欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

神经网络论文(合集7篇)

时间:2022-12-14 13:20:18
神经网络论文

神经网络论文第1篇

(一)研究方法

本文采用SOM神经网络对30起旅游突发事件的数据进行聚类分析。SOM神经网络由芬兰学者于20世纪80年代提出,全称是自组织特征映射神经网络,它采取“胜者为王”的竞争学习算法,通过竞争、合作和权值调节来完成无监督自学习的过程。[4]1.SOM神经网络的拓扑结构。神经网络的拓扑结构如图1所示,包括输入层和输出层,输入层各节点通过权值与输出层的神经元相互连接,输入层随机接受任意维度的输入模式,然后以拓扑有序的方式变换到输出层,这个变换叫做特征映射,接着在输出神经元之间完成竞争选择。2.SOM神经网络的学习过程。①初始化。确定总的学习次数T,学习速率a(t),邻域半径初始权值(t),②对初始权值和输入向量进行归一化处理③计算传感器的坐标数据与输出神经元的欧式距离:④找出最小的欧式距离,确定取胜的神经元。⑤对连接权值进行调整:⑥更新学习速率和邻域当时,返回步骤②;当学习速率a(t)下降为0或学习次数达到最大值T时,学习过程结束。

(二)数据来源及处理

微博平台在网络舆情传播平台中具有代表性,并且在数据获取的即时性和便捷性上存在明显优势。由于一般旅游突发事件的微博数量太少、可利用性很低,因此本文选用2010-2014年内,引起微博较大反响、博友激烈讨论的30起热点旅游突发事件作为研究样本(见表1)。使用新浪微博的平台开放接口自行编写程序,以旅游突发事件的关键词,抓取微博数据。通过对微博数据的预分析,发现微博集中在旅游突发事件发生后的10天之内,10天之后微博基本不再更新。为了方便对比研究,将有关旅游突发事件的第一条微博的时间作为起始时间,以3小时为一个时间段,一天分为8个时间段:0:01-3:00、3:01-6:00、6:01-9:00、9:01-12:00、12:01-15:00、15:01-18:00、18:01-21:00、21:01-0:00,10天共分为80个时间段,每隔一个时间段记录一次微博数量,同时对每个时间段内的微博数量进行累加处理,这样每个旅游突发事件下都有80个数据。

二、实证研究结果与预测

(一)基于SOM神经网络的旅游突发事件微博传播聚类研究

启用Matlab7.1的SOM神经网络工具箱,编程后,对每条80个元素的30条数据进行聚类,如表2所示。总共得到六种聚类结果,每种类型的旅游突发事件的传播态势都有明显的特征:第一聚类,旅游突发事件发生后2天内,在微博上出现短暂热议,第2-8天博文数量增长趋势迅速减慢,第9、10天内博文数量出现新的小阶梯状增长;第二聚类,博文数量的增长态势近乎直线,但是增长速度还是随着时间逐渐降低,在旅游突发事件的整个传播期内,博文数量呈现持续增长的态势;第三聚类,旅游突发事件发生后的第1-4天内博文数量迅速爆发,4天后相关博文增长速度逐渐趋于零;第四聚类,在旅游突发事件发生后的传播期内,事件一直受到博友的广泛关注,在传播期前2天内经过热议之后,博文的增长速度明显减慢,但是依然保持持续增长的状态;第五聚类,与第三聚类类似,只是博友热议期缩短到2天,2天后相关博文的增长速度逐渐趋于零;第六聚类,博文的传播态势呈现弧型,在传播期的前2天内,增长速度比较大,博文数量快速爆发,第3-4天增长速度逐渐减慢,第8-10天博文基本停止增长。

