频率为系统的固有属性,因此将硅片传输机器人手臂的刚柔耦合动力学模型写为式(2)的形式进行模态分析根据模态分析理论,柔性系统固有频率以及模态振型可由式(3)求得,其中ω为固有频率,A为模态振型矢量硅片传输机器人手臂柔性关节系统的质量阵为时变矩阵,因此其固有频率会随着末端的位置变化而变化。采用表1的系统参数进行仿真得到硅片传输机器人手臂固有频率特性如图3所示。由图3中可以看出机械臂的固有频率随末端点位置变化而变化。选取末端点位置最远点进行模态分析,分析结果如图4所示。由模态分析结果可以看出,系统的第三阶模态各个关节角的振幅比例约为1:–2:1。根据硅片传输机器人手臂的结构原理,大臂、小臂以及末端手的关节角度按照1:–2:1运动时,末端点的运动轨迹为一条直线,故三阶振动状态对末端轨迹的直线度并不造成影响。因此,对于硅片传输机器人手臂进行优化设计时,只需要重点考虑一阶与二阶的振动,以提高系统一阶与二阶固有频率为主要目标。

2手臂结构优化变量确定

如何在可优化变量中找到对固有频率影响最大的设计变量通常需要进行灵敏度分析。当优化参数以一很小值变化时,将此时固有频率的变化量作为该结构参数对固有频率的灵敏度。通常固有频率对结构设计参数的灵敏度可由式(4)表示式(4)的前提条件为设计变量bj的修改量必须很小。而在实际应用中,对不同设计变量改变同样数值时的难易程度并不相同,而对优化变量改变同样百分比的数值的难易程度基本一致。例如硅片传输机器人柔性关节刚度数值相对较大,而手臂质量较小,如果同样采取0.1为改变量时,刚度修改比质量修改更容易。因此,本文提出固有频率权值的概念,并以权值作为优化参数的选择依据。2.1权值概念在结构优化设计中,固有频率一般为多个优化设计变量的隐函数,可将固有频率按式(6)进行展开,其中偏导数项即为固有频率的灵敏度,而权值向量则表示所有变量对固有频率数值“贡献”的比例。优化变量的权值越大说明该变量对固有频率的影响越大。2.2优化参数确定根据上述理论,分别对硅片传输机器人手臂的优化参数进行灵敏度分析与权值分析。结构参数对一阶固有频率的灵敏度分析结果如图5所示,结构参数对一阶固有频率的权值分析结果如图6所示;结构参数对二阶固有频率的灵敏度分析结果如图7所示,结构参数对二阶固有频率的权值分析结果如图8所示。从仿真结果中可以看出:当采用灵敏度作为选择依据时,关节处的等效惯量灵敏度最高,而其余参数均较小,当采用权值作为选择依据时,手臂质量、杆长以及柔性环节刚度对固有频率影响较大,显然采取权值作为判断依据更符合实际情况。其中权值为正表示参数增大时固有频率提升,权值为负表示参数减小时固有频率提升。分析结果表明:对一阶固有频率的权值较大的变量为:腕关节集中质量、末端手臂质量、小臂与末端手长度以及同步带的刚度;对二阶固有频率的权值较大的变量为:腕关节质量、小臂质量、末端手臂质量、小臂与末端手长度以及同步带刚度。本文只重点考虑质量的优化,且腕关节集中质量主要为轴承等标准件,无法进行优化。因此,最终的优化变量确定为:小臂质量与末端手臂质量。同时注意到大臂的质量对一阶与二阶固有频率均无影响,必要时可以考虑增加大臂的质量来增加竖直方向上的刚度。

