欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

超高层建筑要求(合集7篇)

时间:2023-08-18 17:26:13
超高层建筑要求

超高层建筑要求第1篇

【关键词】复杂超限超高层连体建筑;建筑结构;建筑结构设计

复杂超限超高层连体建筑结构设计非常复杂,只有应用科学的设计,才能提高复杂超限超高层连体建筑结构设计的质量。本次结构针对复杂超限超高层连体建筑结构设计的原理及设计难,提出关键设计的策略。

1复杂超限超高层连体建筑结构设计理论

复杂超限超高层连体建筑就是指建筑结构的高度超过一般建筑的设计标准,设计结构非常复杂的建筑,这类建筑的剪力墙结构设计、梁式转换设计等都与仅仅只是高度超限的建筑有很大的区别。这类建筑结构常有错层、跃层、中空层等。要设计复杂超限超高层连体建筑时,要强化物理力学的应用,巧妙的应用物理受力平衡这一要点进行物理设计。复杂超限超高层连体建筑不仅外观设计复杂,抗震设计更为复杂,因为复杂超限超高层连体建筑外观及结构与普通常规超高层建筑不同,较为常用的建筑防震理论难以应用到这类建筑上,如果要强化复杂超限超高层连体建筑的防震计能,就要既满足复杂超限超高层连体建筑的独特审美设计,又要提高建筑的抗风性能、防震性能、刚度性能。

2复杂超限超高层连体建筑结构特点分析

超限认定,普通的超高建筑不能称为复杂超限超高层连体建筑,复杂超限超高层连体建筑的特点为以空间的标准来说,复杂超限超高层连体建筑对空间结构有极高的要求;从建筑功能来说,它要求建筑内部突出大跨度、大容量的空g;从建筑层的转换来说,它的有多个转换层,比如建筑结构内部会应用梁式转换、双塔结构转换等。

错层,复杂超限超高层连体建筑的功能有很高的要求,为了突出建筑结构的功能,它提出跃层、错层的建筑要求,复杂的错层带来建筑设计的难度。

平面不规划,复杂超限超高层连体建筑的功能要求非常复杂,这就带来建筑结构参数计算的难度。比如部分复杂超限超高层连体建筑要求建筑左右两端建设两个塔楼,这就意味着不能应用普通的建筑结构设计方式来设计建筑,施工单位只能把抗侧力构分布在两个端部;假如建筑的底层要求呈现大空间、大跨度、高空间的结构,那么建筑空间内就不能设置剪力强、柱子隔开空间,施工单位就只能依靠裙房建筑物两端来承担建筑荷载;假如建筑中间层要出现大空间、大跨度、高空间的建筑结构,施工单位就不能应用连续楼层的方式设计楼层荷载。

3复杂超限超高层连体建筑结构关键技术

3.1抗风设计

在复杂超限超高层连体建筑结构设计中,必须重视抗风的设计。这是因为复杂超限超高层连体建筑结构的体积大、建筑结构较为复杂,这类建筑极易受到风力的影响,抗风设计是复杂超限超高层连体建筑结构设计的重点之一。建筑施工单位要把风产生的动力效应结合风振系数来计算,变成建筑结构设计中的拟静力计算。施工单位要做好模型风洞实验、结构动力分析、计算校核等工作。施工单位除了要做好建筑整体抗风设计外,还要注意到细节设计对主体设计的影响。比如在风力的影响下,建筑墙体开裂、玻璃墙体开裂都会对建筑主体带来重要的影响,施工单位要注意风力对建筑结构设计带来的综合影响,把风力对建筑结构群体的影响列入到参数计算中,强化建筑结构的抗风性。

3.2抗震设计

抗震设计是复杂超限超高层连体建筑结构设计的难点。这是因为这类建筑的特点带来抗震设计的困难。如果在满足复杂超限超高层连体建筑结构设计特点的前提下,要加强抗震设计,就要做好以下几个方面的工作。第一,优化复杂超限超高层连体建筑结构地理的位置。地理位置对于复杂超限超高层连体建筑结构的影响非常大。部分地区较多软弱地基、周边的环境较为复杂,这类地基极易受地震的影响,不利于复杂超限超高层连体建筑结构设计。为此,施工单位要优化复杂超限超高层连体建筑地理位置设计,为复杂超限超高层连体建筑结构的抗震性打好基础。第二,施工单位要从建筑整体的角度做好抗震设计。从整体的角度设计,是指施工单位要从宏观的角度看待复杂超限超高层连体建筑结构抗震设计,使影响抗震效果的因素及因素之间产生良性互动的关系,最大限度的发挥建筑的抗震性。比如施工单位要从建筑结构设计的整体施计优化建筑抗震设计,尽量应用对称设计等方式加强建筑结构的整体抗震性;施工单位要优化施工材料的应用,优化建筑的抗震性;应用抗震设计与隔震设计相结构的方式强化建筑的抗震性。应用提高建筑结构整体抗震性的方式可以取得1+1>2的抗震效果。第三,在做好整体抗震布局的基础上,施工单位要做好界面大小、应力分布等计算工作,做好建筑结构的定量分析,优化施工参数设置,为施工技术的应用提出理论依据。

3.3刚度设计

刚度设计决定复杂超限超高层连体建筑结构设计是否能实施,如果复杂超限超高层连体建筑结构设计刚度设计不合理,不能以施工的角度实现,刚度设计就失去意义,施工项目就难以完成。施工刚度设计的重点是建筑整体结构的重心点、建筑结构几何开关的中心点、建筑结构整体刚度的中心点。只有科学的设计这三项参数,建筑施工才能实现。当前施工单位以应用预应力混凝土材料来实现三点设计。预应力混凝土是指混凝土的整体刚度并不强于同类型的混凝土,然而它的自重量、体积轻于同预应力的混凝土,它以强化混凝土材料局部预应力的方式加强混凝土抗负荷的能力。这样的混凝土材料适用于复杂超限超高层连体建筑结构设计。在应用预应力混凝土时,施工单位要结合三点设计这一重点优化空间几何构造,有效的应用预应力混凝土材料,应用空间几何布局与预应力混凝土材料的特点强化建筑结构的刚度设计。

4总结

随着社会向前发展,人们需要一些复杂超限超高层连体建筑,这类建筑具有结构特殊性,它们的结构设计较为困难。本次研究说明了复杂超限超高层连体建筑结构设计的原理、设计难点,结合它的设计原理说明了抗风设计、抗震设计、刚度设计这三项设计的要点,建筑施工单位可应用这一理论优化复杂超限超高层连体建筑结构设计。

参考文献:

[1]汪大绥,周建龙,姜文伟,王建,江晓峰.超高层结构地震剪力系数限值研究[J].建筑结构.2012(05)