(二)旅游突发事件网络舆情传播趋势的预测

由于具有信息传播的即时性、互动性、快捷性,微博逐渐成为旅游突发事件网络舆情的重要载体,政府控制舆情的传统方法的功能严重弱化。旅游突发事件的发生涉及社会公众关注的旅游目的地安全、旅游交通安全、游客权益保障等热点问题,不仅会引起微博舆论的爆发,而且错误的信息容易误导社会公众,引起恐慌,扰乱国家经济秩序。因此,实时监测微博的动态,并进行有效预测,对于政府部门采取及时、恰当的措施监管微博舆情具有重要的指导意义。选取第六聚类的旅游突发事件作为样本,取6个旅游突发事件的微博数据的平均值,将其作为预测数据,采用指数函数方法进行拟合并预测。选用80个数据的前70个数据作拟合,得出拟合模型,后10个数据作为预测结果检验数据。指数函数的拟合模型是:,拟合结果的相关系数是0.99435,第71到80个数据的预测曲线与实际曲线几乎完全吻合,说明模型的预测效果很好。

三、结论与讨论

(一)结论

1.遵循“黄金4小时”舆情应对模式。基于旅游突发事件在微博平台中的舆情传播态势分析,容易发现,博文数量集中在前2天内爆发,并且在前4个小时内,微博数量增长速度非常快。旅游突发事件应对模式应该从传统事件处置的“黄金24小时”缩短到新媒体环境下的“黄金4小时”报道事件。需要旅游政府、企业、景区等主体联合进行舆论应对工作,第一时间识别微博舆情的危机苗头,即时权威信息,澄清和驳斥不实信息,引导主流媒体舆论的走向。2.即时公开信息,挽回旅游地形象。不实的言论会诱发网友情绪,扰乱旅游突发事件的事态发展,损害旅游目的地的旅游形象。通过对旅游突发事件的微博传播的特征分析发现,传播期的前两天是网络舆论的爆发期,也是舆情控制的关键时期。旅游目的地政府部门和景区管理部门应该主动与媒体、博友沟通,第一时间公开透明地旅游突发事件的真相、调查结果、处置过程等信息,让媒体客观公正地评价旅游突发事件,引导网友的舆论倾向。既可以表现旅游目的地对突发事件的响应能力,又有利于旅游目的地形象的维护。3.权威信息,消除“信息污染”。事件发生后,在传播期的前两天内,突发事件往往处于发展方向不明确的状态中,在博友、媒体各方的广泛关注下,一个不实消息的传播都可能激发各方的情绪,造成舆情危机态势的蔓延。旅游目的地景区、政府部门、旅游局等官方微博应该独家权威消息,多角度介绍旅游突发事件的真相、事态进展、调查结果、善后处理等消息,消灭事件相关消息中有害的、虚假的、误导的信息元素。4.开发舆情跟踪系统,建立舆情跟踪机制。加快高等院校和科研机构对舆情监测核心技术、信息规制挖掘技术、信息理解与分类技术的攻克,建立产学研合作平台,经过技术成果转化过程,将成果投入使用。旅游目的地应该建立完善的旅游突发事件的舆情监控机制,在旅游突发事件刚发生而网络舆情尚在潜伏期的时候,提高对舆情的预判能力,实现对事件舆情的动态变化进行实时跟踪监测,及时采取措施引导网络舆情和化解矛盾。

(二)讨论

神经网络论文第2篇

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线是BP算法的一大优点。

2、神经网络型继电保护

神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。

文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。

ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。

3、结论

本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。

一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。

神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。

参考文献

1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993

2、RobertE.Uhrig.ApplicationofArtificialNeuralNetworksinIndustrialTechnology.IEEETrans,1994,10(3)。(1):371~377

3、LeeTH,WangQC,TanWK.AFrameworkforRobustNeuralNetwork-BasedControlofNonlinearServomechannisms.IEEETrans,1993,3(2)。(3):190~197

