欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

集成电路专业方向(合集7篇)

时间:2023-12-28 11:50:30
集成电路专业方向

集成电路专业方向第1篇

关键词:课程体系改革;教学内容优化;集成电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。

2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

三、结论

集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。

参考文献:

[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).

[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).

[4]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

集成电路专业方向第2篇

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。

但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3. 课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1“。 4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业

大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。 2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

集成电路专业方向第3篇

关键词:电子科学与技术;本科培养方案;课程设置;办学特色

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0070-02

21世纪被称为信息时代,电子科学与技术在信息、能源、材料、航天、生命、环境、军事和民用等科技领域将获得更广泛的应用,必然导致电子科学与技术产业的迅猛发展。这种产业化趋势反过来对本专业的巩固、深化、提高和发展起到积极的促进作用,也对人才的培养提出了更高的要求。因此,本文从人才的社会需求出发,结合我校实际情况,进行了本科专业培养方案的改革探索,并详细介绍了培养方案的制定情况。

一、人才的社会需求情况

目前,我校电子科学与技术专业的本科毕业生主要面向长三角地区庞大的微电子、光电子、光伏和新能源行业,市场对专业人才的需求基本上是供不应求的。但是也应该注意到电子科学与技术产业的分布不均,分类较细,且发展变化较快。另外,电子科学与技术产业结构具有多样性,既有劳动密集型的大型企业、大公司,更多的是小公司和小企业;既有国有企业和私营企业,更有合资、独资的外企。因此,社会需求与本专业毕业生的供需矛盾还会继续存在。

二、专业的培养目标和定位

本专业培养具备微电子、光电子领域的宽厚专业基础知识,熟练实验技能,能掌握电子材料、电子器件、微电子和光电子系统的新工艺、新技术研究开发和设计技能,有较强的工程实践能力,能够在该领域从事各种电子材料、元器件、光电材料及器件、集成电路的设计、制造和相应的新产品、新技术、新工艺的研究、开发和管理工作工程技术人才。并且结合我校“大工程观”人才培养特色,依据“卓越工程师”教育理念下工程技术型人才培养的原则,培养适应微电子和新兴光电行业乃至区域社会经济建设需求的工程技术型人才。

三、本科培养方案制定的思路

电子科学与技术专业培养方案参照工程教育认证的要求,以及专业下设微电子、光电子材料与器件两个本科培养方向的思路制定。注重培养学生的专业基础知识和实践工程能力,使毕业生能满足长三角地区微电子、光电子和新能源行业发展的需求。微电子方向的课程设置专注于电子材料与电子器件、集成电路与系统设计方面,光电子材料与器件方向则偏向于光电信息、光电材料与光电器件方面。

四、本科培养方案的改革探索

要实现电子科学与技术专业的培养目标,适应电子信息产业的不断发展,并结合我校学科发展方向和特色,对电子科学与技术专业本科人才培养方案进行了研究,并对省内外几所高校电子科学与技术专业的培养方案进行调研,最终形成了富有特色的电子科学与技术专业人才培养方案,主要内容如下:

1.培养方案的模块化设计。在设计电子科学与技术专业本科培养方案的整体框架时,根据“加强基础、拓宽专业、培养能力”和培养工程技术型人才的办学理念下,专业培养方案分人文与社会科学、专业基础和专业课三个模块,下设微电子和光电子材料与器件两个专业方向。学生在前两年学习相同的课程,到大三时根据自己的兴趣选择专业方向,选修各自方向的专业课。由于两个方向的不同培养要求,因此在专业基础选修课、专业必修课和专业选修课方面设置限选模块,每个专业方向必须修满相应的学分才能毕业。

2.改革专业基础课程。专业基础课程是为专业课程奠定基础,因此,在保留了原有电子信息类专业通常所开设的电子类课程外,增加了与专业相关的课程,如EDA技术、通信原理、数字信号处理、物理光学、应用光学、激光原理与技术等课程,删减了原先与物理类相关的一些课程,如物理学史、原子物理、热力学与统计物理学等,并删减了一些计算机软件类课程,如C++程序设计、计算机在材料科学中的应用等。专业基础选修课程分方向限选模块,两个专业方向对应有不同的专业基础选修课程。

3.优化专业课程。专业课程是整个专业教育中的主干部分,微电子方向的课程设置紧紧围绕半导体和集成电路设计方向,开设有集成电路设计、微电子工艺原理与技术、工艺与器件可靠性分析、半导体测试技术、现代电子材料及元器件、集成电路工艺与器件模拟等课程。光电子材料与器件方向围绕光电材料和光纤通信方向,开设光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤传感原理与技术、光纤通信技术等课程。另外专业课程里面还设置有专业实验,通过加强实验环节,训练学生的动手操作能力,增强学生的理论知识。

五、与省内外专业人才培养的区别

具有电子科学与技术专业的各大高校分布在不同的地区,服务于不同的区域经济,这就要求专业学生的培养具有区域化、差异化。我们分析了杭州电子科技大学、浙江工业大学、苏州大学、南京理工大学和徐州工程学院这五所不同地区、不同层次高校的电子科学与技术专业的培养方案。不仅使我们能学习到其他高校的先进办学理念、合理的课程设置体系,也可以发现与其他高校之间的差异。具体表现为以下几个方面:

1.专业定位。各个学校的电子科学与技术专业依据自身的师资力量、办学条件、区域经济要求确定专业的发展定位。杭州电子科技大学的电子科学与技术专业依托1个教育部重点实验室、2个部级实验教学示范中心、3个省部级重点实验室,人才培养定位于能从事电子元器件、电子电路乃至电子集成系统的设计和开发等方面工作的工程技术人才。浙江工业大学的电子科学与技术专业主要培养光通信、电子电路系统、集成电路设计等方面的人才。苏州大学的电子科学与技术专业定位在培养能够在电路与系统、集成电路与系统等领域从事各类系统级、板级和芯片级研发工作的高级工程技术人才。南京理工大学的电子科学与技术专业主要是突出光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的电子科学与技术专业主要定位在培养能从事光电子材料与器件开发的工程技术人才。而我校的电子科学与技术专业定位于服务长三角地区半导体和新能源行业,培养能从事集成电路设计与开发、光电子材料与器件的研发等工作的工程技术人才。