3手臂结构优化设计

根据上述分析结果,最终选取硅片传输机器人小臂质量与末端手臂的质量作为优化参数,减小质量参数有助于固有频率的提高。然而大幅度的减小手臂的质量必然造成手臂在竖直方向上的刚度降低,从而使悬臂结构在竖直方向上的静态变形增大以及在竖直方向上的振动的加剧。因此在减小手臂质量的同时,需要考虑对竖直方向上变形的影响。3.1优化方法及约束方程推导将硅片传输机器人小臂与末端臂简化为图9所示的等截面空心梁。其中H与W为空间尺寸约束条件,通常为常数;h1、h2、h3为手臂厚度变量;L为手臂长度。OYZ为截面坐标系,YC为截面弯曲中性轴。硅片传输机器人小臂与末端臂的受力均可等效为图10所示的形式。图10中p为手臂自身重力引起的均布载荷,Fe为等效力,Me为等效转矩。则手臂末端的挠度、由于硅片传输机器人手臂为串联结构,故式(8)中的等效力与等效力矩均参数均与该手臂所承载的后端的手臂的质量以及长度参数有关。因此,在进行硅片传输机器人手臂结构优化设计时需要从末端手臂开始设计,随后再设计小臂。3.2末端手臂优化设计在硅片传输机器人末端手臂设计时,末端手臂所承受的等效力与等效转矩由末端手与负载的参数决定。通常末端手与负载的参数为常数,且末端手等效载荷以及尺寸约束参数数值如表2所示。仿真结果表明:末端总变形随末端手臂上壁厚度的增加而增加,但当上壁厚度大于2mm后末端总变形基本不变;侧壁的厚度对末端总变形的影响较小,基本可以忽略;末端总变形随着末端手臂下盖厚度增加而增加,但当下盖厚度大于1mm之后,总变形增加的较为缓慢。因此,末端手臂厚度尺寸最终确定为:上壁厚度2mm、侧壁厚度1.5mm、下盖厚度1.5mm。3.3小臂结构优化设计末端手臂优化完成后,小臂的等效力与等效转矩参数即可以确定。小臂受力及约束尺寸参数数值如表3所示。仿真结果表明:末端总变形随小臂上壁厚度的增加而增加,但当上壁厚度大于2mm后末端总变形基本不变;侧壁的厚度对末端总变形的影响较小,基本可以忽略;末端总变形随着小臂下盖厚度增加而增加,但当下盖厚度大于1mm之后,总变形增加的较为缓慢。因此,小臂厚度尺寸最终确定为:上壁厚度2.5mm、侧壁厚度2mm、下盖厚度1.5mm。

4优化前后性能及参数对比

优化前后的小臂与末端手臂的三维模型如图17所示(手臂的下端盖未显示)。优化前后手臂质量以及硅片传输机器人手臂系统的固有频率数值对比关系如表4所示优化前后硅片传输机器人手臂系统由悬臂引起的竖直方向上的静变形、静应力以及竖直方向上的振动频率如图18~23所示。由表5与表6可以看出:优化前后末端手臂质量降低了50%,小臂质量降低了18.8%;一阶固有频率平均值与二阶固有频率平均值均提高了10%;竖直方向上最大静态变形量降低了52.3%;系统最大应力降低了58.3%;竖直方向上的振动频率提高了45.2%。

5结论

结构优化方法第5篇

关键词:结构设计, 建筑结构 ,优化方法

Abstract: the architecture is solidification of art, architecture, to reflect exquisite must will structural design and beautiful design reasonable collocation. Housing structure design has been seeking the safe, applicable, economic, beautiful, and construction and five effect. The need to design department or design personnel strictly abide by the five kinds of effect principle, make rational structure design, the application of the modern science and technology optimization method, realize the most effective play limited resources, finish to lower the project cost and get people to the goal of material and spiritual needs. The current, building structure design of the building structure design optimization method has been widely applied to the actual start of project, this paper the structure design optimization methods reflect of theory, the structure design optimization method of application and practice are analyzed and discussed.