超高层建筑要求第2篇

1国内外防火规范的比较

1.1高层建筑划分《民用建筑设计通则》(GB50352-2005)规定,建筑高度大于100m的民用建筑为超高层建筑。《住宅建筑规范》(GB50368-2005)规定,35层及35层以上的住宅建筑应设置自动喷水灭火系统和火灾自动报警系统。《高层民用建筑设计防火规范》(GB50045-95,2005年版)规定,当高层建筑的建筑高度超过250m时,建筑设计采取的特殊的防火措施,应提交国家消防主管部门组织专题研究、论证。美国《国际建筑规范》(2009年版)规定,有人员使用的楼面到消防车可以到达的地面的高差大于22.9m的建筑为高层建筑。对于建筑高度小于等于128m的建筑,可采用ⅠB类耐火等级的结构替代ⅠA类耐火等级的结构,但承重柱的耐火极限不应降低。英国《建筑设计、管理及使用消防安全技术规范》(BS9999∶2008)规定,顶层楼板到地面的高度超过18m时,应设置消防电梯和防烟楼梯间且前室内设置消火栓。此外该规范按照顶层楼面高度的不同对建筑耐火等级作了规定,如A2类建筑(人员处于清醒状态且熟悉环境,火灾增长速率为中速火),当顶层楼面高度超过60m时,构件耐火极限不低于2.50h。法国《高层建筑防火安全法规》(2007年版)规定,建筑高度大于50m的住宅及建筑高度大于28m的其他类型的建筑为高层建筑,建筑高度大于200m的建筑为超高层建筑。1972年的国际高层建筑会议将高层建筑分为4类:第一类为9~16层(最高50m),第二类为17~25层(最高75m),第三类为26~40层(最高100m),第四类为40层以上(高于100m)。由此可见,各国对于高层建筑均作了规定,但对超高层建筑的划分并不完全一致。有关高层建筑高度划分标准如下:美国23m、英国30m、法国28m(其中住宅50m)、我国24m,可见几个国家的规定相对而言差别不大,总体上,我国的规定比较适中。我国和法国明确界定了超高层建筑的划分高度,我国为100m,法国为200m,其中我国规范对建筑高度大于250m的建筑作了专门要求。美国和英国没有单独规定超高层建筑,但从消防救援以及建筑耐火等级角度对超过某一建筑高度的高层建筑作了特殊规定。如美国规定对于建筑高度小于等于128m的建筑,可采用ⅠB类耐火等级的结构替代ⅠA类耐火等级的结构,但承重柱的耐火极限不应降低;英国规定人员处于清醒状态且熟悉环境、火灾增长速率为中速火的建筑,当顶层楼面高度超过60m时,承重构件耐火极限均不低于2.50h。

1.2耐火等级各国规范均根据建筑高度及使用功能规定了相应建筑的耐火等级,有关超高层民用建筑主要承重构件的耐火极限要求对比情况见表1。从表1可以看出我国规范中有关柱、梁、承重墙等承重构件的耐火极限要求与其他国家的规定比较接近,但楼板的耐火极限相对偏低。根据国内建筑火灾统计资料,火灾延续时间在1.50h以内的占88%,在1.00h以内的占80%。与之对应国内规范将一级耐火等级建筑物楼板的耐火极限定为1.50h,二级耐火等级建筑物楼板的耐火极限定为1.00h。我国二级耐火等级建筑占多数,这样大部分一、二级耐火等级建筑不会被烧垮。当然,建筑构件的耐火极限定得越高,发生火灾时烧垮的可能性就越小,但建筑的造价要增加。

1.3防火间距各国规范均通过限定防火间距作为防止火灾在建筑之间蔓延的措施,美国规范详细规定了建筑相邻部位的开口要求,当间距大于9.1m时,则对外墙耐火极限没有要求。英国采用相邻建筑外墙所受热辐射强度来确定防火间距,以是否达到引燃木材的热辐射强度12.6kW•m-2作为判定条件,要求建筑到达公共边界或者假定的边界(而非相邻建筑物)的距离为其达到热辐射要求的计算距离的一半。例如,在火灾规模为30MW的情况下,距离着火建筑7.9m的距离处即可达到12.6kW•m-2的辐射强度,从而可以引燃木材。所以在这种情况下,要求其到达与相邻建筑公共边界的距离取7.9m的一半,即不小于4m。法国规范要求相邻高层建筑外墙的耐火极限不低于2.00h或具有8m的防火间距。我国规范也有限制外墙开口的类似规定,如开口面积小于外墙面积的5%时,防火间距可减少25%。对于耐火等级均为一、二级的相邻建筑,高民用层建筑与相邻高层建筑的防火间距为13m,与相邻多层建筑的防火间距为9m。我国规范中有关高层建筑与多层建筑的防火间距规定与国外规范相比较为接近。

1.4避难设施避难层(间)作为高层建筑尤其是超高层建筑重要的安全疏散设施,各国规范均有详细规定。美国规范规定电梯候梯厅在采取防烟措施的条件下可兼做避难区域,同时对避难区域提出了双向疏散要求。对人员疏散存在困难的医疗建筑,美国规范要求可供患者睡觉休息或治疗的楼层以及其他人员荷载超过50人的楼层均应采用挡烟设施分为至少两个烟气控制区,并对该类建筑中的避难区域面积作了规定,卧床病人按照2.8m2•人-1、其他人按照0.56m2•人-1确定避难面积。英国规范允许避难区域设置在受保护的楼梯间内。此外,美国、英国规范均考虑了使用轮椅等行动不便人员的避难需求,其每人占用的面积美国为0.9m2,英国为1.3m2。我国规范对超高层公共建筑设置避难层作了明确的规定,但对超高层住宅建筑,《民用建筑设计通则》要求设置避难层(间),而防火设计规范没有相应的规定,有关超高层住宅设置避难设施的技术要求仍需要进一步完善。

1.5消防救援确保火灾情况下消防车辆能够迅速到达着火建筑,提供消防救援人员进入建筑物的入口,对于营救建筑内的被困人员、降低火灾损失具有重要意义,国内外规范对消防车道(包括其宽度、通行高度和坡度、回转场地等)及消防扑救作业面(包括长度、与建筑的距离等)均有所规定。美国规范中消防车辆可到达的位置与建筑内设置消防设施的情况有关,当建筑内设有自动喷水灭火系统时,该距离可相应增加,如消防车道应能到达距建筑入口15m的位置,此外建筑物外墙与消防车道的距离不应超过46m,当设有自动喷水灭火系统时可增加到137m。英国规范规定消防车应能到达距消防水泵接合器18m的位置。法国规范规定消防车道与建筑物的距离不应大于30m。我国规范通过规定消防车登高操作场地的布置要求,限定其与建筑的距离不宜小于5m,且不大于10m。同时规定消防车与消防水泵接合器的距离为15m~40m。可见国内外规范对消防车到达位置与建筑之间的距离要求比较接近,一般控制在15m~40m的范围内。关于超过一定长度的袋形消防车道应设置回车场地的要求,美国规范规定为46m,英国规范为20m。我国规范规定尽头式消防车道应设置回车道或回车场,但未明确其长度要求,应进一步细化该规定。

2超高层民用建筑防火设计加强措施

综上所述,针对建筑高度大于100m的超高层民用建筑的防火设计,提出如下加强措施:

2.1耐火等级我国规范规定超高层民用建筑的耐火等级为一级,从前文对国内外超高层民用建筑主要承重结构构件的耐火极限对比分析可以看出,我国对于一级耐火等级建筑要求其楼板的耐火极限为1.50h,而国外规范的相关要求均不低于2.00h,可见我国规范对建筑楼板的耐火极限要求相对偏低。为给超高层民用建筑的消防救援以及人员安全疏散提供更有利的条件,建议提高楼板的耐火极限。目前,我国有关楼板的构造做法及耐火性能见表2。由表2可以看出,在楼板厚度为100mm(保护层厚度为10mm),其耐火极限可达到2.00h,楼板厚度达到120mm(保护层厚度为20mm)时,耐火极限可达2.65h。结合国外规范的相关要求和我国实际的楼板构造做法情况,对超高层民用建筑楼板的耐火极限提出如下要求:超高层民用建筑楼板的耐火极限不应低于2.00h。

2.2防火间距我国规范中有关高层建筑与多层建筑的防火间距规定与国外规范相比较为接近。此外,规范中规定在设有防火墙等条件下,高层建筑与相邻建筑的间距可以不限或不小于4m。对于超高层民用建筑,较大的防火间距除有利于防止火灾在建筑之间的蔓延外,也为消防救援提供了有利的条件。考虑到我国超高层建筑的数量及相应的救援和管理条件,建议即使在采取设置防火墙等措施的条件下,也不应调整超高层民用建筑与相邻其他建筑的防火间距。为此,提出如下建议:超高层民用建筑与相邻民用建筑的防火间距应符合高层民用建筑与民用建筑防火间距的相关规定,其间距在采取设置防火墙等措施的条件下也不应减小。超高层民用建筑与工业建筑的防火间距(包括与甲类厂房,与甲类仓库,与甲、乙、丙类液体储罐,与可燃气体储罐,与可燃材料堆场的防火间距)应符合高层民用建筑与工业建筑防火间距的规定,其间距在采取设置防火墙等措施的条件下也不应减小。

