欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

配合比设计论文(合集7篇)

时间:2022-10-12 09:21:19
配合比设计论文

配合比设计论文第1篇

[论文摘要]近年来,随着混凝土工程的日益增多,及其规模的日益扩大,泵送混凝土技术及施工方法在水利工程方面的应用得到了巨大的发展。详细介绍泵送技术,并结合实例,阐明泵送混凝土配合比的设计。

目前,由于国家大兴水利工程,如南水北调工程、三峡工程等,使得泵送混凝土技术及施工方法在水利工程方面的应用得到充分体现。我国混凝土泵送技术已有50多年的历史,泵送水平和泵送技术日益提高和完善,泵送混凝土的应用正日趋扩大。一些发展泵送混凝土较早的城市,泵送混凝土在混凝土工程量中占的比例和泵送技术已接近世界先进水平,但全国整体水平与世界先进国家相比仍有较大差距。

一、配合比的设计原则

泵送混凝土配合比设计方法,是在普通方法施工的混凝土配合比设计方法的基础上结合混凝土可泵性要求进行确定。泵送混凝土对其可泵性有特殊的要求,即:要求混凝土具有建筑工程所要求的强度需求,同时要满足长距离泵送的需要。换句话说,就是混凝土在达到可泵性要求时应服从于阿布拉姆斯水灰比定则。而且,泵送混凝土的骨料分离系数要尽可能小。换句话说,混凝土要有足够的粘聚性,使其在运输、泵送、施工中不发生分离。混凝土配合比的设计一定要遵循以下原则:稳定骨料所需骨料用量原则;最大限度密度填充原则;混凝土可泵性原则;骨料离析系数最小原则。

二、配合比设计思路

泵送混凝土除了根据工程设计所需的强度外,还需要根据泵送工艺所需的流动性、不离析、少泌水的要求配制可泵性的混凝土混合料。泵送混凝土具体的配合比设计思路如下:以一定数量的粗骨料(5mm-50mm)形成密布的骨架空间网格,以相当数量的细骨料(小于5mm)最大限度地填充骨架空隙,以胶凝材料浆体最大限度地填满粗骨料和细骨料的间隙,并包裹粗、细骨料的颗粒。形成均匀密实的混凝土,以满足强度和耐久性的要求。泵送混凝土对粗骨料有特殊的要求。如125输送管要求可用卵石最大粒径为40mm,碎石为30mm,150输送管要求混凝土所用卵石最大粒径为50mm,碎石为40mm。同时,泵送混凝土对粗骨料的级配也十分敏感。根据以上思路,参考绝对体积设计法,有方程如下:

Ks=(S/rso)/[(1/rso)-(1/1000rg)]·G

a=(W+C/rc+F/rg)/(1000/rso-1/rs)·S

W=K·(C+F)

W+C/rc+S/rs+G/rg+F/rf=1000

F/(C+F)=Kf

联立以上各式求解:

S=1000/[a(1000/rgo-1/rs)+1/rs+1000rg/(1000rg-rgo)·Ksrso]

G=1000S/[(100/rso-1/rg)·Ksrso

C=(1000-S/rs-G/rg)/[K+k·kf/(1-kf)+1/rc+kf/(1-kf)rf]

F=[kf/(1-kf)]·C

W=K·(C+F)

其中,Ks为砂料裕度系数;a为灰浆裕度系数;rso为砂料振实密度,kg/m3;rgo为石料振实密度,kg/m3;rg为石料表观密度,kg/L;rs为砂料表观密度,kg/L;G为石用量,kg/m3;S为砂用量,kg/m3;F为粉煤灰用量,kg/m3;C为水泥用量,kg/m3;Rc为水泥真实密度,kg/L;rf为粉煤灰真实密度,kg/L;W为水用量,kg/m3;K为水灰比;Kf为粉煤灰掺量系数。

三、配合比设计参数

(一)混凝土配制强度

区分数理统计及非数理统计方法评定混凝土强度的不同,根据JGJ552000普通混凝土配合比设计规程,混凝土配制强度应按下式计算:

式中:fcu.o混凝土配制强度,MPa;

fcu.k混凝土立方体抗压强度标准值,MPa;

σ混凝土强度标准差,MPa。

由施工单位自己历年的统计资料确定,无历史资料时应按现行国家标准GB502042002混凝土结构工程施工质量验收规范的规定取用(高于C35,σ=6.0MPa)。

根据此公式,以C40混凝土为例,C40混凝土的配制强度为:在正常情况下,上式可以采用等号,但当现场条件与试验条件有显著差异或重要工程对混凝土有特殊要求时,或C30及其以下强度混凝土在工程验收采用非数理统计方法评定时,则应采用大于号。

GBJ107-87混凝土质量检验评定标准中对混凝土抗压强度合格标准的评定方法分数理统计和非数理统计两种。

在实际工程中,由于结构部位的不同,往往要求不同的评定方法,但很多单位仅按数理统计的方法进行混凝土配合比设计,导致实际试配强度均达不到49.9MPa。

对于一般单位而言,在一个工程中通常只有混凝土配合比,加之管理不到位,也往往用于要求非数理统计的工程部位,结果只能出现混凝土强度达不到设计要求的后果。

(二)水灰比

泵送混凝土的水灰比除对混凝土强度和耐久性有明显影响外,对泵送粘性阻力也有影响。试验表明:当水灰比小于0.45时,混凝土的流动阻力很大,泵送极为困难。随着水灰比增大粘性阻力系数(η)逐渐降低,当水灰比达到0.52后,对混凝土η影响不大,当水灰比超过0.6时,会使混凝土保水性、粘聚性下降而产生离析易引起堵泵。因此,泵送混凝土水灰比选择在0.45~0.6之间,混凝土流动阻力较小,可泵性较好。在Ⅲ#滑坡体剩余工程施工中,泵送混凝土水灰比为0.48。