Keywords: structure design, structure, optimization method

中图分类号:S611文献标识码:A 文章编号:

1房屋结构设计中的建筑结构设计优化方法的理论概述

1.1房屋结构设计中建筑结构设计优化方法的理念及意义

在进行工程项目的结构设计过程中,除了要考虑设计对象的基本使用功能和兼顾其安全适用性以外,还应尽可能将设计对象设计的更加完美,这就是结构设计优化问题。定义为工程结构在满足约束条件下按预定目标求出最优方案的设计方法。随着我国社会精神文明建设的不断发展,人们对于居住环境精神领域的追求已然形成一种时尚。对于人居环境的改善,其根本主要体现为美观与结构之间的协调、配合,使得建筑工程满足美观的同时也能实现在经济规划方面的实际意义。

房屋结构设计中建筑结构设计优化的内容主要是通过对基础结构、屋盖系统结构方案、维护系统结构方案等其他结构综合进行设计的过程。在整个过程之中强调的是一切从实际出发,紧贴工程进度、发展的实际情况,以控制工程造价成本为中心的结构优化设计理念。

1.2建筑结构设计优化方法的实践价值

与传统的设计相比,在设计中采用优化方法可以使建筑工程造价降低5%~30%,可以尽量减少建筑结构的近期投资并提高建筑结构的可靠度。结构设计优化方法的应用能充分利用材料性能,对结构内部的各个单元进行协调,规范建筑结构安全度,为建筑整体布局提供合理决策。

2结构设计优化方法在建筑结构设计中的步骤

(1)整体优化模型

房屋结构设计优化方法一般从三个方面展开。第一,选择设计变量。在设计过程中将所要选择的描述结构特性的参数确立为设计变量,比如目标控制参数和约束控制参数。而将那些变化范围不是很大或者对设计要求而言局部设计考虑就能满足设计要求的参数确立为预定参数,这样做可以大大减少计算、编排、设计的工作量。第二,确定目标函数。寻求一组可以满足预定条件的钢筋截面积和截面几何尺寸以及是小概率,已达到总费用最小。第三,确定约束条件。房屋结构设计的约束条件包括强度和稳定约束、截面尺寸约束、结构整体约束、构建单元约束、正常使用状态下的变量从上限到下限的约束条件等。在设计时,若要使结构设计优化方法应用于实际房屋工程,则必须通过建筑结构设计中实际约束条件与目标约束条件相比较,保证每项约束条件都能符合规范,实现最优。

(2)设定优化设计计算方案

由于房屋结构设计中适用性优化问题较为复杂,属于多变量、多约束非线性优化问题,所以在计算当中,通常是将有约束优化问题转化为无约束来求解。其中可以利用的结构优化设计计算方法有拉式乘子法、复合形法等。

(3)进行程序设计

根据在以上整体优化模型和选择优化设计计算方案的基础上进行编制,做出功能齐全、运算快速的综合程序。

(4)结果分析

在得出计算结果后,对结果进行分析,最终确定理想的优化设计方案。

笔者以上叙述了结构设计优化方法在建筑结构设计中的步骤,考虑到建筑工程投资数额巨大,涉及范围较广,所以在具体执行过程中应当从多角度全方位的考虑问题。正确处理技术与经济之间的关系,不能仅仅为了节约资金就忽视建筑结构设计优化技术、方法。在设计中不但要保证技术上的合理要求,还应控制投资不被浪费。

3结构设计优化方法在房屋建筑结构设计中的应用

结构设计优化方法在实际应用中主要是在不改变房屋建筑使用性能的前提下,利用结构优化设计技术达到降低工程成本、提高经济性的目的。一般应用在建筑的整体设计、前期设计以及抗震设计等各个阶段,在以下笔者分为三方面逐一进行论述。

3.1结构优化设计方法应注重前期参与

房屋建筑项目属于长期的投资计划过程,所以说在实际当中非常容易受到影响,故而前期方案就显得尤为重要。目前存在的主要问题就是设计人员在前期方案阶段忽视结构设计优化方法,在设计中不考虑建筑结构的合理性,这样持续下去在后期必然会因为增加结构设计困难而加大成本投入。要知道前期方案的确定的好会会直接影响到总投资成本的高低,所以在前期方案阶段使优化设计参与其中,能够有效避免投资过多所造成的浪费。

