欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

控制系统设计论文(合集7篇)

时间:2023-03-06 16:04:31
控制系统设计论文

控制系统设计论文第1篇

环境工程设计的项目建议书阶段包含若干个子结构,是一个复杂的系统。如果缺乏系统思维,孤立、片面地理解系统控制理论,将定量分析和定性分析、动态特性和稳态特性等相关内容割裂开来,不能相互联系、相互融合以形成合理认知体系,则不能够全面、联系、突出重点地分析和解决问题。而利用思维树模型可培养系统思维能力,[6]强化系统控制理论在项目建议书阶段的应用,将一项工程所涉及的各个领域和角度清晰的表示出来(以城市污水处理厂为例,如下图1所示)。

2可行性研究阶段的系统控制理论

可行性研究是在项目建议书被批准后,对项目在技术上和经济上是否可行所进行的科学分析和论证。这一阶段包括工程概述、工程方案、工程投资估算及资金筹措、工程近远期结合问题、工程效益分析、工程进度安排、存在问题及建议以及附图附件等内容。在这一系统中,用最优化分析解决问题,即在本系统的运筹中,控制策略要使工程净效益最大,而费用尽可能地小(可视为负效益)。为了尽可能地减少这种负效益,必须在一定的工程规律和条件的约束下,按照最优化原则,结合工程分析考虑工程方案必选优化,对整个工程系统进行科学的管理,不求负效益最小,而只要求负效益尽可能减少。这是由于在环境工程设计中,最优解并不一定是最理想的。[7]

3工程设计阶段的系统控制理论

在此阶段,环境工程设计可分为方案设计、初步设计、施工图设计三个阶段,每个阶段都是一个复杂系统,可将系统控制的重点分别集中在组织系统的输入、转换过程和输出3个阶段,由此形成3种不同的控制类型:前馈控制、同步控制和反馈控制。[8]

3.1前馈控制

前馈控制也称预先控制,是指在整个过程中预先集中于系统输入端的控制,其目的是通过事前考虑各种可能的功能障碍来预测并预防偏差的出现。其在环境工程设计的方案设计阶段起着重要作用,主要体现在以下几方面:

3.1.1环境工程概况分析

环境工程涉及水、气、声、渣、辐射等多个方面,涵盖内容非常丰富,工程特征千差万别。因此,掌握具体项目的工程概况是搞好设计的必须前提,主要包括:(1)工程一般特征简介。包括工程名称、建设性质、建设地点、建设规模、车间组成、产品方案、辅助设施、配套工程、储运方式、占地面积、职工人数、工程总投资及发展规划等。(2)工艺路线与生产方法。用流程图表述说明生产工艺过程,必要时列出主反应式和副反应式,并关注副反应中可能潜在的危害因素。(3)物料及能源消耗定额。包括主要原料、辅助原料、材料、助剂、能源以及用水等的来源、成分和消耗量,特别是要综合对比单位产品的物耗、能耗指标、新水用量指标以及排污系数。(4)主要技术经济指标。包括生产率、效率、回收率和放散率等。除了主产品的总回收率之外,还应高度重视资源的综合利用率和综合总回收率。

3.1.2污染源及污染源强分析

污染源分布和污染物源强是环境工程设计的基础资料,必须按建设工程、生产过程和服务期满后三个时期的工程全过程做认真调查、详细统计,力求完善。对于污染源分布调查要求按专题绘制污染流程图,标明污染物排放部位,然后列表逐点统计各种污染因子的排放强度、浓度及数量。另外,鉴于近年来环境风险事故呈频发、高发态势,应高度关注环境工程风险排污的源强统计及分析,包括事故排污和异常排污两种工况。事故排污的源强统计应计算事故状态下的污染物最大排放量,作为风险预测的源强;异常排污的源强应统计工艺设备或环保设施达不到设计规定指标的超额排污。

3.1.3环保方案分析

分析工程总图布置方案,根据气象、水文等自然条件分析工厂和车间布置的合理性,与周围环境保护目标所定防护距离的安全性。分析工程既定环保方案所选工艺及设备的先进水平和可靠程度,采用资源节约型模式、资源综合利用、物能良性循环、产业生态、清洁生产、循环经济等方面的可行性,处理工艺有关技术经济参数的合理性,并分析环保设施投资构成及其在总投资中占有的比例。

3.2同步控制

同步控制也称实时控制,是指活动进行过程中所实施的控制。在环境工程设计中,同步控制的关键是严把设计质量关,实现初步设计的标准化,由仅控制排放标准向全面的设计质量标准过渡。积极引导环境工程设计单位贯彻国家制定的《建筑企业贯彻ISO9000系列标准实施细则》《建设项目环境保护管理条列》《中华人民共和国环境影响评价法》《三废处理工程技术手册》等相关标准,使环境工程设计单位质量管理工作进入程序化、标准化、规范化的轨道。各单位的质量保证体系,要在当地设计质量监督机构备案审查,把贯标工作与单位资质、工程招标投标和企业创优工作结合起来,实现质量的单位自控。在推行设计资格审查和管理制度的基础上,进一步制定重大工程的设计方案图纸审查、批准制度,发现问题,及时追朔设计存在的问题,系统解决,防止问题的再次发生,并追踪审查以前的可能事故点。

3.3反馈控制

反馈控制也称事后控制,控制作用发生在行动之后,目的在于改进,以预防将来发生偏差。在缺乏任何预见手段的情况下,反馈控制是比较实用的控制方式。在施工设计中,反馈控制的关键是引入工程环境监理,通过具有相应资质的监理企业,接受建设单位的委托,承担其建设项目的环境管理工作,并代表建设单位对承建单位的建设行为对环境的影响情况进行检查,对污染防治和生态保护的情况进行检查,确保各项环保措施落到实处。对未按有关环境保护要求施工的,应责令建设单位限期改正,造成生态破坏的,应采取补救措施或予以恢复。通过监理这一反馈控制,可提供设计效果的真实信息,并使设计人员获得评价其绩效的信息,从而提高设计水平,对于下一步或日后工作的实践指导作用非常巨大。