神经网络论文第3篇

[关键词]MATLABBP神经网络预测模型数据归一化

一、引言

自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。

二、影响因素

刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。

三、模型构建

1.模型选择:BP网络具有理论上能逼近任意非线性函数的能力,将输入模式映射到输出模式,只需用已知的模式训练网络,通过学习,网络就有了这种映射能力。2.样本数据归一化:在训练前,对数据进行归一化处理,把输入向量和输出向量的取值范围都归一到[0,1]。

3.BP网络设计:采用单隐层的BP网络进行预测,由于输入样本为5维的输入向量,因此输入层一共有5个神经元,中间层取20个神经元,输出层一个神经元(即黄金价格),网络为5*20*1的结构。中间层的传递函数为S型正切函数,输出层为S型对数函数。中间层的神经元个数很难确定,测试时分别对12,15,20个数进行测试,寻找误差最小的。

4.网络训练:训练次数epochs5000,训练目标goal0.001

对30个样本数据进行训练,经过1818次的训练,目标误差达到要求,如图2所示:神经元个数为20个时误差最小,此时网络的仿真结果如图3所示,预测精度80%以上,效果满意。

四、结论

在对1976年~2006年的影响国际黄金价格的五种因素的数据进行归一化处理后,用MATLAB建立的BP神经网络预测模型进行预测,达到了很好的效果。

国际黄金的长期价格受到许多因素的影响,本文只是对道琼斯工业指数等影响因素诸如分析,来预测长期的国际金价。还有其他因素,如国际油价,局部政治因素等,如果考虑进去,预测精度会进一步提高。

参考文献:

神经网络论文第4篇

但当BP神经网络应用于预测模型尤其对于未来增长趋势比较明显的预测模型时,虽然其收敛精度较高,但其值域范围受限导致训练样本拟合函数与预测数据有较大差异,导致其局部搜索能力较强但全局搜索能力较差,易陷入局部最优值。本文通过引入遗传算法,发挥该算法全局搜索能力较强的特点,对BP神经网络权值和阈值进行预优化,赋予各层较佳输出解空间,发挥BP神经网络局部搜索能力强的特点,实现强强联合,提高时间序列预测的精准度。

1.1BP神经网络

BP(BackPropagationnetwork)神经网络是当今预测领域应用最广泛的一种神经网络算法。BP神经网络由3层组成:输入层、隐含层和输出层。每一层中都包含若干节点(神经元),不同层之间节点通过权值进行全连接,同层节点之间无连接。其中,隐含层可为多层,实际应用过程中有一个隐含层的三层神经网络结构即可实现非线性函数拟合。

1.2遗传算法

本文中的优化对象为BP神经网络各层间权值和阈值。因此,在种群初始化时,遗传算法采用常用的二进制编码,并由农业机械数量的历史样本数目确定遗传算法将优化的参数(权值和阈值)个数,从而确定种群的编码长度。因BP神经网络隐含层神经元采用S型传递函数,为减小计算误差,减少或避免计算结果落入局部最小值,权值和阈值应避免选择区间内较小和较大数值,选择在[-0.5,0.5]区间内的随机数。遗传算法计算流程。