2.课程体系。杭州电子科技大学的电子科学与技术专业培养学生设计、开发电子元器件、电子电路系统、电子集成系统的能力,在课程设置上开设了通信电子电路、EDA技术、薄膜物理与技术、电子材料与电子器件、电子系统设计与实践、集成电路设计、嵌入式系统原理和应用、现代DSP技术及应用等专业课程。浙江工业大学的电子科学与技术专业培养学生设计、开发电子电路系统、集成电路系统的能力,开设了电路原理、模电数电、通信电子线路、集成电路设计、光纤通信原理、光网络技术、数字信号处理等专业课程,以及电子线路CAD实验、单片机综合实验、通信原理实验、通信电子线路大型实验、微电子基础实验、半导体器件仿真大型实验、集成电路设计大型实验等实验类课程。苏州大学的电子科学与技术专业培养学生设计与开发电路与系统、集成电路与系统,从事各类系统级、板级和芯片级研发工作的能力,开设了信号与系统、电磁场与电磁波、高频电路设计与制作、电子线路CAD、CMOS模拟集成电路设计、VLSI设计基础等专业课程,以及电子技术基础实验、信号与电路基础实验、电子线路实验、电子系统综合设计实验等实验类课程。南京理工大学培养学生从事光电子器件、光电系统和集成电路的设计、开发、应用的能力,开设了信号与系统、光学、光电信号处理、光辐射测量、光电子器件、光电成像技术、超大规模集成电路设计、光电子技术、显示技术、光电检测技术、数字图像处理、半导体集成电路、集成电路测试技术、微电子技术、光电子线路、电视原理等专业课程。徐州工程学院的电子科学与技术专业培养学生设计与开发光电子材料与器件的能力,开设有信号与系统、光电子学、光电子技术、激光原理与技术、光伏材料等专业课程,以及模拟电路课程设计、数字电路课程设计、单片机原理课程设计等实践性课程。我校的电子科学与技术专业主要培养学生集成电路设计、光电子材料与器件的设计与制备能力,开设有半导体物理学、半导体器件原理、MEMS技术、微电子工艺原理与技术、薄膜材料及制备技术、工艺与器件可靠性分析、集成电路工艺与器件模拟、EDA技术、通信原理、数字信号处理、光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤通信技术等专业课程,以及近代物理实验、专业实验等实验类课程。

3.人才培养特色。杭州电子科技大学的电子科学与技术专业的人才培养特色是注重集成电路设计、系统集成方面能力的培养。浙江工业大学的人才培养注重光纤通信、集成电路设计方面能力的培养。苏州大学的人才培养注重电路与系统设计、集成电路与系统设计方面能力的培养。南京理工大学的人才培养注重光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的人才培养注重光电材料与器件方面能力的培养。我校的人才培养注重电子材料与电子器件的设计与开发、集成电路设计方面能力的培养。

参考文献:

[1]陈鹤鸣,范红,施伟华,徐宁.电子科学与技术本科人才培养方案的改革与探索[A]//电子高等教育年会2005年学术年会论文集[C].17-20.

集成电路专业方向第4篇

关键词:集成电路设计;创新型人才;培养模式

作者简介:谢海情(1982-),男,湖南耒阳人,长沙理工大学物理与电子科学学院,讲师。(湖南 长沙 410004)

基金项目:本文系长沙理工大学教学改革研究项目(项目编号:JG1348)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)28-0029-02

集成电路的产业规模和技术水平已成为一个国家综合国力的重要标志之一。近年来,我国集成电路产业发展迅速。2004年,我国集成电路产量为211亿块,销售额为545.3亿元。2011年一季度,我国集成电路总产量达到191亿块,销售额达348.4亿元,中国已经成为全球集成电路产业发展最快的地区之一。

我国集成电路产业经过多年的发展,已基本形成了四业(设计业、制造业、封装业和测试业)并举协同发展、四个相对集中的产业集群(长江三角洲、珠江三角洲、环渤海地区和京津地区)和多个国家集成电路产业化基地。[1,2]一直以来,国家对集成电路产业的发展高度重视,《中共中央国务院关于加强技术创新发展高科技实现产业化的决定》中将IC产业放在了电子信息产业的第一位。[3]随着我国集成电路设计产业突飞猛进地发展、繁荣,对集成电路设计相关人员的需求也日益增加,仅靠国内少数高校的研究生已很难满足产业发展的需要。为满足快速发展的集成电路产业对人才的需求,2001年教育部开始批准设置“集成电路设计与集成系统”本科专业。[4]集成电路设计在国内众多高等院校都由原来纯粹的研究生教学逐渐转为由本科教学开始。

本文从课程体系设置、实验实践教学等多方面详细分析了目前集成电路设计本科教学存在的问题。在此基础上,从三个方面提出了集成电路设计本科人才培养的改革措施,探索集成电路设计本科创新型人才培养模式。

一、集成电路设计本科人才培养存在的主要问题

1.课程设置及课程内容不合理,从而降低了学生的学习热情

目前,国内多数院校的集成电路设计专业在本科阶段主要开设有“固体物理”、“半导体物理”、“晶体管原理”、“数字集成电路设计”和“模拟集成电路设计”等专业课程。对于这些课程的开设主要存在下列问题:

(1)不重视专业基础课程的教学。“固体物理”、“半导体物理”和“晶体管原理”是集成电路方面的基础课,为后续更好地学习集成电路专业课提供理论基础。如果这些基础课程没学好,学生在学习后续相关专业知识时就会比较困难,进而直接导致学业的荒废。但有些高等院校将这些课程设置为选修课,设置较少的课程教学课时量,甚至少数院校不开设这些课程。

(2)课程开设顺序上存在很多问题。在部分高等院校的培养计划中,“固体物理”课程和“晶体管原理”课程同一个学期开设,造成了学生在学习“晶体管原理”课程时没有“固体物理”课程的基础,从而很难快速地进入状态,学习兴趣受到严重影响。

(3)基础课程的理论性太强,学生学习的兴趣不高。“固体物理”、“半导体物理”和“晶体管原理”是专业基础课程,理论性较强,公式推导较多,并且要求学生具有较好的数学基础。然而,一般来说,本科学生都比较厌烦复杂的理论分析和繁琐的公式推导,特别是基础相对较差的学生,再加上较强的数学基础要求,学生学习的积极性受到极大打击。此外,部分高校设置的专业基础课程教学课时量较少,学生不能全面、深入地学习,进一步削弱了学生的学习热情。[5]