4竣工环境保护验收阶段的系统控制理论

为监督落实环境保护设施与建设项目主体工程同时投产或者使用,以及落实其他需配套采取的环境保护措施,防治环境污染和生态破坏,实施建设项目竣工环境保护验收。[9]该阶段是对整个环境工程设计系统的最后一个核查关卡,涉及验收范围、验收标准、验收工况、验收监测(调查)结果、验收环境管理、现场验收检查、风险事故环境保护应急措施检查及验收结论等部分。可用如下系统流程图简述其验收工作程序。

5结论

控制系统设计论文第2篇

OPC作为微软公司的对象链接和嵌入技术应用于过程控制领域,为工业自动化软件面向对象的开发提供一项统一的标准,解决了应用软件与各种设备驱动程序之间的通信问题。它把硬件厂商和应用软件开发商分离开来,为基于Windows的应用程序和现场过程控制应用建立了桥梁,大大提高了双方的工作效率。应用程序与OPC服务器之间必须有OPC接口,OPC规范提供了两套标准接口:Custom标准接口和OLE自动化标准接口,通常在系统设计中采用OLE自动化标准接口。OLE自动化标准接口定义了以下3层接口,依次呈包含关系。OPCServer(服务器):OPC启动服务器,获得其他对象和服务的起始类,并用于返回OPCGroup类对象。OPCGroup(组):存储由若干OPCItem组成的Group信息,并返回OPCItem类对象。OPCItem(数据项):存储具体Item的定义、数据值、状态值等信息。3层接口的层次关系如图2所示。

2菇棚温度控制系统的设计

2.1菇棚的温度控制原理

宁夏南部山区杏鲍菇生产基地采用大棚式培养方式,作为对杏鲍菇生长起最重要影响的因素,温度显得尤为重要[8]。菇棚温度采用自动记录仪对温度进行检测,利用空调对菇棚温度进行调节。由于温度控制系统具有大时变、非线性、滞后性等特点,采用模糊控制非常合适[9-10]。本文对菇棚的温度进行了控制设计,最终采用模糊PID控制方案,达到对温度的实时控制,从而将出菇阶段的温度控制在14~17℃的范围之内。菇棚温度控制系统的原理如图3所示。图3中,虚线框内的部分在工业控制环境中大多由PLC等控制设备完成,而这些设备很难实现模糊PID的控制功能。因此,将虚线框部分在Simulink中实现,把在Simulink中创建的模糊PID控制器直接应用到现场设备中。菇棚实时温度控制系统原理图如图4所示。图4中,该系统以PCACCESS软件作为OPC服务器,用MATLAB/OPC工具箱中的OPCWrite模块和OPCRead模块与Simulink进行数据交换。传感变送装置检测温度后将电信号传送给S7-200PLC的模拟量输入模块EM231,经过A/D转换后得出温度值;PCACCESS软件从PLC中读取温度值,通过OPCRead模块传送给Simulink;在Simulink中与设定的温度值进行比较后,进行模糊PID计算,将结果通过OPCWrite模块传送给PCACCESS软件,经PCACCESS软件写入到PLC中,计算分析得出数字量,输出到模拟量输出模块EM232,经D/A转换为电信号送给温控装置(空调),实现对菇棚温度的模糊PID控制。

2.2模糊PID控制系统

2.2.1模糊PID控制器的设计菇棚的温度控制系统是一个复杂的非线性系统,很难建立精确的数学模型,而常规的PID控制则需建立被控对象的精确数学模型,对被控过程的适应性差,算法得不到满意的控制效果。单纯使用模糊控制时,控制精度不高、自适应能力有限,可能存在稳态误差,引起振荡[11-12]。因此,本文针对PID控制和模糊控制的各自特点,将两者结合起来,设计了模糊PID控制器,可以利用模糊控制规则对PID参数进行在线修改,从而实现对菇棚温度的实时控制,将出菇阶段的温度控制在14~17℃的范围之内。基于上述分析,将菇棚温度作为研究对象,E、EC作为模糊控制器的输入,其中E为设定温度值与实际温度值的差值。PID控制器的3个参数KP、KI、KD作为输出。设输入变量E、EC和输出变量的KP、KI、KD语言值的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB}={负大,负中,负小,零,正小,正中,正大},误差E和误差变化率EC的论域为{-30,-20,-10,0,10,20,30},KP的论域为{-0.3,-0.2,-0.1,0,0.1,0.2,0.3},KI的论域为{-0.06,-0.04,-0.02,0,0.02,0.04,0.06},KD的论域为{-3,-2,-1,0,1,2,3}。为了论域的覆盖率和调整方便,均采用三角形隶属函数。根据对系统运行的分析和工程设计人员的技术知识和实际操作经验,得出KP、KI、KD的模糊控制规则表,如表1所示。利用Simulink工具箱,建立系统的模糊PID控制器的模型,如图5所示。2.2.2系统的仿真菇棚温度的传递函数采用G(s)=e-τsαs+k。其中,α为惯性环节时间常数,α=10.3s/℃;k=0.023;τ=10s,为纯滞后时间。设定菇棚温度值为15℃,常规PID控制器的仿真结果如图6所示,模糊PID控制器的仿真结果如图7所示。结果表明,菇棚温度控制系统采用模糊PID控制器具有超调小、抗干扰能力强等特点,能较好地满足系统的要求。