(三)泵送混凝土外加剂及其掺量

湖北某水闸改建工程过程中,用于泵送混凝土的外加剂,主要是SW1缓凝型高效减水剂。混凝土中加入外加剂,增大混凝土拌合物的流动性,减少水或水泥用量,提高混凝土强度及耐久性,降低大体积混凝土水化热,同时有利于泵送和夏季施工。

SW1减水剂能使混凝土的凝结时间延缓1~3h,对泵送大体积混凝土夏季施工有利。其掺量越多,在一定范围内减水效果越明显;但若掺量过多,会使混凝土硬化进程变慢,甚至长时间不硬化,降低混凝土的强度,因此,须严格控制掺量。SW1减水剂掺量为水泥用量的0.6%~0.8%,夏季温度较高,混凝土坍落度损失大,掺量取大值;冬季施工,掺量取小值。SW1减水剂对不同水泥有不同的适应性,当使用的水泥品种或水泥的矿物成分含碱量及细度不同时,减水剂的掺用效果不同,其最佳适宜掺量也不同。

四、小结

在工程实际中,应根据结构设计所规定的混凝土强度及特殊条件下混凝土耐久性、和易性等技术要求,合理选用原材料及其用量间的比例关系,并设计出经济、质量好、泵送效率高的混凝土。水利工程多为野外施工,施工场地受地理条件的限制。

参考文献:

[1]曹文达,新型混凝土及其应用[M].北京.金盾出版社,2001.

配合比设计论文第2篇

【论文摘要】 在良好的设计配合比和施工条件下,SBS沥青能使沥青路面的耐久性和高温稳定性明显提高。本文将根据南二路的施工试验情况,简要讲述SBS改性沥青的施工技术要求。论文关键词: SBS沥青混合料 配合比设计 技术要求一、引言聚合物改性沥青是一种技术含量和附加值较高的新型优质筑路材料。它通过把聚合物掺入道路沥青中而改善使用性能,能显著延长路面寿命、降低噪声、提高行车舒适性和安全性,SBS沥青作为一种改性沥青胶结料,早在20世纪90年代就已出现,由于SBS是一种热塑性橡胶共聚物,使用量大,费用较高,由于受经济条件限制,所以在国内一直没有大面积推广。在2002年由华东石油大学研究所研制成功SBS沥青改性剂,与东营市公路局材料处合作生产SBS改性沥青混合料,并在东营市南二路进行施工试验,下面结合东营市南二路一期工程的施工、监理情况,谈谈对SBS沥青配合比设计以及工程施工过程中的注意事项。二、SBS改性沥青概述SBS改性沥青是在原有基质沥青(AH-70)的基础上,掺加2.5%、3.0%、4.0%的SBS改性剂,改性后的沥青,与原沥青相比,其高温粘度增大,软化点升高。在良好的设计配合比和施工条件下,沥青路面的耐久性和高温稳定性明显提高。在SBS改性沥青生产过程中进行了大量的室内试验,生产后对其技术指标进行了现场实验,实验结果表明,外掺3.0%SBS的改性沥青,软化点、针入度等指标均满足改性沥青规范要求,可用SBS改性沥青做沥青混合料的配合比设计。三、SBS沥青混合料的配合比设计为了使设计的混合料能够达到实施效果,需要从材料要求、施工工艺、质量控制标准和质量控制方法等诸多方面提出以下要求,希望能够引起注意。(一)、原材料要求1-1粗集料:用于改性沥青混合料面层的粗集料,宜采用碎石或碎砾石,其粒径规格和质量要求均应符合《公路沥青路面施工技术规范》(JTJ032-94)的规定1.粗集料应洁净、干燥、无风化、无有害杂质,且具有一定硬度和强度。2.粗集料应具有良好的颗粒形状,破碎砾石用于高速公路、一级公路时,应采用大砾石破碎,并至少应有两个以上的破碎面。3、对于抗滑表层粗集料应选择硬质岩(中性或基性火成岩)。由于硬质岩石与沥青的粘接力存在着较大差异,粗集料与沥青的粘附性应不小于4级。对于3-5mm 石屑部分由于含量较低,并且该部分对沥青混合料形成嵌接结构有一定的作用,建议用硬质岩石屑(玄武岩)。1-2细集料细集料包括人工砂、天然砂。沥青路面面层宜采用人工砂作为细集料,细集料应洁净、干燥、无风化、无有害杂质,有适当的颗粒组成,并与改性沥青有良好的粘附性,天然砂由于质量变化大(大部分为中粗砂),形状较圆滑,与沥青的粘附性差,对沥青混合料影响较大。对于高速公路、一级公路沥青混合料,天然砂的含量不宜超过20%,可用0-3mm的石屑粉代替天然砂。1-3填充料用于改性沥青混合料面层的填料应洁净、干燥,其质量应符合《公路沥青路面技术规范》规定的技术要求。1、改性沥青混合料填充料宜采用强基性岩石(石灰岩、岩浆岩)等增水性石料经磨细得到的矿粉,矿粉要求干燥、洁净,不宜使用混合料生产中干法除尘的回收粉。2、采用水泥、消石灰粉做填料时,其用量不宜超过矿料总量的2%。3、对于沥青表面层混合料不推荐使用在混合料生产排回收粉,当塑性指数小于4且亲水系数小于0.8时,经过试验可以部分的使用,回收粉用量每盘不能超过矿粉总量的四分之一。1-4、SBS改性沥青技术要求技 术 指 标 SBS改性沥青针入度25℃,100g,5s(0.1mm) 最小 60针入度指数PI 最小『1 -0.2延度5℃,5cm/min(cm) 最小 30软化点,TR&B (℃) 最小 55含蜡量(蒸馏法)(%) 最大 3运动粘度135℃(Pa.s) 最大『