2.3避难设施避难层(间)作为高层建筑尤其是超高层建筑重要的安全疏散设施,各国规范均有详细规定。我国《高层民用建筑设计防火规范》对高层公共建筑设置避难层作了明确的规定,但对高层住宅建筑的避难层设置没有提出要求。仅在《民用建筑设计通则》中有高层住宅需要设置避难层(间)的规定。因此,我国建筑防火设计规范中有关超高层住宅设置避难设施的技术要求仍需要进一步完善。可以结合住宅建筑的特点,设置避难间。同时参考美国、英国等国家的规范对医疗建筑的避难区域或使用轮椅等行动不便人员的避难需求的规定,我国建筑设计防火规范在规定高层建筑安全疏散设施时也应考虑行动不便人员的避难需求,为该类人员的安全疏散提供可靠的保障。此外,对于高层建筑避难间的具体设置高度要求,需要考虑到当前消防车辆救援高度一般在50m的实际情况。为此,提出如下具体建议:建筑高度大于50m的高层病房楼,其50m以上楼层每层应设置避难间。建筑高度大于54m的住宅建筑,其54m以上楼层每层应设置避难间。

2.4消防救援《建筑设计防火规范》(整合修订稿)对消防灭火救援要求的规定,补充了现行相关国家标准在消防救援规定方面的不足,但对需要设置回车场的尽头式消防车道的长度要求需补充规定。结合道路中心线间的距离不宜大于160m的规定建议取1/4,即40m。此外,超高层住宅建筑与其他使用功能的建筑上下组合建造时,其裙房屋面如果兼做消防车登高操作场地,应对其屋面板的耐火极限提高要求,以确保消防救援作业的安全,可考虑与防火墙的耐火极限要求一致,即3.00h。为此,提出如下具体建议:一是长度超过40m的尽头式消防车道应该设置回车道或回车场。二是超高层住宅建筑与其他使用功能的建筑合建,住宅部分通过裙房屋面疏散且裙房屋面用作消防车登高操作场地时,裙房屋面板的耐火极限不应低于3.00h。

3结论

基于上述比较分析,对于超高层民用建筑的防火要求,笔者建议在《建筑设计防火规范》(整合修订送审稿)中增加以下规定:

3.1耐火等级。超高层民用建筑耐火等级不应低于一级,其楼板的耐火极限不应低于2.00h。

3.2防火间距。超高层民用建筑与相邻民用建筑的防火间距应符合高层民用建筑与民用建筑防火间距的相关规定,其间距在采取设置防火墙等措施的条件下不应减小;超高层民用建筑与工业建筑的防火间距(包括与甲类厂房,与甲类仓库,与甲、乙、丙类液体储罐,与可燃气体储罐,与可燃材料堆场的防火间距)应符合高层民用建筑与工业建筑防火间距的规定,其间距在采取设置防火墙等措施的条件下也不应减小。

超高层建筑要求第3篇

【关键词】灭火 高层 建筑

一、超高层建筑定义、建筑材料及结构体系

建筑高度超过100米的高层建筑通常称为超高层建筑。目前超高层建筑用于承受荷载的建筑材料主要有三种,分别为:钢结构、钢筋混凝土结构、钢混凝土组合结构。

二、超高层建筑在防火设计上的特殊要求

在我国《高层建筑防火设计规范》有关内容中规定超高层建筑除执行高层建筑防火设计的有关规定外,对超高层建筑提出了特殊的防火设计要求,如:

(一)建筑高度超过100m的高层建筑,其应在电缆井、管道井每层楼板处用相当于楼板耐火极限的不燃烧体作防火分隔;

(二)建筑高度超过100m的公共建筑,应设置避难层(间),并应符合有关规定;

(三)建筑高度超过100m,且标准层建筑面积超过1000m2的公共建筑,宜设置屋顶直升机停机坪或供直升机救助的设施,并应符合有关规定;

(四)当建筑高度超过100m时,高层建筑最不利点消火栓静水压力不应低于0.15MPa。当高位消防水箱不能满足上述静压要求时,应设增压设施;

(五)建筑高度超过100m的高层建筑及其裙房,除游泳池、溜冰场、建筑面积小于5.00m2的卫生间、不设集中空调且户门为甲级防火门的住宅的户内用房和不宜用水扑救的部位外,均应设自动喷水灭火系统。

通过对规范的研究,可以了解到超高层建筑从内部人员的逃生疏散、火灾范围的控制、排烟、供水、固定灭火设施上均提出了具体和更为严格的要求。

北京、上海等地相继发生高层建筑外墙火灾后,国家对高层建筑外墙保温材料的防火等级也提出了更高要求。

三、超高层建筑消防安全问题

超高层建筑在竖向的空间布置上得到了有效的延伸,从而使建筑业主对于建筑的内部空间进行合理的区域划分与功能的布置。正是超高层建筑的功能分区较为复杂,因此,消防监审部门不能够完全根据常规建筑的防火规范进行统一设计,需要针对不同功能分区采取必要的性能化设计。

四、超高层建筑火灾发生危险性

第一,可燃物较多,因此发生的火灾的负荷较大。超高层建筑的内部装修使用的材料主要是大量的可燃物,并且还敷设了很多的电缆电线。如果发生火灾,可燃物会产生毒害气体与大量的浓烟,并且沿着建筑的电梯井与垃圾井等竖向的.

第二,用电量大结构功能复杂。超高层建筑用途很多,其使用功能也相对复杂,提供办公、娱乐、餐饮、会议、商务、购物等功能为一体。并且,根据功能的需要,都会配置大量用电设备,因此其导致火灾发生的可能性因素很大。

第三,设备的日常维护和管理落实不到位,存在安全隐患。在超高层建筑的产权较为复杂、人员的流动性较大、使用功能复杂等。因此超高层建筑的消防设施长时间的使用后耗损程度较大,有些建筑内部甚至没有设计自动化的消防设施。

五. 超高层建筑消防设计

5.1消防设计的难点和目标

超高层建筑的高度一般超过100米,属于综合高层建筑,因此,消防设计难点主要体现在以下方面:

①消防扑救现场与扑救面难以确定。

②大型的地下停车库的疏散通道和疏散口与锅炉房的确定,以及柴油发电机房的位置。

③标准层的平面上的大空间的消防疏散设计。

④设计建筑避难层。

超高层建筑消防设计中,需要坚持:预防为主,防消结合“消防原则,并且完善超高层建筑消防自救能力,通过安全可靠消防防火措施,使建筑消防功能满足实用、安全、经济、技术先进要求。

5.2超高层建筑消防设计

①确定扑救现场与扑救面。根据超高层建筑的地理位置与周边环境,设计出合理的地形改造,最大限度的满足超高层建筑和城市道路之间的关系,从而实现项目建设合理性、经济型与可执行性。

②设计避难层。避难层提供给人员避难的安全场所,因此消防设计较为严格。根据《高规》:建筑高度如果超过了100米,其应该设置避难层。设置避难层,从超高层建筑的第一层到第一个避难层或者是在两个避难层间,但是不超过15层。其原因是火灾发生阶段聚集在建筑15层的避难人员是不允许经过楼梯进行疏散的,可以借助于室外登高云梯实现人员的疏散。所以,超高层建筑设计避难层,首先要考虑的是人员的安全疏散时间的控制,并且使室外消防登高车有效的施救高度,特别是第一个避难层需要充分的考虑消防装备水平,在设置消防登高车最大限度的伸展高度范围内。如果避难层每平米可以容纳5个人,并且适当的设计空余空间,因此好需要设计机械防排烟系统。