3Simulink与S7-200PLC数据交换的实现

PCACCESS软件是专用于S7-200PLC的OPC服务器软件,它向作为客户机的MATLAB/OPC客户端提供数据信息。在菇棚温度控制系统中,模糊PID控制器的输出值和反馈值就是Simulink与S7-200PLC进行交换的数据。实现数据交换的具体步骤如下:1)打开软件PCACCESSV1.0SP4,在“MicroWin(USB)”下,单击右键设置“PC/PG”接口,本文选用“PC/PPI(cable)”。然后,右键单击“MicroWin(USB)”进入“新PLC”,添加监控S7-200PLC,本文默认名称为“NewPLC”。右键单击所添加的新PLC的名称,进入“NewItem”添加变量,本文为输出值“wendu1”和反馈值“wendu2”,设置完成,如图8所示。PCACCESS软件自带OPC客户测试端,客户可以将创建的条目拖入测设中心进行测试,观察通信质量,如图9所示。测试后的通信质量为“好”。2)打开MATLAB,在工作空间输入命令“opctool”后,将弹出OPCTool工具箱的窗口,在该窗口的MAT-LABOPCClients对话框下单击右键,进入“AddClient”添加客户端,用户名默认“localhost”,ServerID选择“S7200.OPCServer”;与PCACCESS软件连接成功后,在“S7200.OPCServer”中添加组和项,把在PCACCESS软件中创建的两个变量“wendu1”和“wendu2”添加到项中,操作完成后结果如图10所示。3)新建Simulink文件,导入模糊PID控制器模型,调用OPCWrite模块、OPCRead模块和OPCConfigura-tion模块,设置OPCWrite模块和OPCRead模块的属性,把OPC工作组中的变量“wendu1”添加到OPCWrite模块中,把变量“wendu2”添加到OPCRead模块中,设置完成后两个模块与控制器相连,如图11所示。这样,基于Simulink和S7-200PLC的模糊PID实时温度控制系统的设计就完成了。

4结论

控制系统设计论文第3篇

本文介绍了一种空调机温度控制系统。本温度控制系统采用AT89C51单片机收集数据,处理数据来实现对温度的调控。主要过程如下:利用传感器将非电量信号转换为电信号,转换后的电信号再进入A/D转换器转换成数字量,传送给单片机进行数据处理,并向设备输出控制信号。由LED实时显示被控温度及设定温度,使系统应用更加方便、直观。

【关键词】单片机、A/D转换系统设计系统调试

绪论

单片机利用大规模集成电路技术把中央处理器和数据存储器(RAM)、程序存储器(ROM)及其他I/O通信口集成在一块芯片上,构成一个最小的计算机系统。而现代的单片机则加上了中断单元、定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛。

第1章单片机空调控制系统

随着中国人民环境的改善和人民生活质量的提高,公共建筑和住宅的供热和空调已成为普遍的需求,建筑能耗占全社会总能耗的比例巨大且持续增长。据统计,2001年中国建筑能耗已达到3.76亿吨标准煤,占总能耗的27.6%,年增长比例是5%。在发达国家中,供热和空调的能耗很大,可占到社会总能耗的25%-30%。有资料统计,办公楼中空调系统耗能量占总能量的25%左右,所以空调控制系统设计始终是建筑环境与设备领域中的重要研究课题之一。

1.1当前国内研究情况

1)在城市现代化建设过程中,用电结构发生变化,其中用在建筑物空调系统的电力负荷比例日益增加。据不完全统计,北京已有250余幢宾馆、办公楼和50余家大商场采用中央空调,其空调用电负荷达40万kW。相当于华北电网为了调峰,耗资27亿元而兴建的十三陵抽水蓄能电站的1/2装机容量。以广东省为例,现有装机容量已达30万kW,并以每年30%的速度递增,其用电负荷已占总共电量的40%以上。

2)改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。尽管我国发电装机容量已超过2亿Kw,年发电量已突破9000亿kWh。然而,目前我国电力供应仍很紧张。突出的矛盾是电网峰谷负荷差加大,夜间至清晨谷段负荷率低,而高峰段电力严重不足,有的电网峰谷负荷之差达25%-30%,造成白天经常拉闸限电,夜间有电送不出的现象。

3)由于空调用电负荷一般在电力谷段用量甚少,对城市点昂具有很大的“肖锋填谷“潜力,而在中央空调中,制冷系统的用电量通常占整个空调系统用电量的40%-50%,如以商场为例,每10万m2空调制冷系统的须用电功率约为7000-9000KW。因此,空调蓄冷系统应运而生,并将日益展示他广阔的应用前景

1.2空调控制系统的组成以及基本工作原理

空调系统的基本组成形式可分为三大组成部分,分别是:冷热源设备(主机)、空调末端设备、附件及管道系统。该系统具有制冷、制热、除湿、自动4种工作模式,包括定时、睡眠、风向、智能化霜、应急运转、试运转以及5种可调室内风速等控制功能;在定时开机时,可根据访间温度作智能判断,自动调整定时开机时间,避免开机时太冷或太热;另外,可对设定温度和房间温度两种温度的10个温度值进行同时指示,以及完整的抗干扰和系统保护功能。

1.2.1控制器原理

该系统具有制冷、制热、除湿、自动4种工作模式,包括定时、睡眠、风向、智能化霜、应急运转、试运转以及5种可调室内风速等控制功能;在定时开机时,可根据访间温度作智能判断,自动调整定时开机时间,避免开机时太冷或太热;另外,可对设定温度和房间温度两种温度的10个温度值进行同时指示,以及完整的抗干扰和系统保护功能。

本系统硬件简单可靠,软件具有更完善的控制功能和抗干扰能力。系统具有很高的性能价格比

系统CPU根据遥控器或按键输入的命令,对采集到的温度进行智能判断,然后作出相应的制冷、制热或除温运行。再通过接口电路,驱动压缩机、换向阀、风向电机和室内风机作相应动作,并对温度用LED指示。系统的原理框图如图1所示。