3.2概念设计优化方法在建筑结构设计中的作用

对于同一建筑工程结构设计方案在结构优化设计方法的布置上均会出现多种不同的情况,即就是几经确定了建筑物的结构设计布置,在不同种荷载情况下也存在着不同的分析方法。而且在分析的过程中,设计的参数、材料、荷载、承载能力的取值都不是唯一的。尤其是建筑物细部结构问题的处理更是复杂多变。应对以上问题要想单纯利用计算机是无法实现的,作为工程设计人员就必须根据自己的判断展开设计,但是这种判断只适用于一般规律指导下进行,所以说概念设计优化方法在没有具体数值量化的情况下作为辅依据,可以避免设计偏差,从而达到最佳效果。

3.3概念设计处理的实际建筑工程结构设计问题

在这一问题上我们所希望的是通过概念设计,能使房屋建筑工程结构在遭遇各种外力作用下不受破坏会将破坏程度降到最低,因此对可能遭遇的破坏因素进行分析就显得尤为重要,这里必须提到的一个因素就是地震,因为地震无法预测而且破坏力极强,所以在对房屋结构的设计中就应当考虑到工程区域在历史上的地震活动情况和自然灾害发生情况,根据这些未雨绸缪,从计算及构造等各个方面入手采取一些提高抗震、抗灾害的措施办法。若要构建这样的结构优化设防思想,就必须把概念设计作为重点。

4结束语

综上所述,可以说对房屋结构设计中的建筑结构设计优化方法的研究是一项非常复杂的综合性问题。我前边增提到,安全、适用、经济、美观、便与施工等五种效果是房屋设计优化的原则,但是这五种效果之间又相互独立、相互矛盾。所以尽管在结构优化技术已经广泛应用的今天,如何使这五种因素更好的融合仍然需要我们在以后的应用实践中多探索、多积累,达到一种用最低造价实现最佳效益,既美观又合理,鱼和熊掌兼得的设计效果。

参考文献:

[1]张炳华.土建结构优化设计[M].上海.同济大学出版社.2008,34-36.

[2]张友鸿.优化结构设计减少建筑投资成本[J].陕西建筑.2008(09),12-13.

结构优化方法第6篇

关键词:建筑结构设计;优化方法;房屋结构设计;应用

中图分类号:TU318文献标识码: A

一、建筑结构设计优化的重要性

在房屋结构的设计中,采用合理的建筑结构方案,不仅能够实现建筑物的实际使用价值,而且还能够很好地实现建筑物的经济价值和环保价值。通俗的讲,好的结构方案不仅可以在最大程度上为建设单位减少资本投入,带来更多的经济效益,而且还可以科学有效地保护建筑施工场地的生态环境,从而实现建筑经济利益与环境保护相结合的模式。因此,合理地使用建筑结构优化技术能够更好地实现建筑的综合效益。建设单位从事建筑开发的基本原则就是在最大程度的减少资本投入、减少建筑材料使用的基础上,实现建筑的高质量和长期使用【1】。建筑只有在保证良好质量和长期使用的前提下才能够实现建筑美观、耐用、新颖等特点,从而满足不同人群的需要。与传统的建筑结构设计方案相比,建筑结构设计的优化可以有效地降低建筑结构成本投入。其采用的结构设计优化措施可以科学地实现建筑施工过程中各种资源的合理配置,以及各项建筑材料的充分利用,并且更好地协调建筑空间布局,使得建筑空间布局能够有效的结合,共同发挥其使用功能。因此,合理的利用建筑结构优化技术,在确保建筑安全性能的前提下能够充分的体现出建筑结构创新性。此外,这种技术还能够帮助结构设计人员选择最为合理的设计方式。