2预测结果与分析

本文采用基于遗传算法的BP神经网络,以我国从1997-2013年的农业机械数量为基础数据进行训练和测试和预测。其中,遗传算法群体规模M=50,交叉概率pc=0.6,变异概率pm=0.01,BP神经网络权值阈值取值空间为[-0.5,0.5],训练次数为1000,训练目标为0.01,学习速率为0.1。我国在1997-2013年期间的农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测值与历史样本数据之间的绝对值平绝误差分别为1.080%、1.352%和1.765%。由此看出,使用基于遗传算法的BP神经网络对于以农业机械数量为预测对象的时间序列预测模型的预测精度较好,预测精度稳定性较佳。从预测误差可以看出,本文所使用的BP神经网络在预测本时间序列模型时,基本避免运算结果落入局部最小值,收敛性能较好,与前文中遗传算法和BP神经网络优势互补、强强联合的理论设想较为一致。2014年我国农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测结果来看,该预测结果与2013年度数值比较有较大增长,但增长幅度有所下降。预计到2014年,我国农机总动力、大中型拖拉机数量和小型拖拉机数量分别为11.251×108kW、587.012万台和2043.201万台,与1997年相比分别增加了167.86%、751.96%和94.87%,与2013年相比分别增加了4.17%、10.75%和2.16%。其中,2014年农机总动力和小型拖拉机数量增长率分别小于2013年的增长率5.88%和3.3%,农用大中型拖拉机数量增长率大于2013年的增长率9.19%。由于我国在2004年出台了一系列鼓励提高农业机械化的法律、政策、法规,中央财政农机购置补贴资金投入连年大幅增加,极大地调动了农民购机的积极性和企业生产的积极性,促进我国农机装备总量持续增长和农机结构优化。随着跨区作业和农业生产合作社的逐步发展,有效提高了农用大中型拖拉机在农业生产中的的利用率,降低了农民劳动强度,提高生产效率,因而其近几年的保有量有较大增幅。小型拖拉机受农业产业结构调整和农业机械大型化的影响,其近几年的保有量增幅逐年降低。

3结论

神经网络论文第5篇

1.1GPS台站数据GPS时间序列由中国地壳运动观测网络提供[10],这些GPS站在解算过程中扣除了固体潮、海潮、极潮的影响.本文选取的是华北平原区域内BJFS、BJSH、JIXN、TAIN、ZHNZ台站的数据,为了得到更理想的GPS时间序列数据,本文对这72个月的GPS数据进行预处理工作,包括:线性拟合去除趋势项、剔除噪声数据以及小波分解保留长周期信号[11].

1.2GRACE数据本文采用的GRACE重力卫星数据是由美国德克萨斯大学空间研究中心提供的高精度Level-2RL05版本的GRACE重力场前60阶球谐系数(2005年1月~2010年12月)[12].在此基础上,根据Blewitt[13,14]、Wahr[15]的结果推导由GRACE时变重力资料解算的陆地水储量,如公式(1)所示。

1.3CPC水文模型数据研究表明,地表水储量可以忽略[7],所以研究区陆地水储量变化可以用式(2)表示。示土壤水分引起的陆地水储量变化,来自CPC水文模型.通过式(2)可获得地下水储量的变化值.以BJFS台站为例,如图1所示,绿色线表示GRACE解算的陆地水储量,红色线表示CPC水文模型解算的土壤水储量,蓝色线为地下水储量.由于GRACE解算的陆地水储量在解算过程中扣除了背景场的影响,因此本文对72个月的降水量、地下水埋深以及GPS测站的地表形变数据做同样的处理.

2研究方法

2.1人工神经网络算法原理BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传递.在前向传递过程中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响到下一层神经元状态.若输出层不能满足期望的输出要求,则转入反向传播,根据预测误差调整网络权值和阈值,从而使得BP神经网络预测输出不断逼近期望输出[16].其拓扑结构如图2所示.X1,X2,…,Xn是BP神经网络的输入值,Y1,Y2,…,Ym是BP神经网络的预测值,ωij和ωjk为BP神经网络权值.

2.2基于BP神经网络的地表垂直负荷形变量模拟

2.2.1指标选取地表负荷形变是由地表流体质量(包括大气、陆地水等)重新分布引起的不同尺度变化.因此将GRACE解算的水储量作为一个输入因子.此外,分析华北平原地表负荷形变的成因,认为地下水超采对该区的地表负荷形变有一定影响.为此将地下水埋深作为BP神经网络模型的一个输入因子.降水量与地表负荷形变量间存在一定关系,一方面降水的增多会相对减少对地下水的开采,另一方面在降水过程中浅层黏性土吸水后表现出一定的膨胀性,因此将历年的降水量也作为一个输入因素[17].为了探求不同水储量作为输入因子时模型的模拟精度,本文结合来自CPC水文模型的土壤水储量,将解算出的地下水储量作为另一个输入因子.