1.3软件设计

软件设计采用模拟化处理,主控程序包括以下几个部分:程序的初始化、试运转、数据和信号的采集与处理、温度LED指示、室内风机的闭环积分控制、室内风向电机的步进控制。功能子程序包括制冷、制热、除湿、自动四种运行模式。中断程序包括遥控接收。各种定时的中断查询处理、速度检测等。系统的主控程序流程如图4所示。

1.4硬件设计

1.4.1单片机的选择

系统有3路温度模拟信号输入,还有1路电压和1路电流模拟输入,共5路模拟输入要求;而模拟信号要转换成数字信号才能用单片机CPU处理。为提高系统的性能价格比,应采用含有A/D转换器的单片机。经过各方面的综合比较,我们选用了美国Microchip公司的PIC16C72单片机作为控制核心。它具有5路模拟量输入的A/D转换器,恰好满足系统的模拟输入要求。另外,它在1块芯片上集成了1个8位逻辑运算单元和工作寄存器、2KB程序存储器、128个数据存储器、3个端口(A口、B口、C口)共22条I/O线、3个定时器/计数器。另外,只有35条易学易用而高效的RISC(精简指令集计算机)指令,同时,芯片具看门狗功能,并提供对软件运行出错的保护。

1.4.2模拟输入电路

本系统直接用热敏电阻进行测温,再加一级电容滤波。对外交换温度检测电路,因其干扰较大,特加上二极管限幅保护。对传感器的不同电阻值,将其所对应的不同分压值输入至PIC单片机的A/D转换口,在单片机内部转换成数字信号。该检测电路结构简单,性能价格比高。又因采用的单片机为8位,所以温度转换精度高,可为0.5℃,完全满足了空调的信号检测精度要求。对过流信号的检测,不用经过比较器,节约了资源;而是采用模拟信号整流分压后直接输入,通过单片机自带的A/D转换器,每500μs对其进行一次检测,并进行软件比较,以确认是否过流。对过零电压信号的检测,也是采用模拟信号整流分压后直接输入。因两个半的过零点都要检测,所以用桥式整流。模拟输入电路如图2所示。

1.5单片机控制系统的调试

1.5.1硬件调试

根据设计的原理电路做好实验样机,便进入硬件调试阶段。调试工作的主要任务是排除样机故障,其中包括设计错误和工艺性故障。

1)脱机检查

用万能表或逻辑测试笔逐步按照逻辑图检查机中各器件的电源及各引脚的连接是否正确,检查数据总线、地址总线和控制总线是否有短路等故障。有时为保护芯片,先对各管座的电位(或电源)进行检查,确定其无误后再插入芯片检查。

1.5.2仿真调试

暂时排除目标板的CPU和EPROM,将样机接上仿真机的40芯仿真插头进行调试,调试各部分接口电路是否满足设计要求。这部分工作是一种经验性很强的工作,一般来说,设计制作的样机不可能一次性完好,总是需要调试的。通常的方法是,先编调试软件,逐一检查调试硬件电路系统设计的准确性。其次是调试MONITOR程序,只有MONITOER程序正常工作才可以进行下面的应用软件调试。

1.5.3硬件电路调试的一般顺序

1)检查CPU的时钟电路。通过测试ALE信号,如没有ALE信号,则判断是晶体或CPU故障,这称之为“心脏”检查。

2)检查ABUS/DBUS的分时复用功能的地址锁存是否正常。

3)检查I/O地址分配器。一般是由部分译码或全译码电路构成,如是部分译码设计,则排除地址重叠故障。

4)对扩展的RAM、ROM进行检查调试。一般先后写入55H、AAH,再读出比较,以此判断是否正常。因为这样RAM、ROM的各位均写入过‘0’、‘1’代码。

5)用户级I/O设备调试。如面板、显示、打印、报警等等。

1.5.4软件调试

软件调试根据开发的设备情况可以有以下方法:

1)交叉汇编

用IBMPC/XT机对MCS—51系列单片机程序进行交叉汇编时,可借助IBMPC/XT机的行编辑和屏幕编辑功能,将源程序按规定的格式输入到PC机,生成MCS—51HEX目标代码和LIST文件。

2)用汇编语言

现在有些单片STD工业控制机或者开发系统,可直接使用汇编语言,借助CRT进行汇编语言调试。

3)手工汇编

这种方法是最原始,但又是一种最简捷的调试方法,且不必增加调试设备。这种方法的实质就是对照MCS—51指令编码表,将源程序指令逐条地译成机器码,然后输入到RAM重新进行调试。在进行手工汇编时,要特别注意转移指令、调用指令、查表指令。必须准确无误地计算出操作码、转移地址和相对偏移量,以免出错。

4)以上3种方法调试完成以后,即可通过EPROM写入器,将目标代码写入EPROM中,并将其插至机器的相应插座上,系统便可投入运行。

硬件、软件仿真调试经过硬件、软件单独调试后,即可进入硬件、软件联合仿真调试阶段,找出硬件、软件之间不相匹配的地方,反复修改和调试。实验室调试工作完成以后,即可组装成机器,移至现场进行运行和进一步调试,并根据运行及调试中的问题反复进行修改。

1.5.5调试

单片机控制技术应用越来越广泛,其核心技术是单片机控制系统的设计。对工程技术人员来说,抓住系统的原理构成、软件设计、硬件设计以及系统调试方法的要点是十分必要的。根据工作经验,前面叙述的系统调试方法将会有助于从事这方面工作的技术人员及本专业的学习者。