③标准层的平面空间上的消防疏散设计。根据超高层建筑的使用功能,进行规范设计,包括疏散宽度、疏散楼梯等。例如:如果属于综合办公区域,根据其使用功能,其内部的餐饮功能的消防难点是在第五层,如果按照消防疏散人员208个计算,疏散宽度应该设计为2.08米。如果会议层的消防难点是在第十一层,其疏散人员按照220计算,其疏散的宽度应该设计为2.2米。如果办公功能的消防难点层是标准层,面积按照929平方米计算,疏散人员按照156计算,其疏散宽度需要设计为1.56米。并且在疏散楼梯的设计上一般要求至少两部,每层都需要满足消防疏散要求。

④借用大型的停车库疏散口、锅炉房和柴油发电机房的位置的确定。如果超高层建筑的用地面积受到外界因素的限制,需要在一定面积内设计停车库,需要采用的是普通停车库和机械停车库相结合的设计方法。大型停车库的车辆出入口由于条件限制不能设计三个时,根据高度差关系,需要在建筑负2层或者是负3层分别设计通往到响铃的地下停车库的车行通道,并且借助于相邻的地下停车可地面出入口,从而实现了车库对外的出入口数量要求。但是,为了避免对主体超高层建筑的影响,需要在其周围场地设计景观造型和地面楼梯等外部造型。

结束语:

超高层建筑消防设计不但涉及以上几点,还包括建筑装饰材料的设计等。超高层建筑的设计基点都应该遵循我国的设计规范,根据超高层建筑特点,立足于防火自救,并且主动性的预防火灾发生,在装饰与保温材料上避免使用可燃性的建筑材料,严格把关施工。提高人民消防安全责任意识入手,保障人民群众的生命与财产安全。

参考文献:

[1] 曹胜开. 浅谈超高层建筑消防设计――以重庆银行大厦为例[J]. 重庆建筑. 2012(11-25).

超高层建筑要求第4篇

1体系的分类以及选用原则

超高层建筑一般是按照建筑使用功能要求、建筑高度不同以及建筑抗震防水、防火和经济、可靠、合理、安全的设计原则,将超高层建筑结构体系分为框架结构体系、框架-剪力墙结构体系、剪力墙结构体系、框-筒结构体系、束筒结构体系以及筒中筒结构体系。在超高层建筑结构设计中主要采用钢筋混凝土结构、型钢混凝土结构、钢管混凝土结构和全钢结构。目前,钢筋混凝土结构是我国超高层建筑的主要应用材料。在进行超高层建筑结构体系的选用时,首要考虑其安全及经济性,其次要依据超高层建筑的高度和施工环境来选择,同时要求超高层建筑的结构应具有较强的承压能力。

2超高层建筑的结构材料分析

钢筋混凝土材料之所以成为我国目前超高层建筑建设中使用最为广泛的材料,是因为钢筋混凝土在适应超高层建筑结构设计的前提下,能够全面发挥其的性能,并且钢筋混凝土耐久性较强,结构刚度较大,在维护过程中成本费用较低,因此钢筋混凝土作为建筑材料被广泛应用于建筑领域。为了更好的发挥钢筋混凝土的性能,在选择的时候要注意其材质问题。

3超高层建筑结构体系的选择

(1)框架结构体系,框架结构是指利用梁柱组成纵横两个方向的框架结构体系,它可以同时承受水平荷载和垂直荷载。主要的优点是建筑平面布置较为灵活,有较大的建筑空间,并且建筑立面处理比较方便,被广泛的应用于超高层建筑中。但是这种结构也有一定的缺点,就是横向刚度较小,当楼层层数较高时就容易发生侧移,易造成非结构性构件破坏而影响使用。

(2)剪力墙结构体系,是指钢筋混凝土构成的承重体系,剪力墙又被称为抗风墙或抗震墙。剪刀墙结构的优点是整体结构性较好,刚度大,在水平方向的荷载作用下不宜变形,承载力也毋庸置疑,并且房间内无梁柱外露,较为美观。此结构在高层建筑中被大量运用,其缺点就是剪力墙不能被轻易的破坏或拆除,不利于形成大的空间。

(3)框架-剪力墙结构,毫无疑问这种结构就是将框架结合和剪力墙结构的长处集于一体,在此情况下超高层建筑的结构不仅满足了建筑布局的灵活性,而且增强了超高层建筑的抗震能力,可以满足不同建筑功能的需求,但是剪力墙过多则会影响建筑的经济性和使用性能,过少则会增大建筑物侧墙的压力而出现变形的现象。

二超高层建筑结构设计的问题及对策

1超高层建筑的超高问题

目前,超高承重的问题在很多超高层建筑中普遍存在,因此,我国对超高层建筑的抗震能力方面要求严格,并且严格规定了超高层建筑的高度。在超高层建筑结构的设计过程中,禁止出现由于结构类型的改变而导致超高层建筑的超高问题出现。在设计过程中要认真审核和设计超高层建筑的结构设计方案,解决设计中存在的超高问题。

2超高层建筑的扭转问题

刚度的中心、整体结构的重心和几何形心是超高层建筑结构设计的三个核心。超高层建筑结构的扭转问题关键在于进行设计的时候未将刚度的中心、结构重心和几何形心重合,造成建筑物在水平压力下出现扭转的现象。设计者在设计时要尽量注重平面布局图的合理性,在一定程度上避免或预防建筑物的扭转问题,从而保证了在超高层建筑中刚度中心、整体结构的中心和几何形心三个核心的重合。

3嵌固端设置问题

我国现有较多超高层建筑物在结构设计时都会配置地下室,超高层建筑的嵌固端自然而然地被设置在地下室顶板的位置。超高层建筑的结构嵌固端对高层建筑基础具有一定的要求,其基础需具有一定的埋置深度,目的是为了保证整体结构的稳定性,并对减弱地震反应也起着一定的作用。设计师在嵌固端设置的问题上面一定要表现出高效的工作状态,从而避免在施工过程中由于嵌固端的设置而修改设计方案,造成日后不必要的麻烦。

三超高层建筑的基础设计

超高层建筑中最重要的设计就是基础设计,建筑物所受的各种荷载都需通过基础传至地基,可谓“承上启下”。超高层建筑的特点是层数多,上部结构荷载大且较为集中,因此其基础必须埋置深度大。在进行基础设计的时候要保证其埋置深度必须满足基地稳定和变形的具体要求,以避免日后建筑物出现倾斜的状况发生。超高层建筑物的基础通常采用桩形、筏形或者复合基础,其选型设计应根据工程地质条件、施工条件、上部结构情况、抗震设防和周围环境条件等因素综合考虑。

四结束语

超高层建筑要求第5篇

关键词: 超高层建筑; 建筑结构; 绿色建筑; 模糊综合评价

引言

结构是传递荷载、支撑建筑的骨骼,结构在建筑中的地位与作用不会因为建筑的发展而削弱或偏离。建筑结构通常要满足适用性、耐久性、安全性,建筑结构不仅要经济,而且要节能环保。建筑工程设计的内容可将设计工作分为建筑设计、结构设计和设备设计等。大型或技术复杂的工程,按照设计的阶段可分为方案设计阶段、初步设计阶段、施工图设计阶段。超高层建筑的设计,方案阶段内容可并入初步设计阶段,即在初步设计阶段,设计的工作者要通过优选与建筑设计相适应的结构体系。高层建筑的设计结构体系的选择是重中之重,通过研究了高层和超高层结构的结构体系和特点,为广大设计人员提供直观的经验与方法[1]。结构方案优选是综合考虑设计对象特征、环境与不同结构形式所形成的结构系统整体综合性能优劣,对多个方案的各个方面因素综合分析,选择一个合适的结构形式的决策过程。超高层建筑的结构设计对超高层建筑有着决定性的意义,为了超高层建筑设计更加合理,将绿色建筑的理念在超高层建筑结构设计中实施,推动建筑业的可持续发展,同时为绿色超高层建筑的发展起到推动作用。