二、建筑结构设计优化的理论体现

在进行建筑结构设计时,我们不仅需要考虑其安全性、可靠性以及基本功能的健全性,还需要考虑建筑本身的美感与艺术感,这就是结构设计优化的相应体现。从理论上对建筑结构设计的相关优化方式进行分析,我们可知,建筑结构的的设计优化方式在现实应用中,主要体现在建筑结构整体的优化和建筑结构分层的优化上。对于建筑结构整体的优化,我们不仅应尽量减少结构质量中心和结构刚度中心的相关性差异,而且还应保持建筑结构的对称性和规则性,但是这些结构设计的理念同时应满足建筑设计师的设计要求。对于建筑结构分层的优化,在满足建筑本身功能的前提下,竖直方向应尽量让同一方向的竖向承重构件达到上下相通,而且为了减小在结构设计上的难度,宜尽量避免转换层结构的使用。在竖直方向的设计还应充分考虑刚度的相关要求,刚度的变化应保持均匀性而不是突变性,否则一旦出现刚度的突变会严重影响建筑结构在抵抗水平方向上的荷载作用性能。

三、建筑结构设计优化的方法

1、优化结构设计模型

建筑结构的优化可以分为以下几个阶段:

1.1 对变量的选择。一般情况下,建筑师决定的最终建筑设计方案起到重要的作用,这些重要的建筑数值均可以作为变量供建筑设计人员进行选择。例如:工程参数的参考,包括对房屋价格的参考、对于其损失的参考等等。设计人员若能够将变化幅度较小或考虑因素较少的参数作为设计的参考,建筑结构的设计和编程难度将会大大降低,设计人员也能够更快的找到最符合设计目标的数据【2】。

1.2 对函数的确定。设计人员要选择出最符合配筋率和房屋结构构件尺寸的一组函数,进而在最大程度上降低建设成本。

1.3 对施工条件的衡量。想要进一步确保建筑结构的稳定性,就需要从房屋的受力限度、变形限度、结构的稳定性、房屋结构构件的尺寸、结构构件裂缝的限度、房屋的结构体系等方面考虑。在实际的建筑结构设计过程中,设计师应该结合建筑使用方案和房屋的施工条件,分析出实际设计中存在的约束性条件,并且要确保解决这些约束性条件的方案要符合我国现行的规范规定,以保证建筑结构的设计结果达到最优。

2、科学设定优化设计的相关方案及应用程序

首先,依据可靠度而开始进行房屋结构设计的优化通常都具有很多约束条件,有时会遇到非线性的相关优化问题。所以在相应的计算中,会进行相应的转换,将有约束的优化转化成无约束的优化,而相关的计算、方式有拉式乘子法、powell 法等。其次,依据可靠度而开始进行房屋结构设计的优化基本模型,以及在设计时运用的相应的计算方式,为了可以更好地实现其效果,能够将这些编纂成一个运算速度较快而且功能全面的综合性、科学性的应用程序。这样能使整个优化设计更加全面地、有效率地进行实施。

3、对统计结论进行分析

设计人员在进行了各种计算之后,要对统计结果进行认真的分析,并且找出各个设计方案中不同点和相同点,并且结合总体的设计情况和进展选择最佳的设计方案。设计人员在进行结论分析的时候,要注意不要遗漏一些细节问题。房屋的建设与设计是一项耗时长、成本高的项目,它不仅涉及到建设单位的利益,也涉及到了房屋使用者的利益,设计人员在把握细节的基础上,要注意从宏观上把握住当事人的利益,这样才能够有效的节约建设成本,进一步优化建筑结构。在进行建筑结构优化的时候,设计人员不仅要避免追求片面的利益,还应该避免为了追求设计创新而忽略了建筑实际情况。

四、建筑结构设计优化方法在房屋结构设计中的应用分析

1、对建筑主体上部结构进行的科学性优化

房屋建筑的上部结构设计应当建立相应的模型并进行系统的优化。整个过程第一步就是先合理地设置剪力墙,保证剪力墙整体的布置是均匀的,这样使楼层平面刚度的中心点重合于楼层平面质量的重心,从而减少地震作用及风荷载等对其的破坏性。在房屋结构设计时,如果条件允许,应尽可能地对剪力墙进行大开间的布置,加长剪力墙的墙肢长度,这样既能减少墙肢的数量,还能在符合规范的条件下减少混凝土的使用量。另外,剪力墙内的暗柱一般都设置了钢筋,如果采用较大的剪力墙就可以减少相对的钢筋使用数量,从而相应减少的材料成本。然而如果建筑的本身不具有相应的条件,而且对于抗震抗压的要求较高,就不得开间过大的剪力墙。