第2章单片机的空调控制系统技术和量化要求

2.1空调控制系统的数字化控制

(以Infineon的8位单片机C504/C508)为例

2.1.1模糊智能控制

与普通空调的运行方式不同,变频空调的压缩机需要连续运行。其速度调节变得更加重要,要确保室内温度波动限制在较小范围内。事实上永磁直流无刷电机是一个多变量,非线性,强耦合的对象,需要智能控制才能取得比较满意的效果。考虑到8位单片机的资源有限,本系统采用模糊控制来实现电机转速的控制。因为C504/C508的CCU单元的通道0在块交换模式下降了参与电机换相外,还可用来完成捕获动作,故这个通道可以同时用于电机速度检测。系统所用的模糊控制规则如下式:U=αE+(1-α)E式中,E为位速度误差,Ec为速度误差变化率,α为加权系数,在0和1之间取值,U为控制器输出。通过调整加权系数,本系统可以对控制规则进行在线修正。

2.1.2功率变换电路

功率变换电路及其驱动和保护是直流无刷电机调速系统的最核心的部分。功率变换电路主要是整流桥和逆变桥。目前在国内变频空调产品中这部分电路的角色主要是由智能功率模块(IPM)来充当。所谓IPM,就是将功率变换电路,驱动,保护,检测,辅助电源都集成在一个模块内。

2.1.3单片机控制系统中控制算法

(1)直接数字控制

当被控对象的数学模型能够确定时,可采用直接数字控制。所谓数学模型就是系统动态特性的数学表达式,它表示系统输入输出及其内部状态之间的关系。一般多用实验的方法测出系统的特性曲线,然后再由此曲线确定出其数学模型。现在经常采用的方法是计算机仿真及计算机辅助设计,由计算机确定出系统的数学模型,因而加快了系统模型的建立。当系统模型建立后,即可选定上述某一种算法,设计数字控制器,并求出差分方程。计算机的主要任务就是按此差分方程计算并输出控制量,进而实现控制。

(2)数字化PID控制

由于被控对象是复杂的,因此并非所有的系统均可求出数学模型,有些即使可以求出来,但由于被控对象环境的影响,许多参数经常变化,因此很难进行直接数字控制。此时最好选用数字化PID(比例积分微分)控制。在PID控制算法中,以位置型和增量型2种PID为基础,根据系统的要求,可对PID控制进行必要的改进。通过各种组合,可以得到更圆满的控制系统,以满足各种不同控制系统的要求。

2.2单片机控制系统的数字化

2.21采用数字化负荷随动控制理论

运用现代化计算机技术、数字化自动控制技术,对中央空调设备运行进行综合、优化;针对中央空调主机和辅机系统运行的工况和末端负荷的变化,采集其瞬间多种变化参数,对负荷进行随动跟踪;自动、准确、及时地对冷冻(温)水泵、冷却水泵、冷却塔风机设备的运行参数进行采集,对系统各设备自动进行实时优化控制,使中央空调主机运行环境得以优化,使得主机工质和辅机系统各种流量跟随末端负荷的变化而同步变化,确保中央空调系统在满足舒适性的前提下,大幅度降低系统的能源消耗。即把负荷运行所不需要的,而系统运行又将会产生的这部分多余的冷量节省下来。

2.22中央空调数字化负荷随动节能控制系统

控制精度高,同频精度和稳定性好,可使中央空调系统节能达到20%以上。该技术、产品在国内、国外处于领先水平,具有高效节能、安全、舒适和方便管理的显著效果。

第3章结论

单片机控制技术应用越来越广泛,其核心技术是单片机控制系统的设计。对工程技术人员来说,抓住系统的原理构成、软件设计、硬件设计以及系统调试方法的要点是十分必要的。随着我国经济实力的增长,开发新产品的思路上过去那种过多注重价格因素而使新产品开发上不了档次的弱点有所改善,开始注意使用当前最先进的单片机开发高档次的产品。由于单片机的开发手段目前仍以仿真器为主,公司能否提供廉价的仿真器,提供方便的技术服务与培训,较之能否提供高性能、低价位的单片机有着同等的重要性。各单片机厂商在开发工具以及技术服务方面也进行着激烈的竞争。这种竞争与推出新型的单片机以显示高技术方面的优势是相辅相成的。竞争的结果是为单片机应用工程师提供更广阔的选择空间,而最终受益的是单片机产品的消费者,由于单片机对各行各业都有用,这种电子技术的进步导致各行各业的进步,也带动了人类文明的进步。

【参考文献】

[1]夏路易,石宗义《电路原理图与电路板设计教程Protel99SE》北京希望电子出版社2002

[2]张义和《ProtelPCB99电路板设计教程》青岛出版社2000

[3]陈杰,黄鸿《传感器与检测技术》高等教育出版社2002

[4]吴金戍,沈庆阳,郭庭吉《8051单片机实践与应用》清华大学出版社2001

[5]张迎新、杜小平、樊桂花、雷道振《单片机初级教程》北京航空航天大学出版社2002

[6]吴金戌、沈庆阳、郭庭吉《8051单片机实践与应用》清华大学出版社2002.

[7]数字电子技术

[8]模拟电子技术

[9]单片机原理机接口技术

[10]赫建国,郑燕,薛延侠.单片机在电子电路设计中的应用.清华大学出版社2006-5

[11]南建辉等.MCS51单片机原理及其应用实例.清华大学出版社2004

[12]李玉峰,倪虹霞.MCS-51系列单片机原理与接口技术.人民邮电出版社2004-5

第5章致谢

本论文设计在()老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,无不凝聚着()老师的心血和汗水,在我的毕业论文写作期间,()老师为我提供了种种专业知识上的指导和一些富于创造性的建议,没有这样的帮助和关怀,我不会这么顺利的完成毕业论文。在此向()老师表示深深的感谢和崇高的敬意。

在临近毕业之际,我还要借此机会向在这四年中给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们四年来的辛勤栽培。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文。