本文将绿色建筑评价标准与超高层建筑结构设计结合,将绿色建筑评价标准的内容在超高层建筑结构设计中运用,增加超高层建筑结构方案评价的内容,运用模糊综合评价对超高层建筑结构进行综合评价,将超高层建筑结构的各方案进行排序,为超高层建筑结构设计提供借鉴。

1.超高层建筑的发展

1.1超高层建筑的定义、产生的问题与目前的发展状况

超高层建筑的定义:1972年8月在美国宾夕法尼亚州的伯利恒市召开的国际高层建筑会议上,专门讨论并提出高层建筑的分类和定义,超高层建筑是指40层以上(高度100米以上)的建筑。超高层建筑是现代文明的标志,超高层建筑也是现代科学技术的结晶,发展超高层建筑是人类强烈的愿望[2]。目前已建成的超高层建筑出现高能耗、光污染、“热岛”效应等问题,针对超高层建筑在运营阶段反馈的信息,绿色建筑已成为当前建筑业可持续发展的必由之路。

超高层建筑体现出社会、经济和科技的结合,超高层建筑在高度不断增加的同时,还呈现出综合化、异形化、生态化和智能化[2],当今可持续发展的大背景下,资源问题是我国建筑业高速发展发展面临的一个重大挑战,可持续发展是最佳选择,生态化是超高层建筑发展必然趋势,必须建立自然、社会与人的和谐发展模式。城市化与城镇化的发展,我国建筑业步入了一个前所未有的发展阶段,但是我国单位建筑面积能耗是发达国家的二至三倍[4],对我国经济造成了严重的能源负担,对人类生存环境造成了严重的环境污染,同时存在土地利用率低、水污染严重、耗材耗能高等问题。在这样的背景下,建筑业诞生了节能建筑、绿色建筑、绿色建材等新概念。

自1894年美国纽约曼哈顿生命保险大厦落成至今已建成的迪拜哈利法塔,无不见证了时代的进步和城市的发展。超高层建筑迅猛发展的客观条件有三:一是城市化进程加快,迫使建筑向更高空间发展;二是设计技术的创新,为超高层建筑在设计过程中进行多方案比较和优选提供了方便;三是轻质材料、轻质隔墙和轻型围护墙的应用;四是多种性能更优的新型结构体系出现[3]。现在世界各地掀起了兴建超高层建筑的新高潮,东京天空树、巴黎的“修道院广场”双子塔等相继兴建预示着超高层建筑有更好的发展前景。

1.2超高层建筑结构研究成果

超高层建筑具有投资大、周期长等特点。按照所选材料的不同,超高层的建筑结构可以划分为三类:钢结构、钢筋混凝土结构、混合结构与组合结构。混合结构与组合结构是根据钢结构和钢筋混凝土结构各自的优缺点,在超高层建筑不同部位可以采用不同的结构材料,在同一个部位也可以用不同的结构材料形成组合结构[2]。超高层建筑结构类型主要受技术和经济发展水平所决定,超高层发展的初期,超高层建筑多采用钢结构。目前超高层建筑结构中纯钢结构应用范围有所缩小,钢筋混凝土结构和混合结构的比重超过纯钢结构。

目前超高层建筑结构体系有:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、筒体结构体系、混合结构体系和悬挂结构体系等[5]。超高层建筑结构选型是在超高层建筑设计的初级阶段,该阶段超高层建筑结构设计应注意的四个方面(即概念设计、应保证结构分析计算准确性和设计指标的合理性、中震和大震下的结构安全性能、关注舒适度及施工过程的影响即可实时性)[8]。将超高层建筑结构方案选择的因素划分为目标层、准则层和指标层三层次结构,从结构材料、结构体系适用范围、经济性、施工方法、抗震性能目标、建筑美观、科研创新等方面进行通盘考虑,采用模糊层次综合优选法来确定超高层建筑的结构方案[6]-[7]。

绿色建筑是当今社会关注的焦点,绿色建筑是实现建筑业可持续发展的最佳路径,绿色建筑评价应作为超高层建筑结构方案的重要组成部分。关于超高层建筑结构方案进行评价研究还不是很多,通过超高层建筑结构优选,可以为超高层建筑结构的选型提供必要的理论基础。

2.《绿色建筑评价标准》(GB/T50378-2006)的分析与应用

2.1绿色建筑概念及其重要性

2006年,我国出台了第一部有关绿色建筑的国家标准《绿色建筑评价标准》GB/T50378-2006,在此标准上给出了适合中国国情的绿色建筑的定义,即“绿色建筑是指在建筑的全寿命周期内,最大限度地节约资源(节能、节地、节水、节材)、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共生的建筑”。建筑业正快速而大量的消耗地球的资源并造成生态环境恶化,资源、环境与发展之间的矛盾是我国建筑行业迫切需要解决的问题,因此,推进建筑结构体系的绿色化,是实践绿色建筑,解决我国建筑事业面临的问题有效途径。在设计阶段应考虑减少资源的使用和资源回收利用问题,同时考虑环境和生态的影响,综合环境、经济、和社会效益,为人类提供宜居环境。

2.2绿色建筑结构体系

绿色建筑的深入研究,结构体系及其配套技术集成的问题越来越重要,当前的建筑结构设计与选型理念,忽视结构建造、使用、维护和拆除再利用过程中的资源、能源消耗的问题,即综合社会效益问题,面临能源危机与环境问题,建筑设计者在结构体选型与设计中,应重视建筑结构体系在建筑生命周期内可持续发展、环境友好。

绿色建筑结构体系是指在建筑结构原材料的获取,构建及建材的生产、加工、运输,机构体系的建造,结构的使用与维护,结构的拆除与回收处理的全过程中最大限度的保护环境、节约资源、降低能耗,为人类提供与自然、与环境和谐的健康生活环境。

绿色建筑结构体系评价是对建筑结构原材料的获取,构建及建材的生产、加工、运输,机构体系的建造,结构的使用与维护,结构的拆除与回收处理的全过程中物质能量流动所产生的对环境影响的经济效益、社会效益和环境效益进行综合分析与评价。建筑结构体系评价目的是为建筑结构的选型、建筑结构设计提供借鉴,体现绿色建筑的评价内容的多角度。在不同的建筑阶段、不同的建筑参与者中,能够将绿色建筑的实践更加深入,从而推动我国建筑业可持续发展。

2.3标准在超高层建筑结构中的运用

标准中明确的将节能、节地、节水、节材作为绿色建筑评价的重要部分,结合《绿色建筑评价标准》GB/T 50378-2006 ,对结构体系、结构形式、结构刚度、结构布置及基础等方面研究,指明绿色建筑中结构设计的重要性,加深结构专业人员对绿色建筑的深入理解[9],超高层建筑要实现节约能源、资源,减小对环境的冲击,成为绿色建筑,在设计阶段就应该将绿色建筑评价标准的各项要求进行深入的理解,在选择超高层建筑结构的同时,结合建筑的全寿命周期与评价标准的要求进行合理的选择。《标准》用于评价住宅建筑和办公建筑、商场、宾馆等公共建筑,《标准》的评价指标体系包括以下六大指标:1)节地与室外环境;2)节能与能源利用;3)节水与水资源利用;4)节材与材料资源利用;5)室内环境质量;6)运营管理(住宅建筑)、全生命周期综合性能(公共建筑)。根据超高层建筑的主要适用于商业和办公,可知超高层建筑的评价属于公共建筑的范畴,因此只需要将评价标准中的公共建筑部分分析。综合分析标准的内容,结合超高层建筑特点,在超高层建筑结构选型评价体系中,将绿色性能作为评价体系中一项重要因素,包括:室内外环境、能源利用、水资源利用、材料资源利用与回收、全生命周期综合性能。