2.实践教学量不足,学生动手能力差

电子设计自动化(Electronic design automatic,EDA)是集成电路设计技术的必备基础手段。集成电路设计专业的本科毕业生必须掌握一些常用的EDA工具,对将来工作和继续深造学习都具有很大的促进作用。为了推广EDA工具的使用,许多EDA公司实施了专门的大学计划。我校购买了CADENCE软件以及高性能服务器,搭建数/模混合集成电路设计EDA平台,并与ALTERA公司共建了EDA/SOPC联合实验室。但学生的实际使用情况却喜忧参半,难以实现软件使用量的最大化。一方面,购买的软件等资源主要供学生实验课上使用,其余时间学生很少使用。另一方面,教师在上实验课时一般都采用填鸭式灌输方式,而不是学生自己摸索,从而难以理解、使知识融会贯通。因此,学生很容易忘记实验课上学到的知识点,在后续的工作或学习中要用到相关软件工具时需重新学习。动手能力差成为了集成电路设计方向本科生择业时的一大障碍。[6]

3.门类分科不合理,属性不一致

无论是从专业内容还是专业性质上分,集成电路设计方向都应该属于工科性质。然而,我校将该专业划归理科专业。这将导致虽然学习的课程与内容和其他高校工科性质的集成电路设计方向基本一致,毕业时学生却是获得理学学士,造成很多学生在就业时遇到问题。许多单位招聘时首先看的是毕业证和学位证,使得很多学生错失了就业的好机会。最终直接导致下一学年选择该专业的学生越来越少,只能靠调剂维持正常教学。另一方面,学生对集成电路产业现状和发展趋势了解甚少,对集成电路设计专业的优势了解不够,对集成电路设计人才市场需求和该专业的良好就业形势认识不清,从而不能充分激发学生的学习兴趣。

二、创新型人才培养的具体措施

1.改革课程教学,增强学生的创新能力

建立由公共基础、专业基础、专业方向和工程实践四大模块组成的集成电路设计专业课程体系。压缩公共基础课,取消与集成电路设计方向关系不大的基础课程(比如计算机文化基础课程)。合理安排专业基础课程和专业方向课程的开课顺序、课时量。在教学内容和教学方法上,集成电路设计的教师应该做到“授之以渔,而不是授之以鱼”。对于集成电路设计方向的本科生而言,其学习的内容是集成电路相关的最基础理论知识、电路结构及特点。其学习重点应该是掌握基础的电路结构以及分析电路的基本方法等,而不是电路各性能参数的具体推导。因此,教师在讲授“固体物理”和“晶体管原理”等集成电路设计专业基础课时,应该尽量避免冗长的公式及繁琐的推导,以免影响学生的学习兴趣。另外,适当减少理论教学中复杂的公式推导,而着重半导体器件工作原理和特性的物理意义的学习,既可使学生容易接受又有利于后续专业方向课程的学习。

2.完善实验实践环节,培养学生的创新能力

实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。对于集成电路设计专业而言,完善实验实践教学环节需要从以下三个方面着手:

(1)增加实验教学的课时量。目前,集成电路专业本科教学中的实验教学量过少。以“模拟集成电路设计”课程为例。总课时量为48学时,其中理论课38学时,实验教学仅10个学时。38学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。仅10个学时的实验教学还包括2~4学时的EDA工具学习,留给学生独自进行电路设计的就只有6~8个学时。学生不可能很好地理解理论课所学知识,更谈不上融会贯通,极大地削弱了学习兴趣。因此,增加本科教学的实验教学课时量可以有效地促进教学效果,激发学生的学习兴趣。

(2)完善和优化由课程设计、课程实训、生产实习、毕业实习和毕业设计构成的专业实习实践教学体系。该实习实践教学体系具备分级教学和多层次教学的特点,对集成电路专业创新型人才的培养具有重要作用,尤其是其中的课程设计和毕业设计。课程设计和毕业设计是理论基础和工程实践的有机结合,可以很好地培养学生的工程素质和创新能力。在这两个环节中,选题是关键,也是难点。选题既要具有一定的工程背景又要让学生感兴趣,从而不但培养学生的工程能力,而且激发学生学习的主动性、积极性和实践创新能力。

(3)应该将以CADENCE软件为主体建立的数/模混合集成电路设计EDA平台,以及与ALTERA公司共建的EDA/SOPC联合实验室作为开放式电子设计训练和综合创新性实验基地的重要组成部分,成为学生进行课程设计和毕业设计以及课外实践活动的平台,从而实现软件资源使用的最大化。

3.增加就业相关知识,增强学生的竞争能力

据相关部门统计,极少数集成电路设计专业的本科毕业生会从事集成电路设计方向相关工作,多数选择改行或继续学习深造。这是因为一方面本科生基本知识储备不够,更主要的原因是设置集成电路设计专业研究生课程的高等院校越来越多。然而,集成电路版图、集成电路工艺以及集成电路测试等与集成电路设计相关的工作岗位对集成电路设计知识的要求较低。从事上述几个工作岗位若干年将有助于从事集成电路设计工作。因此,就个人的长远发展而言,集成电路版图、集成电路工艺以及集成电路测试等工作岗位对于本科生而言更具有竞争力。因而,教师在讲授集成电路设计方面知识的基础上应有重点地讲授基本的集成电路版图、集成电路工艺流程、芯片测试等相关内容。

再者,定期举办学术报告会,让学生了解集成电路产业的最新发展现状和发展趋势,了解集成电路产业的市场需求,了解集成电路设计及相关人才市场需求,了解集成电路设计专业就业前景,从而激发学生的学习兴趣,充分调动学生的学习积极性。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济发展与社会信息化的重要基础。创新型人才是发展集成电路产业的关键。因而,大力推进集成电路产业的发展必须提高集成电路设计人才的培养质量。目前,我国内集成电路设计本科教育尚处于孕育发展阶段,虽适应IC产业发展的需求,但仍存在很多问题需要解决。本文根据调研结果分析目前集成电路设计本科人才培养存在的问题,结合我校实际情况提出了几项改革措施,但远没有涉及集成电路设计本科创新型人才培养模式的诸多方面。但是,可以预测,有政府的大力扶持和相关教师及学生的共同努力,我国的集成电路设计本科人才培养定会逐步走向成熟,最终建立完善的集成电路设计本科创新型人才培养模式。

参考文献:

[1]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008,(3).

[2]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

[3]孙玲.关于培养集成电路专业应用型人才的思考[J].中国集成电路,2007,(4).