控制系统设计论文第4篇

随着经济的飞速发展,人们生活水平的快速提高,能源需求也日益增长,如今我国已是世界上第二大能源消费国。但我国的人均能源资源不到世界平均水平的二分之一,同时以煤为主的能源消耗对环境的压力也日益增大。电能的消耗是能源消耗的一个重要组成部分,在我国的城镇,随着商场、办公大厦等一些公共场所的用电需求越来越大,而这些地方目前的管理不到位等因素,往往造成电能的巨大浪费,这样,提高用电效率就迫在眉睫。灯光系统,尤其是公共场所的灯光系统的能耗是非常巨大的。而传统的公共场所灯光的控制主要采用人工,控制点大都比较分散,导致管理极为不便,不仅浪费人力管理成本,还会因管理不善导致用电的浪费。本文提出一种基于电路载波及智能控制等物联网技术的,具备远程管理、故障检测、智能控制等功能于一体的公共场所(如教学大楼、实验大楼、宾馆、写字楼等)灯光远程智能监控系统,旨在加强对灯光系统的智能管理,节能降耗,并降低管理成本。

2系统原理与结构

系统结构为典型的物联网三层结构,有感知层、网络层及应用层组成,结构如图1所示。网络层使用电力载波技术,各节点及网关之间采用载波通信。感知层由各载波传感控制节点组成,各节点设计有继电器控制接口,可对节点所连接的灯光进行开关控制。同时,各节点设计有人体红外节点、光敏传感节点等传感器,可实时测量出周围的环境情况。另外,各节点还设计有电流检测模块,可以通过电流的变化对连接到本节点灯光的故障状态进行检测。应用层主要包含远程监控、故障检测和智能控制三部分功能组成,远程监控功能是通过远程终端实时了解各节点灯光状态并可控制各路灯光的开关;故障检测功能是实时检测各节点有无灯的故障,一旦出现故障便即刻向终端发出报警信号并告知故障灯光所在节点,便于管理人员及时进行维修维护;智能控制功能则是通过终端远程发送命令,使各节点按照一定的控制规则智能地控制本节点连接的各灯光状态。

3载波传感控制节点硬件控制系统设计

①硬件选型。首先是载波模块的选型,本文选用的是HL-PLCV3.0载波通讯模块,其采用FSK通讯方式,软件采用超级模糊算法,即使传输信号扰或丢失达40%,也能准确还原出原载波信号,通讯稳定,抗干扰能力强,且能实现串口透传,使用方便。其次是MCU的选择,考虑到功能、功耗、安全、价格、抗干扰等方面因素,本文选取了宏晶STC单片机STC12C5A60S2,能很好满足使用要求,可升级性也比较好。②电源模块。有两部分组成,一是交流220V转9V,用来给载波模块供电,使用AC-DCWA5-220S09D3模块来完成转换;另一是9V转5V,用来给单片机电路供电,使用LM1117-5.0搭建稳压电路即可实现,如图2所示。③电流检测模块主要是使用电流检测芯片ACS712再通过LM321放大电路对检测信号进行放大,最后使用A/D转换来得到结果,此电路可得到610mv/A的检测信号,见图3。④控制执行模块可通过继电器来完成,其电路图如图4。⑤载波模块接口设计,根据其功能,设计如图5。

4通信协议控制系统设计

要保证无线传感节点之间以及同终端之间的数据交互能正确无误、畅通无阻,需编写一个通信协议来完成此项工作。由于本系统数据交互具有流量不大,内容并不复杂等特点,可编写简单协议来规范系统内部的通信。本通信协议设计为8字节长度,详见表1。其中类型用来区分是上位机的命令,还是无线节点的返回数据;对象标记用来区分具体的无线节点;值1、值2表示具体的命令及具体的状态。

5软件控制系统设计

5.1载波传感控制节点软件设计。载波传感控制节点的主要工作是数据信息采集、执行控制命令。为降低网络流量,各节点除上电时收发下地址确认信息等初始化数据,正常状态下只是在命令反馈时或在检测到故障时才进行数据的发送。节点的程序流程图如图6所示。图6载波传感控制节点程序流程图Main函数节点初始化、设置本地地址、频率电流传感器数据采集检测到电路异常封装异常信息YN设置标志位,等待接收命令YN接收到载波数据执行控制命令载波反馈送给网关

5.2上位机软件设计。控制界面主要是控制灯开关,同时还能显示出灯的现有状态。当电路异常的时候界面也会及时地显示出报警信息,程序运行流程图如图7示。图7控制界面程序流程图用户灯光状态控制有网关数据?数据包解析异常?显示灯状态异常报警NNYY。

6总结

控制系统设计论文第5篇

1仿人假手系统介绍

本文所控制系统设计以HITV代手为控制对象。该手略小于成年人人手,具有5根手指,每根手指2个指节,大拇指还另有一个内旋/外展关节,共有11个活动关节,整个手由6个直流电机驱动,每根手指安装有力矩传感器、位置传感器、指尖六维力传感器。控制系统采用模块化设计思想,将整个系统分割成几个模块,通过通用接口建立相互连接,使整个控制系统可以放置在仿人假手内部,实现机电一体化。

2基于FPGA的控制系统设计

仿人假手电气控制系统用于实现假手各手指的驱动控制、多种传感器信息的采集以及与上位机(PC或PCI控制卡)之间的通信。该控制系统由10个模块组成,分别为:由FPGA组成的主控芯片模块、USB接口模块、拇指控制电路模块、食指控制电路模块、中指控制电路模块、无名指控制电路模块、小指控制电路模块、肌电信号采集模块、电池管理系统模块、电刺激反馈模块。模块化设计方法增加了控制系统的灵活性与独立性,便于对模块单独进行调试与修改。电气系统总体功能框图如图1。