2、房屋建筑的整体性与局部性优化

建筑在设计过程中都应具备相应的层次性和复杂性的特点。从层次性角度来讲,建筑体系包含着建筑整体设计体系、结构相关体系及安装体系等,每一个单独的体系又包含了众多的下属体系。在对房屋进行设计时,设计者要对每一个下属系统地进行相应的优化,冲破关联的横向性,实现叠加型工程;对于复杂性角度来讲,主要包含选取建筑的材料、选取建筑的零部件等。因此在进行结构优化时要从整体入手,才能真正实现结构整体的设计优化。

3、结构优化与建筑优化保持协调

对于结构设计既要保证结构的整体性,又要与建筑平面功能紧密配合,这样才能实现建筑本身的功能与结构相应合理性的效果。对于建筑系统来讲要保证平面简洁,墙体与立柱不能有错位的现象,高度与截面的面积相通。在楼体设计时,自身受力较多的转角区域,要选择高强建材做为承重的材料,从而更好地降低自重。对于结构整体来讲要保证重心、刚心、质心三者正确交叠,防止扭转的状况出现。

4、直觉优化技术与建筑结构设计

即使对于同一个建筑方案,结构布置方面也可能存在诸多的差异。建筑结构的布置如已经确定,即使荷载情况是完全相同,也可以将差异化的分析方法给应用进来。在分析过程中,也可以采取差异化的设计参数、材料和荷载的取值,对于建筑结构的细部处理,更是存在着诸多的差异。现在建筑结构的计算大多都是靠计算机来完成的,但很多问题都是计算机无法完全解决的,那么就需要靠设计人员进行科学的判断。在判断的过程中,需要严格依据结构设计的一般规律,总结过去的工程实践经验,这也就是我们所说的概念设计。因此,设计师在选择多种备选方案的过程中,就需要应用到概念设计。

5、建筑寿命优化与阶段性优化。

在建筑的使用年限内,需对建筑每一阶段进行相应的结构方案优化。房屋结构的设计者要考察各个阶段的特点,根据实际情况进行优化方式的确定,从而对工程的整体寿命进行科学的优化。这样,既保证了建筑产品质量,又提高了建筑企业的经济效益。

结束语

综上所述,建筑结构设计优化对于整个建筑工程的质量与美观都有着重要的促进作用,建筑结构设计优化方法在房屋建筑结构中的应用,在很大程度上促进了建筑结构设计的科学性和合理性,因此,有必要不断加强建筑结构设计优化方法的广泛应用。

参考文献:

[1]王也. 建筑结构设计优化方法在房屋结构设计中的应用[J]. 中华民居(下

旬刊),2013,03:81-82.

[2]郑智,乐肖军. 结构设计优化设计技术与其在房屋结构设计中的应用[J]. 中国新技术新产品,2011,04:98.

结构优化方法第7篇

【关键词】有限元;拓补优化;结构分析

1.引言

结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。

1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20世纪80年代初,程耿东和N.Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率

2.拓扑优化工程背景及基本原理

通常的的结构优化按照设计变量的不同分为三个层次:结构尺寸优化,形状优化和拓扑优化。结构尺寸优化,形状优化在目前已经发展到了很高的水平,但是它们依然存在不能变更结构拓扑的缺陷,在这样的情况下,人们开始研究拓扑。拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构