[4]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

集成电路专业方向第5篇

我国集成电路产业经过多年的发展,已基本形成了四业(设计业、制造业、封装业和测试业)并举协同发展、四个相对集中的产业集群(长江三角洲、珠江三角洲、环渤海地区和京津地区)和多个国家集成电路产业化基地。[1,2]一直以来,国家对集成电路产业的发展高度重视,《中共中央国务院关于加强技术创新发展高科技实现产业化的决定》中将IC产业放在了电子信息产业的第一位。[3]随着我国集成电路设计产业突飞猛进地发展、繁荣,对集成电路设计相关人员的需求也日益增加,仅靠国内少数高校的研究生已很难满足产业发展的需要。为满足快速发展的集成电路产业对人才的需求,2001年教育部开始批准设置“集成电路设计与集成系统”本科专业。[4]集成电路设计在国内众多高等院校都由原来纯粹的研究生教学逐渐转为由本科教学开始。

本文从课程体系设置、实验实践教学等多方面详细分析了目前集成电路设计本科教学存在的问题。在此基础上,从三个方面提出了集成电路设计本科人才培养的改革措施,探索集成电路设计本科创新型人才培养模式。

一、集成电路设计本科人才培养存在的主要问题

1.课程设置及课程内容不合理,从而降低了学生的学习热情

目前,国内多数院校的集成电路设计专业在本科阶段主要开设有“固体物理”、“半导体物理”、“晶体管原理”、“数字集成电路设计”和“模拟集成电路设计”等专业课程。对于这些课程的开设主要存在下列问题:

(1)不重视专业基础课程的教学。“固体物理”、“半导体物理”和“晶体管原理”是集成电路方面的基础课,为后续更好地学习集成电路专业课提供理论基础。如果这些基础课程没学好,学生在学习后续相关专业知识时就会比较困难,进而直接导致学业的荒废。但有些高等院校将这些课程设置为选修课,设置较少的课程教学课时量,甚至少数院校不开设这些课程。

(2)课程开设顺序上存在很多问题。在部分高等院校的培养计划中,“固体物理”课程和“晶体管原理”课程同一个学期开设,造成了学生在学习“晶体管原理”课程时没有“固体物理”课程的基础,从而很难快速地进入状态,学习兴趣受到严重影响。

(3)基础课程的理论性太强,学生学习的兴趣不高。“固体物理”、“半导体物理”和“晶体管原理”是专业基础课程,理论性较强,公式推导较多,并且要求学生具有较好的数学基础。然而,一般来说,本科学生都比较厌烦复杂的理论分析和繁琐的公式推导,特别是基础相对较差的学生,再加上较强的数学基础要求,学生学习的积极性受到极大打击。此外,部分高校设置的专业基础课程教学课时量较少,学生不能全面、深入地学习,进一步削弱了学生的学习热情。[5]

2.实践教学量不足,学生动手能力差

电子设计自动化(Electronic design automatic,EDA)是集成电路设计技术的必备基础手段。集成电路设计专业的本科毕业生必须掌握一些常用的EDA工具,对将来工作和继续深造学习都具有很大的促进作用。为了推广EDA工具的使用,许多EDA公司实施了专门的大学计划。我校购买了CADENCE软件以及高性能服务器,搭建数/模混合集成电路设计EDA平台,并与ALTERA公司共建了EDA/SOPC联合实验室。但学生的实际使用情况却喜忧参半,难以实现软件使用量的最大化。一方面,购买的软件等资源主要供学生实验课上使用,其余时间学生很少使用。另一方面,教师在上实验课时一般都采用填鸭式灌输方式,而不是学生自己摸索,从而难以理解、使知识融会贯通。因此,学生很容易忘记实验课上学到的知识点,在后续的工作或学习中要用到相关软件工具时需重新学习。动手能力差成为了集成电路设计方向本科生择业时的一大障碍。[6]

3.门类分科不合理,属性不一致

无论是从专业内容还是专业性质上分,集成电路设计方向都应该属于工科性质。然而,我校将该专业划归理科专业。这将导致虽然学习的课程与内容和其他高校工科性质的集成电路设计方向基本一致,毕业时学生却是获得理学学士,造成很多学生在就业时遇到问题。许多单位招聘时首先看的是毕业证和学位证,使得很多学生错失了就业的好机会。最终直接导致下一学年选择该专业的学生越来越少,只能靠调剂维持正常教学。另一方面,学生对集成电路产业现状和发展趋势了解甚少,对集成电路设计专业的优势了解不够,对集成电路设计人才市场需求和该专业的良好就业形势认识不清,从而不能充分激发学生的学习兴趣。

二、创新型人才培养的具体措施

1.改革课程教学,增强学生的创新能力

建立由公共基础、专业基础、专业方向和工程实践四大模块组成的集成电路设计专业课程体系。压缩公共基础课,取消与集成电路设计方向关系不大的基础课程(比如计算机文化基础课程)。合理安排专业基础课程和专业方向课程的开课顺序、课时量。在教学内容和教学方法上,集成电路设计的教师应该做到“授之以渔,而不是授之以鱼”。对于集成电路设计方向的本科生而言,其学习的内容是集成电路相关的最基础理论知识、电路结构及特点。其学习重点应该是掌握基础的电路结构以及分析电路的基本方法等,而不是电路各性能参数的具体推导。因此,教师在讲授“固体物理”和“晶体管原理”等集成电路设计专业基础课时,应该尽量避免冗长的公式及繁琐的推导,以免影响学生的学习兴趣。另外,适当减少理论教学中复杂的公式推导,而着重半导体器件工作原理和特性的物理意义的学习,既可使学生容易接受又有利于后续专业方向课程的学习。

2.完善实验实践环节,培养学生的创新能力

实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。对于集成电路设计专业而言 ,完善实验实践教学环节需要从以下三个方面着手:

(1)增加实验教学的课时量。目前,集成电路专业本科教学中的实验教学量过少。以“模拟集成电路设计”课程为例。总课时量为48学时,其中理论课38学时,实验教学仅10个学时。38学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。仅10个学时的实验教学还包括2~4学时的EDA工具学习,留给学生独自进行电路设计的就只有6~8个学时。学生不可能很好地理解理论课所学知识,更谈不上融会贯通,极大地削弱了学习兴趣。因此,增加本科教学的实验教学课时量可以有效地促进教学效果,激发学生的学习兴趣。

(2)完善和优化由课程设计、课程实训、生产实习、毕业实习和毕业设计构成的专业实习实践教学体系。该实习实践教学体系具备分级教学和多层次教学的特点,对集成电路专业创新型人才的培养具有重要作用,尤其是其中的课程设计和毕业设计。课程设计和毕业设计是理论基础和工程实践的有机结合,可以很好地培养学生的工程素质和创新能力。在这两个环节中,选题是关键,也是难点。选题既要具有一定的工程背景又要让学生感兴趣,从而不但培养学生的工程能力,而且激发学生学习的主动性、积极性和实践创新能力。