2.2.2样本训练与网络设置为消除网络输入、输出变量的量级、量纲不同对网络识别精度的影响,对各个变量进行归一化处理。上式中:P为原始输入数据,Pmin,Pmax分别为原始数据的最小值和最大值,Pn为归一化后的数据.隐含层采用正切Sigmoid函数,输出层采用Purelin函数,训练函数采用贝叶斯正则化算法.网络的主要参数训练目标goal=0.001,学习率为0.05,性能函数采用msg均方误差函数.

3结果与讨论

3.1模型精度验证

3.1.1样本训练精度运行建立的人工神经网络模型,训练21次达到训练目标.R2平均值为0.892,说明模型训练精度较高.如图3所示为将陆地水储量作为输入因子训练网络后的5个台站模拟结果.图中蓝色线为GPS台站的实际观测形变量,红色虚线为用人工神经网络模拟出来的型变量.

3.1.2模型模拟精度由于地表垂直负荷形变实际观测结果与拟合结果均为等间隔的月尺度数据且没有明显规律,因此采取后验差检验法对模型进行精度分析。采用后验差检验法对结果进行精度分析,检验结果如表2所示,5个台站后验差比值C<0.5,小误差概率P>0.80,R2平均值为0.806,依据预测等级表,网络模型精度较高.

3.2不同水储量输入对精度的影响将不同水储量输出的15组模拟结果进行后验差检验,结果如表3、图4(以BJSH为例)所示,当以陆地水储量(TWS)作为输入时,5个台站的后验差比值C<0.5,小误差概率P>0.80,R2为0.901,相关性较好,模型模拟精度较高.当以地下水储量(GWS)和土壤水储量(SWS)作为输入时,均方差C>0.65,小误差概率减小,R2为0.555和0.290,模拟精度属于勉强.说明在利用人工神经网络模拟地表负荷形变量时,陆地水储量作为模型输入因子时模型模拟效果最好,地下水储量对地表负荷形变的影响比土壤水储量大.

4结论

神经网络论文第6篇

在上世纪九十年代初期,利用数学知识将感知器模型的弊病全面提出,致使社会各界对于人工神经网络的探究非常少。另一方面,针对逻辑运算的人工神经网络研究存在一定的弊端,一直没有被大家发现,因此,致使人工神经网络探究工程进入严重的低谷期。

关于人工神经网络技术飞速发展时期,九十年代初期,对于人工神经网络技术的弊端予以充分解决,尤其是Hopefield的人工神经网络技术模型的提出,致使对于互联网的稳定性以及收敛性的探究有了充分的理论依据。而且将人工神经网络模型全面应用到具体的实践中,并且得到全面推广,同时,将科学技术和人工神经网络进行有机结合,使人工神经网络技术更加具有可研究性。

2关于人工神经技术的构造以及典型模型

互联网人工神经技术的构造的组成包括以神经元件为主,同时,这项包含多种神经元结构的互联网信息处理技术是可以并行存在的。每一个具体的人工神经元件可以单一输出,还可以和其他的神经元件相结合,并且具有非常多的连接输出方法,每一种连接措施都会有相应的权系数。具体的人工神经网络技术的特点有:(1)针对每一个节点i,都会有相应的状态变量Xi存在;(2)节点j到节点i之间,是相应的权系数Wij存在;(3)在每一个节点i的后面,具体存在相应的阈值θi;(4)在每一个节点i的后面,存在变换函数fi(Xi,Wijθi),但是,通常情况来说,这个函数取fi(∑,WijXi-θi)的情况。

3将人工神经网络技术进行全面使用

互联网的人工神经网络技术具有独特的结构和处理措施,具体包括在:自动控制处理和网络技术模式识别、模型图像处理和相应的传感器信号处理技术。信号处理技术和机器人控制处理技术、地理领域和焊接、在电力系统应用和相关数据挖掘、军事和交通行业、农业和气象行业等多个领域纷纷体现出其卓越的贡献。