配合比设计论文第3篇

橡胶沥青的生产工艺基本分为干拌法和湿拌法,因干拌法生产的橡胶沥青存放时间不得超过7天,且需要连续搅拌,目前基本被淘汰;湿拌法就是在工厂进行批量加工,生产橡胶沥青时橡胶粉进行多道胶体磨,细度能达到100目以上,橡胶颗粒更均匀地混熔在基质沥青中,解决了储存稳定性同时,更是大大提高了橡胶沥青材料质量的稳定性,所以可储存较长时间,同时胶粉的掺量更高(沥青质量的15%~25%),由此带来了更高粘度的沥青材料。

2橡胶沥青混合合比设计

2.1选择原材料

2.1.1集料

橡胶沥青混合料一般用于路面的表面层,混合配合比设计时集料选择石质坚硬、洁净、干燥、表面粗糙、不含风化颗粒、近立方体颗粒的碎石,如玄武岩类集料。

2.1.2填料

宜采用石灰岩碱性石料经磨细得到的矿粉。矿粉必须干燥、清洁。拌和机回收的矿粉不得采用。经过磨细的石灰粉或者水泥可代替矿粉。

2.2橡胶沥青配合比设计考虑因素

橡胶沥青混合料配合比设计要考虑重载车辆对路面的影响,所以级配选择时应优先考虑适应重载车辆的结构形式;选用合理的级配范围,现行施工技术规范的级配范围上下限比较宽,要根据当地的实际情况确定合适的级配范围,目前部分地区已确定地方性标准以便配合比设计时参考;油石比是必须考虑的重要因素,因为橡胶沥青中添加了大量的橡胶粉,按照以往的办法计算粉胶比并不合适,应扣除沥青中德橡胶粉进行计算,所以沥青用量将会增加;配合比验证是橡胶沥青混合料配合比设计的关键,必须通过车辙试验、浸水马歇尔试验及冻融劈裂试验进行验证,只有验证结果合格的沥青混合料配合比才能进行使用。

2.2.1路面结构形式和混合料级配选择

从目前相关研究看,橡胶沥青混合料的级配范围比沥青混凝土路面施工技术规范给定的级配范围小,而且级配均偏粗,所以进行配合比设计时要进行合理选择。同时必须考虑关键筛孔的通过率,作为配级设计的控制性指标的关键筛孔通过率对橡胶沥青体积指标以及骨架组成有着巨大的影响,4.75mm、2.36mm筛孔通过率直接关系沥青混合料的骨架,0.075mm的通过率关系沥青混合料的高温稳定性。其次,关键筛孔的通过率对混合材料的水稳定性有着重要影响,通过采用浸水马歇尔和冻融劈裂试验可以得出这个结论。

2.2.2外掺剂的影响

外掺剂是指沥青混合料中添加少量经过磨细的石灰粉或水泥代替一部分矿粉,主要是增加沥青混合料中各种材料粘结力,进而提高沥青混合料的水稳定性。橡胶沥青配合比设计时可能会遇到冻融劈裂强度比不足的现象,这是就需要采用石灰或水泥代替矿粉,根据试验情况确定石灰或水泥掺量的比例(一般情况下掺量在2%左右)。

2.3橡胶沥青混合料配合比验证

橡胶沥青配合比验证主要是车辙试验、浸水马歇尔试验、冻融劈裂试验,车辙试验是验证沥青混合料高温抗车辙的能力的试验,以动稳定度车来表示,目前橡胶沥青动稳定度没有统一的标准,部分地区采用施工技术规范的3000次/mm,部分地区规定要达到,其实橡胶沥青的动稳定度基本高于6000次/mm,主要和车辙试验的成型有很大关系,橡胶沥青混合料进行车辙车型时温度应提高10℃~15℃;浸水马歇尔试验是检验沥青混合料抗水损害能力的验证试验,冻融劈裂试验是检验沥青混合料低温性能试验,有时该试验的指标达不到,沥青混合料配合比需要调整,其调整的办法是用石灰或水泥代替矿粉,能有效提高沥青混合料的水稳定性和低温性能。