(3)应该将以CADENCE软件为主体建立的数/模混合集成电路设计EDA平台,以及与ALTERA公司共建的EDA/SOPC联合实验室作为开放式电子设计训练和综合创新性实验基地的重要组成部分,成为学生进行课程设计和毕业设计以及课外实践活动的平台,从而实现软件资源使用的最大化。

3.增加就业相关知识,增强学生的竞争能力

据相关部门统计,极少数集成电路设计专业的本科毕业生会从事集成电路设计方向相关工作,多数选择改行或继续学习深造。这是因为一方面本科生基本知识储备不够,更主要的原因是设置集成电路设计专业研究生课程的高等院校越来越多。然而,集成电路版图、集成电路工艺以及集成电路测试等与集成电路设计相关的工作岗位对集成电路设计知识的要求较低。从事上述几个工作岗位若干年将有助于从事集成电路设计工作。因此,就个人的长远发展而言,集成电路版图、集成电路工艺以及集成电路测试等工作岗位对于本科生而言更具有竞争力。因而,教师在讲授集成电路设计方面知识的基础上应有重点地讲授基本的集成电路版图、集成电路工艺流程、芯片测试等相关内容。

再者,定期举办学术报告会,让学生了解集成电路产业的最新发展现状和发展趋势,了解集成电路产业的市场需求,了解集成电路设计及相关人才市场需求,了解集成电路设计专业就业前景,从而激发学生的学习兴趣,充分调动学生的学习积极性。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济发展与社会信息化的重要基础。创新型人才是发展集成电路产业的关键。因而,大力推进集成电路产业的发展必须提高集成电路设计人才的培养质量。目前,我国内集成电路设计本科教育尚处于孕育发展阶段,虽适应IC产业发展的需求,但仍存在很多问题需要解决。本文根据调研结果分析目前集成电路设计本科人才培养存在的问题,结合我校实际情况提出了几项改革措施,但远没有涉及集成电路设计本科创新型人才培养模式的诸多方面。但是,可以预测,有政府的大力扶持和相关教师及学生的共同努力,我国的集成电路设计本科人才培养定会逐步走向成熟,最终建立完善的集成电路设计本科创新型人才培养模式。

参考文献:

[1]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008,(3).

[2]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

[3]孙玲.关于培养集成电路专业应用型人才的思考[J].中国集成电路,2007,(4).

[4]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

集成电路专业方向第6篇

关键词:电子科学与技术;集成电路设计;平台建设;IC产业

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2014)08-0270-03

国家教育部于2007年正式启动了高等学校本科教学质量与教学改革工程(简称“质量工程”),其建设的重要内容之一就是使高校培养的理工科学生具有较强的实践动手能力,更好地适应社会和市场的需求[1]。为此,我校作为全国独立学院理事单位于2007年6月通过了ISO2000:9001质量管理体系认证[2],同时确立了“质量立校、人才强校、文化兴校”三大核心战略,深入推进内涵式发展,全面提高人才培养质量。对于质量工程采取了多方面多角度的措施:加强教学改革项目工程;鼓励参加校内学生创新项目立项,(大学生创新基金项目);积极参加国家、省级等电子设计大赛;有针对性地对人才培养方案进行大幅度的调整,增大课程实验学时,实验学时占课程的比例从原来的15%提高到25%以上,并且对实验项目作了改进,提高综合性和设计性实验的比重;同时增加专业实践课程,强调学生的应用能力和创新能力;课程和毕业设计更注重选题来源,题目比以前具有更强的针对性,面向专业,面向本地就业市场。不仅如此,学院还建立了创业孵化中心、建立了实验中心等。通过这些有效的措施,努力提高学生的综合素质、创新和应用能力。除了学校对电子信息类专业整体进行统筹规划和建设外,各个二级学院都以“质量工程”建设为出发点和立足点,从专业工程的角度出发,努力探索各个专业新的发展思路和方向。由于集成电路设计是高校电子科学与技术、微电子学等相关专业的主要方向,因此与之相关的课程和平台建设成为该专业工程探索的重点。通过对当前国内外高校该专业方向培养方案分析,设置的课程主要强调模拟/数字电路方向,相应的课程体系为此服务,人才培养方案设置与之相对应的理论和实践教学体系;同时建立相应的实习、实践教学平台。由此,依据电子科学与技术专业的特点,结合本专业学生的层次和专业面向,同时依据本地的人才需求深度和广度,对以往的人才培养方案进行革新,建立面向中山IC产业的集成电路设计专业应用型的设计平台。另外,从课程体系出发,强化IC设计的模拟集成电路后端版图设计和验证,使学生在实践教学环节中得到实际的训练。通过这些改革既可有效地帮助学生迅速融入IC设计业,也为进入IC制造行业提高层次到新高度。

一、软件设计平台在集成电路设计业的重要性

自从1998年高等学校扩大招生以来,高校规模发展很快,在校大学生的人数比十五年前增长了10倍。高校的基础设施和设备的投入呈现不断增长的趋势,学校的办学条件不断改善,同时,各个高校对实验室的建设也在持续增大,然而在实验室建设的过程中,尽管投入的资金量在不断增大,但出现的现象是重视专业仪器和设备的投入,忽视专业设计软件的购置,这可能是由于长期以来形成的重有形实体、轻无形设计软件,然而这种意识给专业发展必将带来不利影响。对于IC专业来说,该专业主要面向集成电路的生产、测试和设计,其中集成电路设计业是最具活力、最有增长效率的一块,即使是在国际金融危机的2009年,中国的IC设计业不仅没有像半导体行业那样同比下降10%,反而逆势增长9.1%;在2010年,国际金融危机刚刚缓和,中国IC设计业的同比增速又快速攀升到45%;2011年全行业销售额为624.37亿元,2012年比2012年增长8.98%达到680.45亿元,集成电路行业不仅增长速度快,发展前景好,而且可以满足更多的高校学生就业和创业。为了满足IC设计行业的要求,必须建设该行业需求的集成电路软件设计平台。众所周知集成电路行业制造成本相对较高,这就要求设计人员在设计电路产品时尽量做到一次流片成功,而要实现这种目标需要建设电路设计验证的平台,即集成电路设计专业软件设计平台。通过软件平台可以实现:电路原理拓扑图的构建及参数仿真和优化、针对具体集成电路工艺尺寸生产线的版图设计和验证、对版图设计的实际性能进行仿真并与电路原理图仿真对照、提供给制造厂商具体的GDSII版图文件。软件平台实际上已经达到验证的目的,因此,对于集成电路设计专业的学生或工作人员来说,软件设计平台的建设特别重要,如果没有软件设计平台也就无法培养出真正的IC设计人才。因此,在培养具有专业特色的应用型人才的号召下,学院不断加大实验室建设[3],从电子科学与技术专业角度出发,建设IC软件设计平台,为本地区域发展和行业发展服务。