ART人工神经网络技术的运用。人工神经网络技术ART在网络语音和网络图像、文字处理和具体识别等方面,得到广泛的应用;同时,在工业处理系统中也有相应的应用,例如,在工业系统中的故障诊断和故障检测以及事故警报等情况的控制;人工神经网络ART技术还应用在数据挖掘方面,在相关数据中挖掘最稳定和最有意义的模式。具体的神经网络技术ART的优势为:网络技术处理能力高、稳定性强以及聚类效果非常好。

4结束语

神经网络论文第7篇

EL检测原理与检测系统在文献[1]中有详细的描述。本文采用该文献中的方法对太阳能电池片的EL图像进行采集。图1(a)、(b)、(c)分别表示由CCD采集的一块大小为125bits×125bits的虚焊缺陷图像、微裂缺陷图像和断指缺陷图像。图1(d)是无缺陷太阳能电池组图像,它包含36(6×6)块大小为125bits×125bits的太阳能电池片图像。本文提出融合主成分分析(PCA)改进反向传播神经网络(BPNN)方法和径向基神经网络(RBFNN)方法对太阳能电池缺陷电致发光图像进行处理,主要包括图像采集、PCA特征提取降维、神经网络分类训练、预测输出等部分,如图2所示。

1.1PCA处理输入数据当BPNN和RBFNN的输入是太阳能电池板缺陷图像集时,图像是以向量的形式表示。向量维数太大将不利于网络的计算。我们采用主成分分量分析(PCA)算法[15]来提取该向量的主要特征分量,既不损失重要信息又能减少网络的计算量。PCA是基于协方差矩阵将样本数据投影到一个新的空间中,那么表示该样本数据就只需要该样本数据最大的一个线性无关组的特征值对应的空间坐标即可。将特征值从大到小排列,取较大特征值对应的分量就称为主成分分量。通过这种由高维数据空间向低维数据空间投影的方法,可以将原始的高维数据压缩到低维。假设数据矩阵Xn×p由样本图像组成,n是样本数,p是样本图像的大小。若Xn×p的每一行代表一幅样本图像,则Xn×p的PCA降维矩阵求解步骤如下。

1.2创建BPNN模型和RBFNN模型太阳能电池缺陷种类很多,不同缺陷类型图像具有不同特征。对太阳能电池缺陷图像求其主成分分量作为BPNN的输入,缺陷的分类作为输出,输入层有k个神经元(降维后主成分分量个数),输出层有1个神经元(缺陷的分类向量)。隐层的节点数可以凭经验多次实验确定,也可以设计一个隐含层数目可变的BPNN。通过误差对比,选择在给定对比次数内误差最小所对应的隐含层神经元数目,从而确定BPNN的结构。一般来说,3层BPNN就能以任意的精度逼近任意的连续函数[16]。本论文选择3层BPNN,结构为k-m-1,m为隐含层节点数。为了使网络训练时不发生“过拟合”现象,设计合理BPNN模型的过程是一个不断调整参数对比结果的过程。确定BPNN结构后,就可以对该网络进行训练。训练函数采用Levenberg-Marquardt函数,隐含层神经元传递函数为S型正切函数tansig,输出层神经元函数为纯线性函数purelin。调用格式:net=newff(Y,T,[m,1],{‘tansig’,‘purelin’},‘train-lm’);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量。Matlab自带4种主要的函数来设计RBFNN:newrbe,newrb,newgrnn,newpnn。本文用相同的训练样本集和测试样本集创建和测试了这4种网络,其中,用newgrnn创建的网络识别率最高,因此选用广义回归神经网络newgrnn来创建RBFNN:(1)隐含层径向基神经元层数目等于输入样本数,其权值等于输入矩阵向量的转置。(2)输出层线性神经元层,以隐含层神经元的输出作为该层的输入,权值为输出矩阵向量T,无阈值向量。调用格式:net=newgrnn(Y,T,Spread);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量,Spread为径向基函数的扩展速度。