3橡胶沥青混合料的质量控制

3.1橡胶沥青混合料的拌合

在对橡胶沥青混合物进行搅和时,要严格控制好搅拌的速度和橡胶沥青混合料平衡。橡胶沥青混合料生产时,拌合周期比一般沥青混合料长,大约为60秒左右,主要控制点是沥青混合的温度控制,沥青、材料加热温度均高于一般沥青混合料,出料温度需要控制在185℃左右。

3.2橡胶沥青混合物材料的运输

为了使橡胶混合料的温度保持在合理范围内,混合材料在运输过程中要采取必要的保温措施用双层棉被进行覆盖,并且要用大吨位的载货车进行运输。在铺沥青橡胶混合材料是一定要持续铺设,在现场等待卸材料的车不能太少以免发生橡胶混合物铺设间断现象,并且在卸载橡胶混合物的材料时一定要直接卸料,不能掀开棉被。

3.3橡胶沥青混合料的摊铺和碾压

橡胶沥青混合料的摊铺和其他沥青混合料的摊铺基本无区别,主要是摊铺机能够连续匀速摊铺,但橡胶沥青混合料温度较高,温度损失也相对快一些,若温度过低沥青混合料很难压实,所以施工时现场的组织和管理水平要求相对较高,禁止出现停机待料的情况;碾压环节是橡胶沥青混合料施工的控制重点,必须在混合料温度下降前完成碾压,否则压实度难以得到保证,所以压实设备配置要足量,碾压过程必须遵循紧跟慢压,减少温度损失。

4小结

配合比设计论文第4篇

钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。

(1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能;

(2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求;

(3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。

二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜2,掺加量不超过70㎏/M3。

水泥:采用32.5级或42.5级普通硅酸盐水泥。

碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。

细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。

水:无污染的自然水或自来水。

外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。

三、钢纤维混凝土配合比设计步骤

钢纤维混凝土配合比设计与普通混凝土配合比设计一样,一般采用计算法。可按下列步骤进行:

(1)根据强度标准值或设计值及施工配置强度提高系数确定试配抗压强度和抗折强度。

(2)按试配抗压强度计算水灰比,一般应控制在0.45-0.50之间。可按普通水泥混凝土抗压强度、水泥标号、水灰比的关系式求得。

(3)根据试验抗折强度,按规定计算钢纤维体积率。一般体积率选1.0~1.5%。

(4)根据施工要求通过试验确定单位体积用水量(掺用外加剂时应考虑外加剂的影响)。

(5)根据试验确定合理砂率(现场应根据材料品种,钢纤维纤维体积率,水灰比等适当调整),一般应控制在1.1-1.6%之间.

(6)按体积法计算材料用量确定试验配合比。

(7)按配合比进行拌和物性能检测,调整确定施工配合比。

四、钢纤维混凝土的拌和

(1)必须使用滚动式混凝土拌和设备。当钢纤维体积率较高,拌和物稠度较大时,应对拌和量进行控制,一般应不超过设备拌和量的60%。

(2)注意拌和料的投放顺序,一般按水泥、钢纤维、细集料、粗集料、水的顺序进行,先进行干拌后再加水湿拌,同时,钢纤维应分2-3次投放,保证钢纤维在拌和机内不结团,不弯曲或拆断。

(3)应根据拌和物的粘聚性、均匀性及强度稳定性要求通过试拌确定合理的拌和时间。先干拌后湿拌,一般按干拌时间不少于80秒,湿拌时间不少于100秒(总拌和时间必须控制在300秒以内)。

五、钢纤维混凝土的施工与养护

(1)清除垃圾,清洁桥面,洒水湿润,浇洒水泥浆(水泥浆可按重量比水:水泥=1∶1配制)。

(2)检查桥面铺装钢筋网片摆放位置的正确性及钢筋网片的搭接情况。

(3)钢纤维混凝土卸料后应用人工摊铺找平,振捣密实,振平板粗平(不宜使用振动梁拉动找平),振平板每次重叠1/2。

(4)用钢管提浆滚滚动碾压数遍,使用提浆滚滚平提浆,避免钢纤维外露。

(5)使用3米长铝合金方尺从钢模板一侧向外刮平(精平),每次刮平时方尺应交叉1/3以上。

(6)钢纤维初凝后人工拉毛处理,使桥面粗糙。

(7)混凝土完成初期可喷洒养生剂,喷洒均匀,表面无色差,初凝后使用土工布覆盖洒水养生,保持土工布湿润。土工布覆盖养生7天,洒水养生14天。

(8)如果桥面铺装钢纤维混凝土为C60时,因混凝土标号较高,水泥凝固快,应集中设备、人员突击施工,力争使钢纤维混凝土从拌和到精平完成的时间控制在4小时以内。

六、钢纤维混凝土质量控制

(1)钢纤维的质量检验

一是钢纤维的长度偏差不应超过标准长度的10%,每批次至少随机抽查10根以上;

二是钢纤维的直径或等效直径合格率不得低于90%,可采取重量法检验,每批次抽检100根,用天平称量,卡尺测其长度,要求得到的等效平均值满足规定;

三是钢纤维的抗拉强度检验,要求其抗拉强度不低于380MPA;

四是钢纤维的抗弯拆性能,钢纤维应能经受直径3㎜钢棒弯拆90°不断,每批次检验不少于10根;