2.1FPGA主控芯片模块设计

FPGA主控芯片模块采用Altera公司CycloneⅢ系FP-GA芯片EP3C25F25617作为控制核心,负责肌电信号和多种传感器信号的处理、与手指电路的通信、USB通信、CAN通信接口等功能。同时,主控芯片模块还负责大拇指内旋/外展自由度驱动电机的控制。各个功能通过VHDL语言进行编写,FPGA中嵌入双NIOS核构成双核处理器,其中一个NIOS核用于肌电信号处理,另一个NIOS核用于通信;双核通过2M的EEPROM进行通信。FPGA功能框图如图2。RS—485通信通过在NIOS核内自定义元件AutoSCI控制RS—485收发接口芯片MAX3362实现。MAX3362收发芯片可通过3.3V低压实现高速数据传送。CAN与LVDS通信采用复用电路设计(图3),通过更换接收发送接口芯片完成功能转换。CAN通信采用TI公司的CAN收发器SN65HVD230QD作为接口芯片。LVDS通信采用TI公司的半双工LVDS收发接口芯片SN65LVDM176,构成PPSeCo高速串行通信系统与PCI控制卡通信,通信速率可达25Mbps,保证控制信息与传感器信息传送的及时性。拇指内旋/外展自由度驱动电机由NIOS核中自定义元件PWM控制。元件功能通过VHDL语言编写,PWM波周期和占空比均可调。电机驱动芯片采用MPC17531A,其内部集成双H桥,可直接控制直流有刷电机。

2.2手指运动控制模块设计

五根手指的运动控制模块采用相同的设计方案,增强系统的互换性与通用性。该模块由DSP作为控制核心,直流有刷电机驱动芯片MPC17531A作为电机驱动芯片,负责手指电机的驱动,力矩传感器、位置传感器、电机电流传感器信号的采集与处理,以及与触觉传感器系统的通信,最后各项数据通过RS—485通信接口与主控芯片模块通信。控制模块如图4。该模块采用的DSPTMS320F28027运行速率高,封装小。内部集成的16通道12位A/D转换器可实现对力矩、位置、电机电流信号的采样。串行异步通信接口通过RS—485收发接口芯片实现与主控芯片模块通信。EPWM模块可直接控制直流有刷电机驱动芯片MPC17531A。如图5,关节力矩传感器信号采集系统包括力矩传感器、处理放大电路、滤波电路和A/D转换电路。力矩传感器基于应变原理,采用仪表放大器INA337组成半桥电路对力矩信号进行放大后通过RC滤波电路进入A/D转换芯片。如图6,关节位置传感器信号采集系统包括位置传感器、处理放大电路、滤波电路和A/D转换电路。位置传感器基于旋转电位器原理,采用集成运放MAX9618对电位器信号进行放大后通过RC滤波电路进入A/D转换芯片。

2.3肌电信号采集模块设计

肌电信号采集模块用来采集肌电电极的信号以及对信号的滤波和D/A转换后存储在CPU中,包括RC电路组成的滤波电路、D/A转换电路和电压转换电路。数字信号通过电压转换芯片转换为3.3V电压,通过SPI接口输入到CPU中央处理器。

2.4电池管理系统模块设计

电池管理模块包括电池、电流传感器、蜂鸣器电路、LED显示电路。电流传感器实时监测电池输出电流大小,通过LED显示电路和蜂鸣器电路显示充电状态和电池电量过低报警。

3软件实现

控制系统设计论文第6篇

燃气发电机组的空燃比控制系统主要由控制器、传感器、燃气阀、空气阀、混合器等部分组成。

1.1传感器系统过程数据的采集

通过氧传感器、转速传感器、进气压力传感器等传感器实现。氧传感器是系统中重要的传感器之一。在空燃比控制系统中,最常见的反馈参数是排气中氧的含量,它直接反映出燃气燃烧之后留下了多少氧气。因为燃烧室内大部分的氧气,或者说所有的氧气均来自于空气,所以排气氧含量是空燃比的直接反映。发动机转速的稳定性对发电机组输出交流电的频率稳定性影响较大,而频率的稳定性又是衡量发电机组输出电能质量的主要指标之一。转速传感器多为磁电式传感器,安装在凸轮轴上,由转速传感器内的永磁体、线圈和发动机飞轮齿轮共同作用产生一个交流电压信号,该信号经采样电阻和放大器处理后,输入到控制器CPU内。

1.2燃气阀及空气阀

燃气阀及空气阀是带步进电机的电动调节阀,也是系统的执行器。控制器利用PWM驱动步进电机,进而调节阀门开度。

1.3空燃比控制器空燃比控制器是空燃比控制的“大脑”。在本系统设计中,空燃比控制器基于DSP处理器设计,由检测电路、空燃比控制电路和通讯接口电路等部分构成。

2空燃比控制策略

在空燃比控制系统中,系统的控制目标是要使稳态下空燃比的平均值在理想值附近,而且在突加突卸负载造成空燃比偏离理想值时,系统能迅速响应,将空燃比控制在理想值附近。

2.1RBF神经网络

整定PID控制策略在工业控制中,PID控制器应用广泛。由于发动机的空燃比受进入气缸的空气量转速、负荷、温度、气体燃料喷射器的响应速度和喷度等多种因素的影响,所以采用PID控制,根据反馈实时调整进气量,使之达到精确控制。人工神经网络是一种在生物神经网络的启示下建立的数据处理模型。其中径向基函数(RBF)模拟了人脑中局部调整相互覆盖接受域的神经网络结构,能以任意精度逼近任意非连续函数,是一种局部逼近网络,收敛速度快。本设计采用并行控制策略来实现发动机空燃比的控制,前馈控制采用RBF神经网络控制器,反馈控制则采用PID控制器。前馈控制及时快速响应,实现发动机的逆动态模型;反馈控制则保证系统的稳定性,抑制干扰信号对系统的扰动。

2.2仿真实验

本文采用MATLAB软件Simulink工具箱进行燃气发电机组空燃比控制系统仿真。燃气发电机组空燃比控制系统采用常规PID控制的仿真,通过对比可以发现:在稳态时,与常规PID相比,并行控制的稳态误差小,空燃比基本能稳定在理论空燃比附近;在动态时,与常规PID相比,并行控制的超调量小,即使在加入干扰的情况下,超调量δp也可控制在20%以内。