1.3太阳能电池缺陷的检测算法(1)数据映射。取每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。将样本集中每张图片变成矩阵中的一列,形成一个矩阵,采用2.1节中的方法对该矩阵进行PCA降维后的矩阵作为BPNN和RBFNN的输入。将虚焊、微裂、断指和无缺陷4种不同类型图像分别标记为1,2,3,4,作为网络期望输出T。(2)数据归一化。将输入输出矩阵向量归一化为[-1,1],利于神经网络的计算。(3)分别调用2.2节中创建的BPNN和RBFNN,设置网络参数,利用训练样本集先对网络训练,然后将训练好的网络对测试样本集进行仿真,并对仿真结果进行反归一化。(4)最后将仿真预测输出分别和图像1,2,3,4比较,差值的绝对值小于阈值0.5认为预测正确。阈值是根据网络的期望输出选择的,以能正确区分不同缺陷类型为宜。识别率定义为正确识别的数量和样本数的比值。

2实验内容与结果分析

为了验证本文方法的有效性,我们通过CCD图像采集系统采集了1000张太阳能电池板EL图片,包括250张虚焊样本、250张微裂样本、250张断指样本、250张无缺陷样本,大小为125bits×125bits。我们利用图片组成的样本数据集进行了大量的实验,将每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。算法测试硬件平台为Inteli5750、主频2.66GHz的CPU,4G内存的PC机,编译环境为Mat-labR2012b。由于样本图像数据较大,需采用2.1节中的PCA算法进行降维处理。对样本图像集降维后,得到神经网络的输入矩阵。但是,随着样本数的增加,占有主要信息的主成分维数也在增加。因此,分别采用占有主要信息60%~90%的图像作为BPNN的输入,对应的降维后的主成分维数k为BPNN输入层节点数。由于BPNN的结果每次都不同,所以运行50次,保存识别率最高的网络。图3是在不同样本集数下的PCA-BPNN的最高识别率。其中,样本数n=1000时的PCA-BPNN识别率如表1所示。同时网络参数设置也列在表1中。隐含层中的最佳节点数是采用经验公式所得[17]。从图3和表1中可以看出,当维数降至20维(占主要信息70%)、总样本数为1000(测试样本400)时,4种类型总的最高识别率为93.5%。在相同的训练样本集和测试样本集上,采用与BPNN同样的输入和输出,在不同样本集数下,PCA-RBFNN的最高识别率如图4所示。其中,样本数n=1000时的PCA-RBFNN识别率如表2所示。参数Spread的设置也列在表2中,首先设定Spread为1,然后以10倍的间隔速度递减。从图4和表2中可以看出,样本数为1000(测试样本400)时,PCA维数降到15(占主要信息65%),总的最高识别率为96.25%。两种网络的测试样本集最高识别率对比分别如图5和表3所示。图5(a)、(b)分别为采用PCA-BPNN与PCA-RBFNN方法时测试样本集中的4种缺陷样本图像的期望值与预测值。表3列出了两种方法的具体识别结果。从表3可以看出,两种方法对虚焊缺陷识别率均较高,分别为99%和100%;微裂缺陷识别率较低,分别为89%和92%。这是因为虚焊缺陷面积较大,颜色较深具有显著特点;而微裂缺陷面积较小,与背景对比不强烈,导致错误分类。采用本文提出的BPNN和RBFNN方法处理一幅750×750大小的图像大约分别需要1.8s和0.1s,PCA降维的时间大约为0.02s。将上述两种方法与FCM[18]及ICA[3]方法进行比较,结果如表4所示。可以看出,RBFNN方法具有较高的识别率和较短的计算时间,更适合于在线检测。

3结论