五是杂质含量,钢纤维表面不得有油污,不得镀有有害物质或影响钢纤维与混凝土粘接的杂质。

(2)原材料的检验

必须满足上述原材料的质量控制标准,应按照公路工程施工技术规范的要求进行检验。

(3)钢纤维混凝土的检验

应重点检验钢纤维混凝土的和易性、塌落度和水灰比等,同时必须现场目检钢纤维在混凝土的分布情况,发现有钢纤维结团现象应延长拌和时间。

七、注意事项

(1)由于钢纤维混凝土拌和时对水灰比的控制有严格要求,不宜在阴雨天气或风力较大的条件下进行施工。应选择晴好天气时进行,遇雨必须停止施工,并及时使用土工布覆盖尚未硬化的混凝土桥面,必要时可搭建临时施工防雨棚,在防雨棚下尽快完成剩余作业。

(2)根据气温、风力大小及时调整钢纤维混凝土拌和用水量,保证混凝土的和易性,建议施工时间应安排在气温不高于22℃时进行。

(3)气温较高或大风条件下应及时调整养生剂的喷洒量,喷洒养生剂后应及时覆盖土工布,混凝土初凝后立即在土工布上洒水湿润,防止桥面混凝土发生收缩开裂。

(4)在通行条件下桥梁加宽使用钢纤维混凝土桥面铺装时,除做好现场施工保通外,由于旧桥车辆通行振动对桥面钢纤维混凝土的开裂有很影响,建议将新旧桥桥面间保留30㎝宽暂时不做铺装,待新格面铺装完全成型后补做。

八、结束语

钢纤维混凝土可以较好地解决普通混凝土难以解决的裂缝、耐久性等问题,对提高桥面的使用质量,延长桥面的使用寿命十分有利。在公路旧桥加固改造、桥面修补、桥梁缺陷修复等方面的应用会更加广泛。

[摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。

[关健词]钢纤维配合比设计质量控制

参考文献:

[1]钢纤维混凝土结构与施工规程.中国工程建筑标准化协会标准.

配合比设计论文第5篇

Abstract: the article through the Jiangsu province Changzhou West ring expressway asphalt mixture ratio design results, discusses the bituminous mixture must be designed to target mix ratio as the basis, put forward two design gradation, asphalt content, void ratio, VMA and the theoretical maximum relative density control standard.

【关键词】高速公路;沥青混合料 ;配合比设计; 控制标准

Key words: highway; asphalt mixture; mix proportion design; control standards

中图分类号:U412.36+6 文献标识码: A 文章编号:

1、 项目概况

江苏省常州西绕城高速公路是《江苏省高速公路网规划》中 “五纵九横五联”的纵三(新沂至宜兴),全线采用双向六车道高速公路标准,设计速度120公里/小时,初设概算约为25亿元。项目里程全长26.605公里,起自沪宁高速公路汤庄东,北接泰州长江公路大桥南接线,向南经新北区罗溪镇、薛家镇,在邹区镇东与新、老312国道交叉,继续向南与340省道交叉,终点止于武进区鸣凰镇,西接南京至太仓高速公路。

常州西绕城高速公路沥青面层总厚度为20cm。沥青面层分两个标段施工,其中一标段面层结构为4.0cm上面层(改性沥青SMA-13S)+中面层(6.5cm改性沥青Sup20)+下面层(9.5cm道路石油沥青Sup25)。

2、主要原材料

道路石油沥青为70号A级,改性沥青其技术指标满足《江苏省高速公路沥青路面施工指导意见》有关规定。中、下面层集料采用石灰岩集料,上面层集料采用玄武岩集料。上面层添加抗驳离剂和木质素纤维。

3、配合比设计

配合比设计分目标配合比设计和生产配合比设计两个阶段。

目标配合比设计目的主要是确定符合设计要求的、经济的集料与沥青的混合物,是沥青混合料生产时冷料用量的依据。目标配合比设计结果不仅沥青混合料级配、体积指标和路用性能满足要求,而且应当做到各种规格的集料级配有代表性,在常州西绕城高速公路建设中目标配合比的集料均从拌和场取得。目标配合比完成后要调试好拌和楼冷料进料皮带转速,确保进入拌和楼的冷料与目标配合比相符。

生产配合比设计主要是依据目标配合比设计结果,结合沥青混合料拌和楼的机械性能和拌和楼热料的级配组成情况,调试各热料仓的比例,是配合比设计精加工的过程,对合理确定拌和楼生产经济性、确保现场施工的均匀性有着指导性作用。

在配合比设计过程中必须严格控制试件的成型温度,本次设计中道路石油沥青混合料的成型温度采用150℃,改性沥青混合料采用160℃。

道路石油沥青混合料最大理论密度采用真空实测法,改性沥青混合料最大理论相对密度采用计算法求的。

3.1 下面层SUP-25目标及生产配合比设计结果

表1下面层配合比旋转压实试验设计结果

注:*级配如果是粗级配或走下方,粉胶比可增加到0.8~1.6。

有表1知:目标配合比和生产配合比沥青用量相同;目标配合比和生产配合比设计空隙率相差0.1%,VMA相差0.2%;理论最大相对密度相差0.004。

表3-2下面层道路石油沥青Sup25配合比设计级配

有表2知目标配合比和生产配合比级配之差:0.075mm筛孔通过率为0.3%;0.075mm~2.36mm筛孔通过率均不大于1.2%;其它筛孔通过率均不大于2.0%