3.超高层建筑结构选型模型构建

超高层建筑结构选型可以分为两部分即上部结构的选型和基础结构的选型,依据建筑物功能、国家设计规范、工程地质条件、施工技术、工期和环境方面的要求,构建超高层建筑结构选型模型,体现出超高层建筑结构选型科学性、先进性、经济性。

3.1结构选型模型构建原则

(1)科学性:根据超高层建筑发展的实际情况,在已有科学研究基础上建立模型。

(2)全面性:将超高层建筑结构选型的可能影响因素全部考虑在内,力求模型内容的全面性。

(3)创新性:结合超高层建筑发展中遇到的问题,针对当前建筑业发展提出的绿色节能要求,基于现在的研究成果,增添更加合理的约束条件。

(4)有效原则:模型中的每一个约束都能够体现超高层建筑结构优选的必要性,在综合评价中体现出有效性。

3.2结构优选模型的构建与各因素函数的确定

将超高层建筑结构选型各种要求与约束因素转化成对超高层建筑结构选型起关键作用的四个目标级性能指标,构建能全面评价超高层建筑结构的目标模型。

3.2.1功能与美学价值性能 [15]

功能与美学价值性能主要体现在以下几方面,此项由建筑设计的专家进行评判,确定其隶属度。

(1)功能空间适应性

近期功能空间适应性和功能空间使用弹性适应性组成了功能空间适应性,近期功能空间适应性是指针对不同类的超高层建筑的建筑空间需求满足程度。功能空间使用弹性适应性是指空间布局和功能空间改变能够在一定程度上满足变动的需求。

(2)体型规则性

体型规则性包括平面体型规则性和整体外立面的体型规则性,两个方面综合考虑,超高层建筑呈现出的功能与美学价值

(3)结构系统美

单体视觉美、外部环境系统协调美、内部功能系统的协调美、结构系统的技术美共同组成了结构系统美。

3.2.2理论性能[6],[11]

结构设计基本规定,超高层建筑必须有理论作为支撑,确保建筑结构的适用性、安全性、耐久性。此项由结构设计的专家进行评判,确定各项的隶属度。

(1)刚度合适性:包括设防烈度与设防风压、总侧移限值、层间位移角限值、舒适度要求、设备运行与装修限值。根据《高层建筑混凝土结构技术规程》,由结构设计的专家进行评判,确定各项的隶属度。

(2)高度合理性:结构高度限制、结构平均层高限值,根据《高层建筑混凝土结构技术规程》,由结构设计的专家进行评判,确定各项的隶属度。

(3)空间整体性:设防烈度、长宽比、平面规则性,设防风压、高宽比、设防烈度根据《高层建筑混凝土结构技术规程》,由结构设计的专家进行评判,确定各项的隶属度。

(4)布局合理性:竖向布局合理、平面布局合理,根据《高层建筑混凝土结构技术规程》,由结构设计的专家进行评判,确定各项的隶属度。

(5)抗震与防风性能:能耗减震性能要求、抗震损伤性能要求、振动反应控制要求、风振反应控制要求、场地类别、远近震类别、结构自振周期,根据《高层建筑混凝土结构技术规程》,由结构设计的专家进行评判,确定各项的隶属度。

3.2.3经济性能[6]

为了能够实现投资的高回报,需要通过对超高层建筑结构起关键作用的因素进行评判。此项施工管理方面的专家进行评判,确定其隶属度。

(1)结构用钢量:超高层结构平均最优用钢量是处于70~150kg/m2之间[7],根据各方案确定其隶属度。

(2)预估工程造价:根据各方案的估价计算其隶属度

(3)建筑面积:根据各方案的估算建筑面积计算其隶属度

(4)施工工期:根据各方案的预估工期计算其隶属度

(5)施工技术:专家给出施工技术的难易标准,然后确定其隶属度。

3.2.4绿色性能[10]

在超高层建筑结构体系中,绿色建筑评价标准应作为超高层建筑结构方案的重要组成部分。绿色性能就是基于《绿色建筑评价标准》GB/T 50378-2006 与超高层建筑结构设计相结合确定的影响因素。此项施工方面的专家进行评判,确定其隶属度。

(1)室内外环境:根据《绿色建筑评价标准》GB/T 50378-2006,由专家确定其隶属度

(2)能源利用:根据《绿色建筑评价标准》GB/T 50378-2006,由专家确定其隶属度

(3)水资源利用:根据《绿色建筑评价标准》GB/T 50378-2006,由专家确定其隶属度

(4)材料资源利用与回收:根据《绿色建筑评价标准》GB/T 50378-2006,由专家确定其隶属度

(5)全生命周期综合性能:根据《绿色建筑评价标准》GB/T 50378-2006,由专家确定其隶属度

4.多层次模糊综合优选数学模型运用[13-14]

4.1多层次模糊综合优选数学模型

(1)超高层建筑结构的设计是一个复杂的系统,超高层建筑结构优选需要从多个方面考虑,深入的层次多,进而运用多层次模糊综合评判,将因素集U分成k个互不相交的子集,U={U1,U2,……,Uk};每一个子集Ui(i=1,2,……,k)即看做U的约束因素,按照各约束因素在U中所起的作用大小,确定其权重分配,即约束因素的权重向量W={W1,W2,……,Wk},由专家确定各因素的隶属度,构成矩阵P,Ui模糊综合评判结果向量Hi=Wi×P={hi1,hi2,……,hin}(i=1,2,……,k;n表示方案的个数),Hi组成总的评判矩阵

可以得到多层次模糊综合评判矩阵

B=WH=(B1,B2,……,Bn)(n表示方案的个数)

(2)综合评判

利用矩阵的模糊乘法得到综合模糊评价向量B B=WH(其中为模糊乘法),根据运算的不同定义,可得到不同的模型

模型1 M(Λ,V)主因素决定型

模型2 M( ? , ν)主因素突出型

该模型得到的评判结果除了突出主要因素的影响以外,也反映了非主要因素的影响。

模型3 M (? , + ) 加权平均型

该模型体现的思想是对各个因素进行权重分配,依权重大小均衡兼顾,适用于要求整体指标的情形。

4.2各因素权重集的确定

综合评判的另一个可以量化的重要数据是各因素的权重,综合评判应根据各指标的重要程度设置权重,权重反映指标重要程度的量化系数,重要程度高意味着权重大。权重确定得恰当与否, 直接影响综合评判的结果。在传统的APH中,为了使决策判断定量化而形成的数值判断矩阵,在构造判断矩阵时,利用T.L.Saaty提出的“1-9”标度确定两个指标间的重要性,再构造判断矩阵,当进行专家咨询时,专家和决策者很难掌握标度的标准,最终做出的判断往往不能满足一致性检验,针对上述情况,采用两阶段法,使构造出的判断矩阵满足一致性要求,第一阶段 采用(0,1,2)三标度法来对每一元素进行两两比较后,建立一个比较矩阵并计算出各元素的排序指数;第二阶段通过变换将比较矩阵转化为判断矩阵,并判断其一致性。具体的计算步骤如下:

(1) 用三标度法将同一层的元素进行比较后,建立一个比较矩阵并计算出各元素重要性排序指数。将比较矩阵转化为判断矩阵。用极差法构造判断矩阵,f(ri,rj)=cij=cb(ri-rj)/R,其中ri,rj表示i,j两个不同因素的标度指数的和;cb为一常量,通常取cb=9;R=rmax-rmin,为极差。rmax=max{r1,r2,……,rn} ,rmin=min{r1,r2,……,rn}

(2) 进行一致性检验,首先求出判断矩阵的最大特征值λmax,计算CI, 。查找随机一致性检验指标RI,计算CR=CI/CR。当CR

,i=1,2,……,n。

(3)各专家判断矩阵相似系数计算

用层次分析法计算出的权重矩阵中,Wij指第i位专家对第j个指标判断后计算得到的权重,m表示专家数,n表示指标数。

计算各权重间的相似系数并组成相似矩阵,判断矩阵中各专家所取的权重的离散程度。相似系数与相似矩阵如下:

表示的意思专家i与专家j权重结果的相似程度。

剔除离异点时采用如下方法,Pi表示相似系数矩阵中每一行之和,它表示第i个专家所得出的权重与专家群体所取得的权重偏离程度。

用Di表示第i个专家的相似系数与最大相似系数的偏离程度,Pmax表示矩阵P中的最大值。(查阅资料Di取0.05),最后采用加权算术平均法求得各指标的权重。

4.3各因素隶属度集的确定

根据综合评判模型可知,各因素的隶属度是综合评判可量化重要数据,请专家组成的建筑结构评估小组根据给定的评价基准对当前的进行评价,这种评价是一种模糊映射,即使对同一个评价因素的评定,由于不同评价人员可以做出不同的评定,所以评价结果只能用对第i个因素做出第j评价尺度的可能程度的大小来表示。这种可能程度称为隶属度,计为pij。

由此得到模糊评价隶属度矩阵,其中m表示专家数,n表示指标数。

6.结论

将绿色建筑的理念在超高层建筑设计阶段实践,依据构建的超高层建筑结构方案优选体系,运用模糊综合评价法,能够对超高层建筑结构备选方案进行评判,根据评判的结果,选择合理超高层建筑结构。

参考文献

[1] 沈瑞宏、陈婷、颜潇潇.高层、超高层建筑的结构体系[J].工业建筑,2009,39:402-405

[2] 胡玉银.超高层建筑施工[M].北京:中国建筑工业出版社,2011:7-34

[3] 张世海、张有才、薛茹.高层建筑结构设计[M].北京:人民交通出版社,2007:10-40

[4] 曾捷.绿色建筑[M].北京:中国建筑工业出版社,2010:

[5] 徐至钧、赵锡宏.超高层建筑设计与施工[M].北京:机械工业出版社,2007:1-45

[6] 雷淑忠、沈祖炎、郭兵.超高层建筑结构选型技术研究[J].建筑结构学报,2007,39:263-268

[7] 陈孝堂.超高层建筑结构体系方案优选[J].建筑结构,2010,40:182-188

[8] 刘进军、肖从真、王翠坤、徐自国、田春雨、陈凯.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011,41(11):34-40

[9] 汪四新、屈娜.某保障性住房绿色建筑结构设计与评价[J].建筑技术,2011,42(1):27-31

[10]《绿色建筑评价标准》GB/T 50378-2006

[12] 娄霓、张兰英、任民.绿色建筑结构体系评价与选型技术[M].北京:中国建筑工业出版社,2010:47-101

[13] 金菊良、魏一鸣、丁晶.基于改进层次分析法的模糊综合评价模型[J].水利学报,2004,3:65-70

[14] 苏小东.管理学院模糊评估法在项目管理成熟度评价体系中的应用[J].管理论坛,2010280:15-17

[15] 高庆辉、黄黎敏.一个超高层商务办公建筑方案设计[J].华中建筑,2006,24(3):39-41

【基金项目】重庆超高层建筑的项目管理研究(城科字2011第1-8号),项目名称:重庆超高层建筑的项目管理研究。项目来源:重庆市城乡建设委员会科技教育处。

超高层建筑要求第6篇

关键词:超高层建筑;经济性;影响因素;措施

在近几十年来,中国建筑行业取得了飞速的发展,在超高层建筑建设方面也展现了卓越的实力。福州市作为福建省的省会城市,在近几十年来也建设了不少超高层建筑,例如:福州市世贸俪园(178米)、福建省电力调度指挥中心(166米)、福建省广播电视中心(149米)等,都属于超高层建筑。超高层建筑在建设过程中不仅要保证建筑结构的整体安全性能,还应该采取适当措施提高超高层建筑的经济性。本文对超高层建筑结构经济性进行探讨,旨在为福建省超高层建设提供指导,从而节约建设成本,增大建设经济效益。

1超高层建筑结构的特点

超高层建筑指的是总层数在40层以上或建筑高度在100米以上的建筑物。超高层建筑的建筑高度相比一般建筑要高很多,因此也造成了超高层建筑在设计、施工过程中与一般建筑有很大的区别。超高层建筑的特点体现在以下几个方面:

(一)超高层建筑竖向荷载大。建筑结构的竖向荷载主要有自重荷载和楼面荷载。建筑结构的自重主要由建筑材料和建筑体积决定。对于超高层建筑,建筑材料用量大,因此建筑的自重荷载很大。同时超高层建筑层数多,容纳的人流量和物品也更多,因此楼面荷载也比一般建筑大得多。竖向荷载大导致超高层建筑在设计时对于基础的要求很高。

(二)抗侧移能力弱。超高层建筑由于高度大,受到的风荷载作用大,对建筑底部会产生很大的弯矩。同时超高层能力抗震能力弱,在设计时不仅需要考虑竖向地震作用还需要考虑横向地震作用。在进行设计时不仅需要控制建筑顶部的最大侧向位移,还需要对不同楼层之间的最大层间位移进行控制。

(三)超高层建筑需要高空作业。在超高层建筑施工过程中,需要高空作业,要建立完备的安全生产系统,还需要用到大型的起吊和升降器械,因此施工难度、施工风险和施工成本都比一般建筑施工要大。

2超高层建筑经济性影响因素

超高层建筑由于工程量大,建筑设计和施工过程复杂,因此影响经济性的因素很多,本文从设计阶段和施工阶段两方面进行分析。

2.1设计阶段

超高层建筑结构由于建筑高度大,受力复杂,因此必须经过详细的设计后才可以展开建设工作。超高层建筑设计阶段分为:建筑设计、结构设计、给排水设计等。

(一)对于建筑设计,主要是对建筑的外观、平面布置等进行设计。建筑设计直接影响到建筑整体的受力,对紧接着的结构设计会产生影响。当建筑设计不合理时,会导致结构受力增大,内力传递不合理等,为了满足设计要求则必须通过增大构件截面尺寸、钢筋用量等措施是构件满足承载力要求,这样会使建设成本增大,对建筑经济性不利。

(二)结构设计:建筑结构设计是保证超高层建筑满足承载力要求和正常使用要求的关键。结构设计时应该考虑经济性,进行合理的结构选型,不同的结构体系下的建设方案所消耗的成本也不同。在进行结构设计时,如果选择结构类型不合理,会导致部分构件没有完全发挥承载力作用,造成资源浪费,增大成本。

(三)给排水设计:超高层建筑在进行给排水设计时的关键是如何满足上部楼层用户的水压问题。给排水管网设计不合理,会导致管网系统材料和资源的浪费,对于节约建设成本不利。其实在设计过程中还涉及到超高层建筑的消防设计、人员流通设计等,任何设计的不合理都会导致建设成本增加,对建筑结构经济性不利。

2.2施工阶段

在施工阶段的经济性影响因素主要是施工效率的问题。在超高层建筑施工过程中,应该根据实际情况,考虑施工质量、施工进度和施工成本等综合评价制定合适的施工方案。在施工中施工方案不合理,会导致施工过程中材料、器械的浪费;还会由于施工进度安排不合理造成工作人员窝工等现象。这些都对超高层建筑经济性有不利影响。

3超高层建筑经济性措施

在超高层建筑结构进行设计施工时,必须要采取相应的措施,节约成本,提高超高层建筑结构经济性。可以从以下几个方面着手:

3.1建筑外观和平面布置合理

建筑外观在进行设计时即要考虑到美观,也应该考虑到建筑外观对成本所带来的影响,可以按照以下几个原则进行设计:

(一)建筑外观在横向应该保持对称。这是考虑到风荷载的影响,当结构设计不对称时会产生扭矩,对结构承载力要求提高。在纵向应该保持刚度均匀,不要发生突变。当竖向刚度发生突变时,会产生较大的层间位移,需要设置加强层和转换层,这样会增大建设成本。在对建筑屋面进行设计时,应该结合风载体型系数,进行选型,选择视觉效果美观,风荷载影响小的设计方案。