二、建设面向中山本地市场IC应用平台

近年来,学校从自身建设的实际情况出发,减少因实验经费紧张带来的困境,积极推动学院集成电路设计专业方向的人才培养。教学单位根据集成电路设计的模块特点确定合适的软件设计平台,原理拓扑图的前端电路仿真采用PSPICE软件工具,熟悉电路仿真优化过程;后端采用L-EDIT版图软件工具,应用实际生产厂家的双极或CMOS工艺线来设计电路的版图,并进行版图验证。这种处理方法虽然暂时性解决前端和后端电路及版图仿真的问题,但与真正的系统设计集成电路相对出入较大,不利于形成IC的系统设计能力。2010年12月国家集成电路设计深圳产业化基地中山园区成立,该园区对集成电路设计人才的要求变得非常迫切,客观上推进了学院对IC产业的人才培养力度,建立面向中山IC产业的专业应用型设计平台变得刻不容缓[4],同时,新的人才培养方案也应声出台,促进了具有一定深度的教学改革。

1.软件平台建设。从目前集成电路设计软件使用的广泛性和系统性来看,建设面向市场的应用平台,应该是学校所使用的与实际设计公司或其他单位的软件一致,使得所培养的IC设计人才能与将来的就业工作实现无缝对接,从而提高市场对所培养的集成电路设计人才的认可度,同时也可大大提高学生对专业设计的能力和信心[5]。遵循这个原则,选择Cadence软件作为建设平台设计软件,这不仅因为该公司是全球最大的电子设计技术、程序方案服务和设计服务供应商,EDA软件产品涵盖了电子设计的整个流程,包括系统级设计,功能验证,IC综合及布局布线,模拟、混合信号及射频IC设计,全定制集成电路设计,IC物理验证,PCB设计和硬件仿真建模,而且通过大学计划合作,可以大幅度的降低购置软件所需资金,从而从根本上解决学校实验室建设软件费用昂贵的问题。另外,从中山乃至珠三角其他城市的IC行业中,各个单位都普遍采用该系统设计软件,而且选用该软件更有利于刚刚起步的中山集成电路设计,也更加有利于该产业的标准化和专业化,乃至进一步的发展和壮大。

2.针对中山IC产业设计。定位于面向本地产业的IC应用型人才,就必须以中山IC产业为培养特色人才的出发点。中山目前有一批集成电路代工生产和设计的公司,主要有中山市奥泰普微电子有限公司、芯成微电子公司、深电微电子科技有限公司、木林森股份有限公司等,能进行IC设计、工艺制造和测试封装,主要生产功率半导体器件和IC、应用于家电等消费电子、节能照明等。日前奥泰普公司的0.35微米先进工艺生产线预计快速投产,该单位的发展对本地IC人才需求有极大的推动力,推动学生学习微电子专业的积极性,而这些也有力地支持本地IC企业的长远发展。因此,建立面向本地集成电路产业的软件设计平台,有利于专业人才的培养、准确定位,并形成了本地优势和特色。

3.教学实践改革。为了提高人才培养质量,形成专业特色,必须对人才培养方案进行修改。在人才培养方案中通过增加实践教学环节的比例,实验项目中除了原有验证性的实验外、还增加了综合性或设计性的实验,这种变化将有助于学生从被动实验学习到主动实验的综合和设计,提高学生对知识的灵活运用和动手能力,从而为培养应用型的人才打下良好的基础。除此之外,与集成电路代工企业及芯片应用公司建立合作关系。学生在学习期间到这些单位进行在岗实习和培训,可以将所学的专业理论知识应用于实际生产当中去,形成无缝对接;而从单位招聘人才角度上来说,可以节约人力资源培训成本,招到单位真正需要的岗位人才。因此,合作双方在找到相互需求的基础上,形成有效的合作机制。①课程改革。针对独立学院培养应用型人才的特点,除了培养方案上增加多元化教育课程之外,主要是强调实践教学的改革,增加综合实验课程,如:《现代电子技术综合设计》计32学时、《微电子学综合实验》计40学时、《EDA综合实验》为32学时、《集成电路设计实验》为40学时,其相应的课程学时数从以验证性实验为主的16个学时,增加到现在32学时以上的带有综合性或设计性实验的综合实践课程。这种变化不仅是实践教学环节的课时加大,而且是实验项目的改进,也是实践综合能力的增强,有利于学生形成专业应用能力。②与单位联合的IC设计基地。IC设计基地主要立足于两个方面:一是立足于本地IC企业或设计公司;二是立足于IC代工和集成电路设计应用。前者主要利用本地资源就近的优势,学生参观、实习都比较方便,同时也有利于学校与用人单位之间的良好沟通,提高双方的认可度和赞同感。如:中山市奥泰普微电子有限公司、木林森股份有限公司等。后者从生产角度和设计应用出发,带领学生到IC代工企业参观,初步了解集成电路的生产过程,企业的架构、规划和发展远景。也可根据公司的人才需要,选派部分学生到公司在岗实习[6]。如:深圳方正微电子有限公司、广州南科集成电子有限公司等。通过这些方式不仅可以增强学生对专业知识的应用能力,而且有利于学生对IC单位的深入了解,为本校专业应用型人才找到一种行之有效的就业之路。