3.2 中面层目标SUP-20及生产配合比设计结果

表3中面层生产配合比旋转压实试验设计结果

注:*级配如果是粗级配或走下方,粉胶比可增加到0.8~1.6。

有表3知:目标配合比和生产配合比沥青用量相同;目标配合比和生产配合比设计空隙率相差0,VMA相差0.03%;理论最大相对密度相差0.002。

表4中面层改性沥青Sup20配合比设计级配

有表4知目标配合比和生产配合比级配之差:0.075mm筛孔通过率为0; 0.15mm~2.36mm筛孔通过率均不大于1.1%;其它筛孔通过率均不大于2.2%

3.3 上面层目标及生产配合比设计结果

上面层所用木质素纤维掺量为沥青混合料重量的0.3%,抗剥落剂掺量为沥青用量的0.4%。

表5上面层改性沥青SMA-13S配合比设计级配

有表5知目标配合比和生产配合比级配之差:0.075mm筛孔通过率为0.3%;0.15mm~2.36mm筛孔通过率均不大于0.5%;其它筛孔通过率均不大于2.%.

表6上面层改性沥青SMA-13S生产配合比马歇尔试验结果

有表6知:目标配合比和生产配合比沥青用量相同;目标配合比和生产配合比设计空隙率相差0.1%,VMA相差0.1%;理论最大相对密度相差0.002。

3.4配合比设计结论

有以上目标配合比和生产配合比结果可知沥青混合料目标配合比级配和生产配合比级配之差:0.075mm筛孔通过率可控制在±0.5%,0.15mm~2.36mm筛孔通过率

可控制在±2%,2.36mm以上筛孔通过率可控制在在±3%;目标配合比和生产配合比的油石比的应相同; 目标配合比和生产配合比的最大理论相对密度之差不大于0.005;目标配合比和生产配合比的设计空隙之差不大于0.2%

4结论与建议

(1) 配合比设计中必须严格控制混合料成型温度.

(2) 目标配合比和生产配合比的最大理论相对密度误差应不大于0.005.

(3) 沥青混合料目标配合比级配和生产配合比级配之差:建议0.075mm筛孔通过率控制在为±0.5%,0;0.15mm~2.36mm筛孔通过率控制在±2%,2.36mm以上筛孔通过率控制在±3%.

配合比设计论文第6篇

Abstract: for the mixture of particle property, when the cement asphalt binder, should design structure of mineral admixture, the theoretical design method. Aggregate gradation theory by our stack accumulation theory and come, but did not get the long-term development, gradation design theory has the following two kinds: one is the theory of maximum density curve is mainly used in continuous grading; two is the continuous gradation and discontinuous gradation can be applied to the particle interfering theory.

关键词:大粒径沥青混合料集料级配设计研究

Keywords: large size asphalt mixture gradation design research

1 集料级配设计

1.1密级配大粒径沥青碎石(ATB-25,ATB-30)级配设计

从层位功能角度考虑,密级配大粒径沥青碎石要求具有抗疲劳性能以及抗永久变形的能力,基于此,我们在设计过程中应遵循以下原则:骨架用粗集料来构成,骨架之间的空隙用细集料和沥青来填充。粗集料形成骨架,沥青混合料就会产生较大的内摩擦角来抵抗剪切变形;同时, 沥青混合料的稳定性和整体性也会由于沥青和矿料之间产生的较大的粘聚力而有所提高。

对于某个具体的工程进行集料级配设计时,由于各个地区材料性质的差异,必须结合材料特性进行设计。论文根据集料试验,依照规范,拟合了级配设计曲线。确定了ATB-25和 ATB-30的集料级配以期对其进行最佳沥青用量的确定。试验用集料级配如表1。

表1ATB-25 和ATB-30试验用集料级配

1.2开级配大粒径沥青碎石(ATPB-25,ATPB-30)的级配设计

本文在进行大粒径沥青碎石集料级配设计时,是将粗集料和细集料分开进行设计。论文拟合了级配设计曲线确定了ATPB-25和 ATPB-30以期对其性能进行全面对比。试验用集料级配如表2。

表2ATPB-25 和ATPB-30试验用集料级配

2 大粒径沥青碎石配合比设计

2.1配合比设计方法概述

本文采用大马歇尔成型方法确定沥青的最佳用量。大粒径沥青混合料的最大公称粒径大于26.5mm,标准马歇尔试验已经不适合。在1969年,美国宾夕法尼亚交通厅就开始对标准马歇尔试件进行改进研究,希望可以找到适合大粒径沥青混合料设计,研究结果认为,大马歇尔试件采用直径为152.4mm,试件高度为95.2mm。

对于大马歇尔试验结果,如稳定度和流值的技术指标也应有改变。按照单位面积上应力相同的原则,稳定度为标准马歇尔稳定度指标的2.25倍,流值为1.5倍。

表3 大马歇尔和标准马歇尔击实参数表

我们借鉴标准马歇尔法确定最佳沥青用量的方法,大马歇尔沥青混合料设计主要为目标配合比设计、生产配合比设计和生产配合比验证三个步骤。而采用大型马歇尔试验方法主要依靠密度、空隙率、稳定度、流值四个指标来确定沥青的最佳用量。