(二)平面布置时,应该将给排水、建筑消防、人员流通等因素结合在一起,集中进行设计,避免某一项设计对另外的设计工作带来不便,增加设计成本和建设成本。还应该对空间合理利用,充分发挥超高层结构的价值,从而提高经济效益。

3.2适当的结构选型

结构选型应该适当,超高层建筑结构有框架核心筒结构、核心筒结构和框架剪力墙结构等。不同的结构类型适用的情况和优缺点各不相同,在结构选型时应该根据功能需要并考虑经济性进行选择。

3.3科学的结构设计

结构设计和建筑设计相关,在进行结构设计时遇到问题可以与建筑设计单位进行沟通交流。结构设计应该满足以下要求:首先应该进行合理的荷载统计,在设计时充分发挥构件的性能,按照规范要去进行构件截面尺寸、配筋的设计。对于基础设计时,选择合适的基础类型,充分发挥桩和地下持力层的作用,避免设计富余。

4总结

超高层建筑的经济性应该予以重视。在实际建设过程中,进行合理的外观设计和平面布置;选择恰当的结构类型;在设计过程中充分发挥材料和构件的承载能力;施工时采取适当的施工方案进行施工等措施,对于提升超高层建筑结构经济性具有显著作用。

作者:李丽萍 单位:福建永昌建筑工程有限责任公司

参考文献:

[1]刘冒佚.探讨超高层建筑结构的经济性[J],科技与创新.2016,4:87~88.

超高层建筑要求第7篇

【关键词】超高层;建筑物;供配电设计;分析探讨

超高层建筑大都建在城市经济中心,该类建筑楼层多、高度高、人员密集,具有现代化程度高、各种强弱电设备及空调机电设备复杂,竖向管井多,可燃装修材料多的特点。对供电可靠性、安全性提出了更高要求,因此其供配电的设计复杂性也增加了很多。近年来,人们对于超高层建筑供配电问题越来越重视,供配电设计是否完善直接关系到供配电设施能否正常运行。本文主要研究超高层建筑物供配电设计原则,供配电设计要求与注意事项,为设计单位在超高层建筑物供配电设计方面提供借鉴。

1 超高层建筑物供配电设计原则

1.1 供配电设计供电可靠性

超高层建筑物供配电设计不同于其他类普通的建筑物供配电设计,其根本原因在于超高层建筑物的“超高”,因此,其对于建筑物供配电可靠性的要求也就更高。在实际的超高层建筑物供配电设计过程中,设计人员需要严格按照超高层建筑内部各用电设备的实际负荷,进行针对性的设计,从而确定超高层建筑物的电源回路数,满足超高层建筑物对于供电的需求。另外,超高层建筑物中的各种电气设备比较多,而且其中负荷量较大的电气设备也是很多的,因此,供配电设计供电可靠性也就显得至关重要。对于超高层建筑物进行供配电设计,需要从超高层建筑物的实际出发,选择出适合电压等级的供电器,举例来讲,不同的供电设备对于输送距离有着严格的要求,10kv中压电网只能输送10km左右。通过对于超高层建筑物供配电进行实际考察,可以提高供配电效率,减少不必要的浪费。

1.2 供配电主接线可靠与灵活性

主接线是超高层建筑物供配电设计的重要部分,供配电主接线可靠与灵活性对于提高超高层建筑物供配电设计质量意义重大。对于主接线的方式选择,需要以节约投资以及可靠性和灵活性为目标,保证供配电的正常运行,确保供电的顺利进行。一般来讲,主接线节约投资方式主要是两种,一种是动力与照明负荷分别供电,也就是分别由他们的变压器进行供电,另一种则是动力、照明负荷进行混合,也就是由同一个变压器进行供电。与前一种供电方式相比,这种混合式供电由于节约变电压,主要是供电方案合适,就可以最大限度的节约能源与资源。值得注意的是,这种集中变压器供电方式存在着较大的缺点,那就是一旦变压器出现问题,建筑物电力系统就会瘫痪。而那种分散式的变压器供电方式,即使其中一个变压器出现问题,仍然可以由另一个变压器进行供电,从而使得电力系统可以正常供电。

2 超高层建筑物供配电设计要求

2.1 供电功率与变压器选择

超高层建筑的关键在于高,正是由于这个特点,使得在对于供电功率与变压器进行选择时,设计人员需要科学合理的进行选择。对应好超高层建筑供配电设计,供电半径是一个需要严格考虑的问题,不同的变压器,其容量是不同的,其负荷能力也是不同的。超高层建筑电气设备较多,而且负荷密度极大,举例来讲,电力设备中的空调设备用电量就极大。一般来讲,超高层建筑的电子机房主要是存在于超高层建筑的中部位置。因此,超高层建筑物供配电设计的关键就在于,变压器最好要靠近电负荷中心,这样才可以使得变压器的功能充分的发挥,从而带动电力的负荷作用。

2.2 进行选择性和针对性设计

超高层建筑不同于一般的普通建筑,因此超高层建筑物供配电设计更需要提高其选择性和针对性。如果超高层建筑物出现火灾,那么火势的蔓延速度是很快的,火灾发生后的扑救工作也是很难进行的。所以,设计单位在实际的超高层建筑物供配电设计过程中,还需要设计应急电源,但是前提是必须要保证供给电源的稳定与正常。另一方面,超高层建筑物供配电设计还需要考虑到建筑物的耐火性,考虑到供配电设备的自动断电。超高层建筑物不同于普通建筑物,其最大的优势之一便是要自备柴油发电机设备。这种柴油发电机设备可以使得在火灾发生时,对于建筑物的毁坏起到保护与防止的作用,从而进一步保障广大人民群众的生命与财产安全。

3 超高层建筑物供配电设计注意事项

在实际的超高层建筑物供配电设计过程中,设计单位还需要注意一些其他的设计事项,提高供配电设计水平。建筑物内部的供电电源可靠性必须要得到进一步的保障,高层建筑物人员财物过于集中,一旦超高层建筑物出现断电情况,一定会带来某种程度上的恐慌与踩踏。提高建筑物内部的供电电源可靠性,采用两个可靠性电源至关重要,两个电源自成系统,而且还要独立配电。尤其要建立完善的应急电源系统,才特殊情况下,电源可以为人们提供便利。另一方面,随着网络化技术的不断应用和发展,超高层建筑的低压配电网络很多都采用混合式的配电系统。每个分区的供电方式都有不同,如地下室和裙楼区域一般采用的是放射式的配电方式,而建筑的主体部分则应用的是树干式的配电模式。对于供配电系统的网络化应该充分的考虑到建筑的高度,以及普遍的吊顶强的问题,才能更好的利于管理。最后对于电设备的布置应该要求能够便于维护和安全两点,对于电一般是设置在地下室附近,而各个楼层的配电室则应该适当的都靠近竖井旁边。

4 总结

综上所述,供配电系统的可靠性直接关系到建筑中供配电设施能否正常发挥作用,其直接为建筑中所有供配电设施设备运行提供动力。设计人员要有超前意识,进行合理供配电设计,为人们带来安全和舒适。设计单位在超高层建筑物供配电设计方面取得了重大的进展,但是在实际的超高层建筑物供配电设计以及应用过程中,还是存在很多问题,影响到超高层建筑物供配电系统顺利开展。作为电力系统设计单位,需要深入研究超高层建筑物供配电设计问题,创新超高层建筑物供配电设计策略,为设计单位在超高层建筑物供配电设计方面提供参考。

参考文献:

[1]杨成德,黄丽.超高层与特大型建筑工程的供配电设计[J].建筑电气,2011(04).

[2]江月刚.浅析高层建筑消防供配电设计[J].科技创新与应用,2012(18).

[3]李祚平.高层建筑消防供配电设计若干问题探讨[J].科技致富向导,2013(09).