三、集成电路设计平台的实效性

从2002年创办电子科学与技术专业以来,学校特别重视集成电路相关的实验室建设。从初期的晶体管器件和集成块性能测量,硅片的少子寿命、C-V特性、方阻等测量,发展到探针台的芯片级的性能测试,在此期间为了满足更多的学生实验、兴趣小组和毕业设计的要求,微电子实验室的已经过三次扩张和升级,其建设规模和实验水平得到了大幅度的提升。另外,为培养本科学生集成电路的设计能力,提高应用性能力,学校还建立了集成电路CAD实验室,以电路原理图仿真设计为重点,着重应用L-Edit版图软件工具,进行基本的集成电路版图设计及验证,对提升学生集成电路设计应用能力取得了一定的效果。目前,为了大力提高本科教学质量,提升办学水平,重点对实践课程和IC软件设计平台进行了改革。学校开设了专门实践训练课程,如:集成电路设计实验。从以前的16学时课内验证设计实验提升为32学时独立的集成电路设计实验实践课程,内容从以验证为主的实验转变为以设计和综合为主的实验,整体应用设计水平进行了大幅度的提升,有利于培养学生的应用和动手能力。不仅如此,对集成电路的设计软件也进行了升级,从最初的用Pspice和Hspice软件进行电路图仿真,L-Edit软件工具的后端版图设计,升级为应用系统的专业软件平台设计工具Cadence进行前后端的设计仿真验证等,并采用开放实验室模式,使得学生的系统设计能力得到一定程度的提升,提高了系统认识和项目设计能力。通过IC系统设计软件平台的建设和实践教学课程改革,使得学生对电子科学与技术专业的性质和内容了解更加全面,对专业知识学习的深度和广度也得到进一步提高,从而增强了专业学习的兴趣,提高了自信心。此外,其他专业的学生也开始转到本专业,从事集成电路设计学习,并对集成电路流片产生浓厚的兴趣。除此之外,学生利用自己在外实践实习的机会给学校引进研究性的开发项目,这些都为本专业的发展形成很好的良性循环。在IC设计平台的影响下,本专业继续报考硕士研究生的学生特别多,约占学生比例的45%左右。经过这几年的努力,2003、2004、2005、2006级都有学生在硕士毕业后分别被保送或考上电子科技大学、华南理工大学、复旦大学、香港城市大学的博士。从这些学生的反馈意见了解到,他们对学校在IC设计平台建设评价很高,对他们进一步深造起到了很好的帮助作用。不仅如此,已经毕业在本行业工作的学生也对IC设计平台有很好的评价:通过该软件设计平台不仅熟悉了集成电路设计的工艺库、集成电路工艺流程和相应的工艺参数,而且也熟悉版图的设计,这对于从事IC代工工作起到很好的帮助作用。现在已经有多届毕业的学生在深圳方正微电子公司、中山奥泰普微电子有限公司工作。另外,还有许多学生从事集成电路应用设计工作,主要分布于中山LED照明产业等。

通过IC软件设计平台建设,配合以实践教学改革,使得学生所学理论知识和实际能力直接与市场实现无缝对接,培养了学生的创新意识和实践动手能力,增强了学生的自信心。另外,利用与企业合作的生产实习,可以使得学生得到更好的工作锻炼,为将来的工作打下良好的基础。实践证明,建设面向中山IC产业的集成电路设计实践教学平台,寻求高校与公司更紧密的新的合作模式,符合我校人才培养发展模式方向,对IC设计专业教学改革,培养满足本地区乃至整个社会的高素质应用型人才,具有特别重要的作用。

参考文献:

[1]许晓琳,易茂祥,王墨林.适应“质量工程”的IC设计实践教学平台建设[J].合肥工业大学学报(社会科学版),2011,25(4):[129-132.

[2]胡志武,金永兴,陈伟平,等.上海海事大学质量管理体系运行的回顾与思考[J].航海教育研究,2009,(1):16-20.

[3]毛建波,易茂祥.微电子学专业实验室建设的探索与实践[J].实验室研究与探索,2005,24(12):118-126.

[4]鞠晨鸣,徐建成.“未来工程师”能力的集中培养大平台建设[J].实验室研究与探索,2010,29(4):158-161.

[5]袁颖,董利民,张万荣.微电子技术实验教学平台的构建[J].电气电子教学学报,2009,(31):115-117.

[6]王瑛.中低技术产业集群中企业产学研合作行为研究[J].中国科技论坛,2011,(9):56-61.

集成电路专业方向第7篇

关键词:IC设计;集成系统;课程体系;CDIO

中图分类号:G642 文献标识码:A

1引言

目前我国集成电路(IC)产业已初步形成了设计业、芯片制造业、封装和测试业四业并举、比较协调的发展格局,出现了长江三角洲(上海、无锡、杭州)、京津地区和珠江三角洲(深圳、珠海、广州)三个相对集中的产业区,建立了多个国家集成电路产业化基地[1]。制造业的技术工艺已进入国际主流领域,设计和封装技术接近国际水平。与之不协调的是我国集成电路人才缺口巨大,据报道到2008年中国IC产业对IC设计工程师的需求量将达到25万人。国家对IC产业高度重视,《中共中央国务院关于加强技术创新发展高科技实现产业化的决定》中将IC产业放在了电子信息产业的第一位[2]。在此背景下,教育部于2001年开始批准设置“集成电路设计与集成系统”本科专业,以适应国内对集成电路设计与应用人才的迫切需求[3]。

从《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(国发[2000]18号)到《教育部、科技部关于批准有关高等学校建设国家集成电路人才培养基地的通知》(教高〔2003〕2号),足以看到集成电路设计与集成系统专业是我国目前急需发展和完善的专业。要想办好该专业首先应对该专业建立一个科学的课程体系,该专业的新概念、新技术、新方法不断涌现,因此研究和制定适合本专业的理论与实践发展的课程体系是十分重要的。

2我国IC设计与集成系统专业人才现状

2.1IC设计与集成系统专业人才需求

IC设计与集成系统专业人才的现状是:人才总量严重不足,设计人才供需矛盾尤为突出。人才层次结构不合理;人才地区分布不平衡;人才流向与地区经济发展关系明显。国家教育部、科技部共同于2003年7月确定了9个部级集成电路人才培养基地的宏伟计划。在这之后,又增加了7所大学作为人才培养基地。旨在加快集成电路产业发展的步伐,大力培养集成电路设计人才满足社会对集成电路设计人才的需求。

2.2IC设计与集成系统专业人才培养现状

根据国家教育部网上公布的信息,到目前为止具有集成电路设计与集成系统本科专业的高校有:2001批准的有电子科技大学;2003批准的有西安电子科技大学, 南通大学,杭州电子科技大学;2004批准的有山东大学,华南理工大学,黑龙江大学,哈尔滨理工大学;2005批准的有青岛科技大学,西安邮电学院;2006批准的有天津理工大学;2007批准的有北京大学,大连理工大学。其他院校也积极申办该专业。由于该专业是新兴专业,至今还没有科学完善统一的专业规范,这对该专业的发展影响颇大。

3 IC 设计与集成系统专业特点

集成电路设计与集成系统专业与其他专业相比有如下突出的特点:门槛高、内容新、发展快、属于交叉学科、与产业联系紧密、高投入、与世界同步、毕业生就业服务的范围具有国际性。

本专业是新兴专业,从宏观角度国际上该专业还没有像其他专业(例如计算机)形成完整的知识体系;其次,我国由于是在近几年兴办该专业,还没有专业的人才培养规范,我国各大学专业的教学计划是从国外或者相关专业延伸来的,系统性、完备性差;第三,由于该专业是新兴且又是不断变化的学科专业,所面临的主要挑战是识别和规范该学科的基本内容,因此,“知识结构框架”、“课程体系”的规范显得尤为重要;第四,该专业属于交叉学科专业,其内涵并不像其他专业那样清晰和单一,人才培养涉及知识很广,包括微电子学、计算机、软件工程、通讯、控制、管理等多学科专业;第五,该专业实践性很强,对学生的