2.2密级配沥青碎石最佳沥青用量确定

按照《公路工程沥青及沥青混合料试验规程》(JTJ 052-2000)击实法的要求,每个级配均选取五种油石比。ATB-25的油石比分别为2.8%,3.1%,3.4%,3.7%,4.1%。ATB-30的油石比为2.4%,2.8%,3.2%,3.6%,4.0%。对选定的ATB-25,ATB-30两种级配分别进行大马歇尔试验。

密级配大粒径沥青混合料ATB-25 和ATB-30大马歇尔试验结果如表4所示:

表4ATB-25和ATB-30大马歇尔试验结果

可知符合各项技术指标的最佳沥青用量ATB-25为3.4%,ATB-30为3.2%。

2.3开级配沥青碎石最佳沥青用量确定

本研究在沥青膜厚度设计方法基础上,对ATPB-25,ATPB-30最佳沥青用量设计,首先根据沥青膜厚度和集料比表面积初定沥青用量;然后进行析漏试验和马歇尔稳定度试验;根据析漏试验确定的沥青用量范围,参照马歇尔稳定度试验的结果,确定沥青混合料的最佳沥青用量。

1.预估沥青用量

沥青膜的合理厚度是影响沥青混合料性质的一大因素。合理的沥青膜厚度应该保证矿料颗粒粘结时,所形成的沥青薄膜主要为结构性沥青,不会有太多自由沥青,以免使得沥青膜成为矿料之间相对滑移的剂,这样,沥青混合料的性能也能得到保证。

沥青用量预估公式为:

其中:-—集料总表面积;

—沥青膜厚度;

—预估沥青用量。

由公式可得,ATPB-25目标配合比设计级配预估沥青用量为1.95%。ATPB-30目标配合比设计级配预估沥青用量为2.18%。

(2)析漏试验确定沥青用量

本论文中参照《公路工程沥青与沥青混和料试验规程》(JTJ 052-2000)中的规定进行,ATPB-25试验选用沥青1.4%,1.7%,2.0%,2.3%,2.6%,3.0% ,ATPB-30试验选用沥青1.8%,2.1%,2.4%,2.7%,3.0%,3.3%五种沥青用量分别进行析漏试验。

沥青析漏损失率随着油石比的增大逐渐增大,当达到一个临界点时,损失率增大较快,选取临界点位置作为其所要选取的沥青用量。ATPB-25 ,ATPB-30析漏拐点位置沥青用量为1.9%和2.3%。

表5ATPB析漏试验计算表

(3) 大马歇尔法沥青用量验证

采用大马歇尔试验ATPB-25和ATPB-30进行最佳沥青用量的验证,其结果如表6所示。

表6 大马歇尔试验结果

可知符合各项技术指标的最佳沥青用量ATPB-25为2.5%,ATPB-30为2.6%。

3 小结

本章主要参考国内外研究的有关资料,对大粒径沥青混合料的配合比设计进行研究,主要结论:

1.密级配大粒径沥青碎石(ATB-25,ATB-30)根据实践经验进行集料级配设计,并结合当地气候和交通条件进行调整,得到ATB-25,ATB-30的集料级配

2析漏试验结果表明,沥青析漏损失率随着油石比的增大逐渐增大,当达到一个临界点时,损失率增大较快,选取临界点位置作为其所要选取的沥青用量。ATPB-25 ,ATPB-30析漏拐点位置沥青用量为1.9%和2.3%。结合OGFC 的析漏损失要求小于0.3%,本论文推荐ATPB-25和ATPB-30的析漏损失值为小于0.3%为宜。

3稳定度和油石比的关系呈抛物线曲线,在油石比增大到一定值时,稳定度达到峰值,之后油石比增大,稳定度反而呈减小的趋势。,从大马歇尔稳定度的数值上看,级配在各自的油石比下的值都大于9KN,ATPB对大马歇尔稳定度的技术没有要求。

通过以上分析,最终确定的最佳沥青用量ATPB-25为2.5%,ATPB-30为2.6%。

参考文献

[1] Kandhals.Large StoneAsphalt Mixes[R]:Design and Construction.NCAT Re.

[2] 王富玉.大粒径沥青混合料路用性能研究[D].西安:长安大学,2001.2.

[3] Prithvi S.Kandal.Large Stone Asphalt Mixes:DESIGN AND CONSTRUCTION[R].NCAT Report 1989,4(2):22-24.

[4] NCHRP REPORT386.Design and Evaluation of Large Stone Asphalt Mixes[J].Transportation Research Board National Research council,2000,10(4):17-28

配合比设计论文第7篇

关键词:混凝土;配合比;设计理论;分析;思考

0前言

混凝土的发明距今已有一百多年的历史,其使用对于提高人类建筑房屋的质量产生了重要的影响。然而,在混凝土的配置过程中,由于组成成分的多样性以及对不同环境所要求混凝土配置的复杂性,使得混凝土配合比的确定以及执行一直是相关工作人员关注的重点问题。只有对众多的混凝土配合比理论进行分析,并能够对当前混凝土配合比设计中存在的问题采取针对性的措施,才能够不断提高混凝土的质量,从而促进交通工程以及工民建项目的进一步发展。