3结语

控制系统设计论文第7篇

在温度控制过程中,单一的定值开关控制方式会产生较大的温度迟滞现象,对于加热箱等干燥设备的干燥效果差、干燥品质低;但是在普通的干燥设备中,单纯采用PID控制方式会使控制系统变得复杂,对于硬件的要求程度高,在持续高温环境下精度也随之降低,故障率高。为了解决这一问题,本文设计一种单片机温度控制系统,该系统使用两种功率大小不同的加热方式。加热元件使用红外加热管,功率大的加热管起主要的加热作用,正常工作时处于启动状态。功率较小的加热管起辅助加热作用,在测量温度高于目标温度时立即停止加热,当温度低于目标温度时开启加热;但当温度高于目标温度上限一定值时,主加热管也停止工作,同时引风机开启,辅助降温。对于一般的电加热干燥设备而言,此方案能够满足实际生产的需要,并且温度延迟效果低,节能效果显著。

2系统硬件电路设计

2.1系统主结构设计

该温度控制系统由主控制系统、温度采集模块、温度显示模块、温度动态控制系统、报警模块和按键控制系统组成。

2.2单片机主控系统

作为温度控制系统的核心部分,单片机承载着对温度信息的处理、按键的扫描识别、温度动态控制系统的协调、输出显示温度和报警的任务。本文采用的AT89C52单片机是美国ATMEL公司生产的低电压、高性能CMOS8位单片机。其内部有8k字节可重擦写Flash闪存,成本低廉,兼容MCS-51系列的所有指令,程序语言丰富;与AT89C51相比,存储空间更大,中断源更多,方便后期其他模块的添加;技术成熟,因此在自动控制等领域被广泛采用。AT89C52单片机主控制系统与其他模块连接原理图如图2所示。P1.0~P1.4口为键盘输入端口,通过对应按键对目标温度的上下限进行设定。数字温度传感器总线与单片机的P1.7口相接,经过单片机处理之后,测得的温度输出至P0口,通过LCD1602显示出来。温度动态控制信号通过单片机P2.4~P2.6口传输。加热管和散热风扇采用的是220V的交流电,温度控制口接相应控制电路的继电器,通过继电器控制加热、散热部分的工作。

2.3温度采集模块

DS18B20是由美国DALLAS公司生产的数字温度传感器,它通过单总线协议依靠一个单线端口进行通讯。其仅占用一个单片机的I/O口,无需其他任何外部件,把环境温度直接转化成数字信号,以数字码方式串行输出,从而简化了传感器和微处理器之间的接口。该传感器可以单个于单片机连接实现温度采集功能,在需要采集多点温度数据时,只需将多片DS18B20同时挂在一条总线上,由软件对每个温度传感器的ROM编码进行识别即可,具有成本低、结构简单、供电方式多样、方便扩展和可靠性高等优点。

2.4温度动态控制系统

温度动态控制系统主要由加热管、引风机、继电器等构成。单片机的P2.4口接主加热管的控制继电器,通过输出高低电平来实现主加热管的启动和停止;单片机的P2.5口与控制调温加热管的继电器相连;降温风机控制继电器控制端和高温报警电路,与单片机的P2.6口相连。

3系统软件设计

3.1主程序流程图

系统开机启动后,通过温度控制按键设定干燥温度范围;由传感器DS18B20采集实时温度,通过控制系统的对比给出控制信号,同时定时对按键进行扫描,以随时调整目标温度范围。

3.2温度数据读写子程序设计

由于DS18B20单总线通讯方式的特殊性,传感器读写温度数据具有严格的时序要求。工作时序包括初始化、读时序和写时序。单片机的命令和温度数据的传输都从执行单片机写时序的指令时开始,对于单片机需要DS18B20送回数据,要在写时序命令执行之后再启动写时序指令才能完成对数据的接收。总线通讯方式使得硬件电路的连接变得简单,但也使得程序部分变得复杂。本文采用的是一个传感器,因此在串口通讯时不需要识别传感器的序列号,程序中写入跳过读ROM序列号步骤。

3.3按键扫描子程序

由于不同的加热干燥对象对温度的要求不同,加热的温度控制部分要能够方便、快捷地设置温度上、下限。在干燥物的不同阶段,干燥的温度有所不同,在干燥过程中温度的范围需要做出调整。这就要求温度的上、下限设置在干燥的过程中也能够执行。因此,单片机在执行温度采集、显示和控制的同时,也要时刻监视按键是否被按下,对温度设定进行调整。针对这一问题,在程序中加入一个按键扫描子程序,定期执行按键的扫描功能,同时也要有中断子程序保持设定完温度之后单片机可以继续刚才未完成的工作。因此,按键扫描程序设计的思路是:在开机启动阶段,通过按键对控制温度范围进行初设定;在工作过程中,单片机定期对按键进行扫描,判断是否有按键被按下,如果有按键被按下,则加入一个外部中断,单片机转而执行干燥温度范围调整指令;待任务完成之后,继续返回执行温度控制命令。

4proteus仿真结果

温度控制系统硬件电路设计部分在proteus软件上完成,当C语言程序在keil软件上编译调试成功之后,导入单片机进行系统总调试。温度采集模块:DS18B20的温度实时数据能够有效地显示出来;键盘控制模块,相应按键按下之后,程序立即响应指定的动作指令;温度控制模块:采集的温度低于设定低温下限时加热管工作,高于温度上限时停止加热并且风扇开启降温;报警模块同样工作正常。调试后的温度显示结果如图4所示。LT、HT分别表示设定的温度下限与上限,1602的第2行显示实时温度。

5结论

1)功率不同的加热管承担不同的功能,大功率红外加热管起主要加热功能,小功率加热管控温,使得温度滞后幅度变小,减少能源浪费,节电效果显著。