3.拓扑优化的主要思想

拓朴优化的主要思想是将寻求结构的最优拓朴问题转化为在给定的设计区域内寻求最优的材料分布问题,最终得到最佳的材料分配方案,这种方案在拓朴优化中表现为“最大刚度”设计,即同一结构,不同的材料分布形式,在材料相同的情况下,拓朴优化结果可以使结构整体刚度最大。正是由于拓朴优化的优越性以及实践操作的可行性,越来越多的工程设计人员开始在结构设计过程中应用拓朴优化分析来指导结构设计。图1便是对汽车轮毂进行拓朴优化所得到的不同结构形式,而这几种结构形式在现今的汽车轮毂结构中随处可见。

图1 对汽车轮毂进行拓朴优化所得到的不同结构形式

拓朴优化前处理阶段,关键是定义边界条件及确定结构的优化与非优化区域。这其中确定结构的非优化区域是最值得推敲的,因为非优化区域的选择直接影响最终优化结果中优化区域的材料分布,如果选择不当,则最终结果可能会是匪夷所思的甚至无法转化为现实的结构,尤其是对于大型复杂的结构来说。这是因为,拓朴优化的最终目的是确保在一定的边界条件下结构的整体刚度最大,其并不考虑现实中这种结构生产加工的可行性。所以,如何将最终的优化结果转化为实际的工程结构,便成为工程设计人员较为棘手的问题,而这也确实需要丰富的工程实践经验。于是,更多的工程师选择结构的局部拓朴优化,以便快速得到切实可行的拓朴优化结构。图2箱形钢结构中间隔板开孔拓朴优化。

图2 箱形钢结构中间隔板开孔拓朴优化

拓朴优化求解是一个不断循环迭代的过程, FEA模型单元数目的多少,直接决定了最终的求解时间,所以,如果模型过于庞大,求解速度就会变得相当缓慢从而浪费大量的时间。因而,尽可能地简化FEA模型,也是工程设计人员在拓朴优化前处理时就该着重考虑的问题。许多空间问题根据结构本身的布局以及约束和承载形式都可以简化为平面问题来处理。例如图3便是某尾车钢结构简化为二维模型的拓朴优化结果。

图3 尾车钢结构拓朴优化结果

当然,有些空间问题是不能转化为平面问题来解决的,正如上面所述,如果是局部问题的话,那么就可以只选择和优化问题相关的局部来建立FEA模型,从而提高拓朴优化的求解速度。例如,要分析某门座架钢结构上部大盖板和顶部法兰间连接筋板的位置分布问题(究竟是与下面的隔板位置重合还是有一定的间距),就可以只将上部盖板、顶部法兰、中间立筒以及下面的隔板在FEA模型中建出并设为非优化区域,然后再选择上部盖板和顶部法兰间的区域为优化区域,求解看优化区域材料最终如何分布。其最终优化结果如图4所示。

图4 底部有无隔板时结构截面材料分布

拓朴优化处理结果出来并转化为现实的结构后,并不意味着分析的最终结束,还应当将已经转化的结构进行FEA建模并分析计算,将计算结果和优化前相比较,以求证结构满足优化的目的。例如上面提到的尾车钢结构拓朴优化算例,经过比较分析,最终得出如下结论(图5和图6为优化前后结果比较图):

优化后尾车钢结构的刚度明显优于优化前;

优化后承载梁及底部平台受力相对较为平均(优化前最大综合应力为202.161MPa,优化后变为168.755MPa),优化后的结构强度明显优于优化前;重量:优化前为36398kg,优化后为34269kg,减重约6%;基频:优化前为0.564Hz,优化后为0.702Hz,提高约24.5%。

图5 优化前后尾车上部承载各点竖直方向位移比较

图6 优化前后尾车钢结构综合应力比较

因此,我们可以看到拓朴优化在工程上应用的优点,它解决了材料在工程上合理分配的问题,将在机械设计中拥有广阔的前景。

参考文献

[1]张朝辉.ANSYS 12.0结构分析工程应用实例解析[M].北京:机械工业出版社,2010.

[2]于俊,周济.优化方法程序库OPB-2原理及应用[M].武汉:华中理工大学出版社,1997.