运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、与人沟通和交流的能力以及创新的能力有很高的要求。

4IC设计与集成系统专业结构体系实践

4.1IC设计与集成系统专业人才培养战略

结合高校自身在教学资源上的优势和我国IC设计产业发展的实际情况,以市场需求为导向,紧跟IC技术的发展。引入CDIO(Conceive-Design-Implement-Operate)教育理念,结合高校自身的实际情况加强校企合作。培养具有创新能力和国际竞争力的、适应企业需求的国际化、实用化、个性化的高素质、高水平人才为宗旨。

4.2IC设计与集成系统专业人才培养目标

对应用型本科院校而言,应充分考虑行业和区域经济对人才的需求,适时地根据区域经济和行业发展调整专业方向,以便更好地服务于行业和区域经济[4]。加强校企合作,突出“多类型、工程型、实用型,具有国际竞争力”的人才培养目标。

培养学生具有良好的科学素养和文化修养,较完整地掌握集成电路技术的基础知识,使学生了解和掌握IC设计、综合、验证、测试、应用的整个流程;既掌握集成电路设计技术又懂得集成系统技术;既有扎实的理论基础,又有较强的应用能力;既了解集成电路应用、生产知识又精通集成电路产业的管理;既可以承担实际系统的开发,又可进行科学研究。使学生毕业时应获得以下几方面的知识与能力:

(1) 具有扎实的数理基础和宽阔的科学视野;

(2) 具备独立的科学研究和应用开发能力,同时具有运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、较强的协调、组织能力;

(3) 具有良好的与人沟通和交流的能力,能掌握文献检索、资料查询和撰写科学论文的能力以及口语交际能力;

(4) 具有较好的人文社科知识、人文素质和自然科学基本理论知识,对全球社会、工程科学和技术影响的理解力以及对自己所处领域中问题的敏感性,了解信息学科的发展动态;

(5) 掌握电子电路和大规模集成电路系统的设计技能,能从事先进大规模集成电路、集成电子系统等方面的设计以及新产品、新技术和新工艺的研究、应用开发和管理。

4.3IC设计与集成系统专业课程体系制定的指导思想

首先,跟踪、收集该专业和相关专业的知识领域,强调本专业的知识的总结、梳理、推演和挖掘,借鉴ACM和IEEE/CS[5]做法,采用科学的方法,以国外学术界的研

究成果和IC设计工业界的良性建议为基础,选择适当的知识载体,构造IC设计与集成系统恰当的教育知识结构框架,以求更好地向学生传授本学科专业的基本的问题求解方法。

其次借鉴CDIO的理念,大大加强工程实践环节,切实通过基于项目的学习培养学生获取知识的能力、运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、与人沟通和交流的能力以及创新的能力,培养学生的专业素质、职业道德和社会责任心。进而培养出符合学科专业和社会发展需要的优秀IC设计人才。

4.4IC设计与集成系统专业课程体系制定

我校(哈尔滨理工大学)从成功申办集成电路设计与集成系统专业以来,与美国西北理工大学(NPU)合作办学借鉴经验;同台湾中华大学进行了实质性合作交流与探讨;与著名的IC设计软件供应商Synopsys、Cadence以及Mentor Graphics等进行合作交流。另外,我们还走访了上海交通大学等相关院校专业;参观拜访了一些集成电路生产制造企业,与企业交流了解企业对集成电路人才的具体要求。结合我校实际情况提出了制定IC设计与集成系统专业课程体系的基本策略,基本策略包括:

(1) 保证政治理论课与军训的学分和学时要求。在新的教学计划中思想、邓小平理论、马克思主义哲学原理、马克思主义政治经济学、军事理论、军训等课程均未作调整。

(2) 压缩公共基础课,取消与集成电路设计方向关系不大的基础课程。取消计算机文化基础课程;由于部分专业课程采用双语教学,因此取消了专业外语。

(3) 专业方向课和专业任选课以市场为导向设置。为了培养符合市场需要的IC设计人才,专业方向课的设置以IC设计主流方向为导向,任选课的设置以目前流行的先进的设计方法、设计工具为主,以适应市场的需要。

(4) 加强实践教学环节,引入CDIO教育理念。增加了课程实验、课程设计、毕业设计等教学环节的学时,提高学生的实践能力。同时加大校企合作力度,采用“定制式”培养模式,将毕业生安排IC设计公司针对实际项目进行毕业设计。

(5) 动态的教学计划。由于集成电路设计与集成系统专业是一个飞速发展的学科,市场需求是不断变化的,应随时调整教学计划中的专业平台课以后的教学内容。

按照以上基本策略制定了IC设计与集成系统专业的课程体系。

IC设计与集成系统专业教学计划,拓扑图见下图。

其中主干课程包括:信号与系统、片上计算机系统、数字信号处理、半导体集成电路、数字IC设计、模拟IC设计、EDA技术与VERILOG、ASIC设计、SoC软硬件协同设计、集成电路逻辑综合技术、集成电路设计验证技术、版图设计、集成电路测试与可测性、布局与绕线等。

2009年我校集成电路设计与集成系统专业的第一届毕业将步入社会,按照“定制式”培养方式,目前已有多家企业与我校达成协议。这些企业对我校该届毕业生所具备知识水平和专业能力高度认可。

5结束语

百年大计,教育为本。发展我国集成电路设计产业,培养集成电路设计与集成系统专业的专业人才是重中之重。培养该专业的优秀的专业人才离不开一个科学的课程体系。本文结合近四年的教学、管理经验对该专业课程体系进行了探讨,对该专业的知识结构和课程体系的进一步研究与实践具有重要指导意义。

参考文献

[1] 杨媛,余宁梅,高勇. 半导体集成电路课程改革的探索与思考[J]. 中国科教创新导刊,2008,(3):78-79.

[2] 孙玲. 关于培养集成电路专业应用型人才的思考[J]. 中国集成电路,2007,(04).

[3] 方卓红,曲英杰. 关于集成电路设计与集成系统本科专业课程体系的研究[J]. 科技信息,2007,(27):9-10.

[4] 陈小虎,刘化君,朱晓春等. 电气信息与电子信息类应用型人才培养体系的创新与实践[J]. 中国大学教学,2006,(04).

[5] The Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM).Computing Curricula Final Draft-December 15,2001.

Research and Practice on the Course System of IC Design and Integration System