1各种混凝土配合比设计方法概述

在现代混凝土的使用过程中,为了简化设计的准确性以及提高设计水平,对混凝土所用原材料一般主要考虑水、粗细骨料、胶凝材料以及混凝土外加剂四种。在实际的设计过程中,混凝土配合比的设计也就是求解出水、胶凝材料、粗骨料以及细骨料的组成未知数。可以根据所有求的适配强度,通过质量法或者是体积法建立一个整体恒定方程,从而就能够将混凝土配合比的设计转化成求解用水量、水灰比以及砂率三个参数了。当前常见的混凝土配合比的设计方法主要有以下四种。

1.1美国ACI方法

通过对比分析,可以发现,美国的ACI方法具有操作简单的优点,各种配合比的参数只要通过相关表格的查找就能够获得。但是,该种方法获得的各种参数的选择理论依据比较单薄,说服力不强。此外,该种方法对于材料性状的敏感性也比较差。该种方法是混凝土配合比设计最为典型的方法之一。

1.2英国BRE方法

与美国的ACI方法相比,英国的BRE方法在参数的选择上具有相似性,但是,英国采取的方法,其选择使考虑的因素更多。例如,在水灰比的选择过程中,其考虑到了长期的力学性质与短期的力学性质。砂率的选择中考虑到了小于0.6mm的细骨料量。然而,这种方法的缺点也比较明显,主要是通过图表来获得一定的参数,容易产生普适性的误差。如果单独从图表选择的方法中进行比较,则该种方法是很优秀的,此外,如果能够增加数学方法,则其在混凝土配合比设计中将会更加出色。

1.3法国Dreux方法

法国的Dreux方法具有自身的优点,主要表现在各个级配参数的设计比较细致。例如,在用水量的选择时,考虑到了耐久性问题,而在计算砂率的时候,则综合考虑了级配、水泥用量以及最大粒径等。不过,Dreux方法中的级配曲线设计中存在一定的局限性。在实际的操作过程中,级配曲线的设计往往不尽如人意,因此,一般不能够通过改善级配曲线的制作方法来提高混凝土配合比设计的水平。

1.4中国混凝土配合比设计方法

我国现行的配合比设计方法更注重的是经验性设计。在规范中,试图展示一个简单易行的设计方法。对于幅员辽阔的中国,这样一个普适的方法已经十分优秀。但是,应该注意到,这样的配合比设计方法理论基础相对薄弱,经验性选择居多,并且计算结果偏差很大。具体表现在,强度公式引起的误差波动,其次用水量与砂率的选择依据也并不充分。

2混凝土配合比设计中存在的问题

2.1工作性设计较欠缺

根据对多种较优质的混凝土设计方法进行比较分析,可以发现,大都缺乏对工作性的设计。而工作性设计对于混凝土工程的质量以及工程施工都具有重要的影响。然而,由于对混凝土流变性理论研究不够,使得现行的混凝土设计方法中缺乏工作性的设计。

2.2混凝土强度理论不完善

与工作性相比,研究人员杜宇强度理论的分析和研究较为深入。常见的强度理论计算公式主要包括保罗米公式以及Larrard的MTP公式等。这些计算公式的方法大都是基于固体力学以及数据回归分析进行相关的模型求解的,在此基础上再结合相关的参数进行科学合理的修正。然而,随着矿物外加剂的使用以及多种骨料的渗入,混凝土的复杂性已经发生了巨大的变化,因此,如何将新增加的因素放置到既有的混凝土的强度理论中,成为相关工作人员研究的一个重要课题。

3混凝土配合比设计的创新方法

3.1完善强度模型

在混凝土的使用过程中,其破坏主要分为裂缝的产生、发展以及贯通的过程,所以,为了进一步完善混凝土的强度模型,相关工作人员应该建立“裂缝产生”以及“裂缝在基相中传播”两个控制因素。混凝土的裂缝受到界面区域的影响最大,因此,界面强度是混凝土裂缝的主要控制条件,此外,基相承载破坏的能力控制了裂缝的传播情况。因此,在混凝土强度的设计过程中,要能够从物理作用与化学作用两个方面对混凝土界面的强度进行分析和研究,从而确保混凝土强度能够满足路桥以及工民建工程等的实际需要。

3.2建立工作性模型

在混凝土工作模型的建立过程中,可以使用“砂浆—粗骨料”的体系分割方法,可以将混凝土的流动性转化为粗骨料的相对运用过程,其中的剂是砂浆。因此,混凝土的流动性能就能够通过粗骨料的运动能力表现出来。而粗骨料的运动水平主要是由粗骨料之间的相互摩擦造成的。在实际的混凝土之中,优质的砂浆以及相关的介质能够在很大程度上减少粗骨料之间的损耗,从而可以提高混凝土的流动性。与此同时,水分对于粗骨料的湿润作用也能够在很大程度上提高粗骨料的运动能力。

结束语

近年来,随着各类建设工程项目开展的不断深入,对于施工技术工艺水平也提出了更高的要求。作为施工材料的重要组成部分,混凝土材料的配合比的设计关系到工程质量的可靠性、耐久性及经济性。因此,相关工作人员应该加强对各种混凝土配合比设计理论的分析,在此基础上结合工程的实际情况,设计出最佳的混凝土配合比方案,从而为优秀的工程施工项目奠定坚实的基础。

参考文献

[1]李霞,周红艳,张利娟.浅谈混凝土配合比的设计[A].河南省建筑业行业优秀论文集(2008)[C].2008