欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

超高层建筑结构设计要点(合集7篇)

时间:2023-07-24 16:16:10
超高层建筑结构设计要点

超高层建筑结构设计要点第1篇

关键词:复杂高层;超高层建筑;结构设计要点

1前言

由于复杂高层与超高层建筑建设难度相对较大,为保证人们居住的安全性,相关建筑结构设计人员就应该以提高建筑结构安全性为主要目标,找出更有利于高层建筑建设的结构设计措施,从而在促进建筑行业发展的同时,保证复杂高层与超高层建筑建设能够具有合理性、抗震性,提高人们居住的舒适度与安全性。

2高层建筑整体结构设计特点

高层建筑整体结构设计特点主要体现在以下几方面:一是由于高层建筑相对较高,建筑水平荷载对建筑整体会产生一定的竖向轴应力,并在水平上受到自然灾害、风力等因素影响。因此在设计高层建筑整体结构时,除需要考虑到建筑竖向荷载外,也应该深入考虑到建筑水平荷载。二是由于高层建筑顶部压力相对较大,建筑在后期使用过程中,会出现轴向变形的问题,从而影响建筑梁弯距。因此为了保证高层建筑整体安全性,在结构设计时就应该加强对建筑梁弯矩的重视,避免发生高层建筑轴向变形问题[1]。三是对高层建筑整体抗震性的要求。高层建筑在设计过程中应该重视其结构延性,保证高层建筑能够更好的抵抗地震灾害,从而保证居住人们的生命安全。

3复杂高层与超高层建筑结构设计要点

3.1提高对建筑结构设计的重视,优化结构设计方案

复杂高层与超高层建筑结构设计方案直接决定了建筑结构后期应用的安全性。基于此,在进行结构设计时,相关人员就应该提高对建筑结构设计的重视,从而能够结合建筑工程周围实际情况,优化已经研制出的结构设计方案。首先,复杂高层与超高层建筑结构设计人员应该重视概念设计,在前期设计阶段需要坚持结构设计规则性、整体均衡性等原则,保证建筑结构各个部分都能够发挥出更有力的支持作用;其次,在完善复杂高层与超高层建筑结构设计时,结构设计人员应该加强与工程施工人员的沟通,从而在外观效果、施工效果的角度上实现对建筑结构设计方案的优化,避免建筑结构出现后期转换的问题[2]。最后,由于计算机技术在结构设计过程中发挥了重要的作用,因此相关人员还应该积极采取有效的计算机软件,实现对结构设计方案更科学的优化。

3.2深入分析建筑结构设计指标,提高结构设计的合理性

建筑结构设计指标不仅是复杂高层与超高层建筑结构设计人员应该遵循的指标,也是保证复杂高层与超高层建筑结构设计合理性的重要因素。因此在设计建筑结构时,相关人员就应该加强对以下几点内容的重视,从而提高复杂高层与超高层建筑结构设计的合理性。一是地震荷载指标:在研究人员的深入分析下,发现超高层建筑结构自震周期在6秒至9秒之间,因此在地震荷载指标的影响下,建议复杂高层与超高层建筑结构设计中直线倾斜下降时间控制在十秒左右。同时在分析该项技术指标时,也要全面结合建筑周围的实际情况,从而保证评估结果能够满足建筑结构合理性的要求;二是风荷载指标:由于复杂高层与超高层建筑主要会受到地震以及风力的影响,因此相关人员还应该遵照当前所提出的风荷载指标对建筑结构设计进行全面评估,从而实现对建筑变形的控制,提高建筑居住的安全性。

3.3根据相关建筑结构设计规范,保证结构设计的抗震性

由于建筑结构直接影响着人们的生命安全,因此在建筑行业快速发展的背景下,国家制定了科学、合理的建筑结构设计规范。针对复杂高层与超高层建筑提出的设计规范,有以下两种:《高层建筑混凝土结构技术规程》和《高层建筑抗震规程》。要想保证复杂高层与超高层建筑结构设计更加合理,能够更好的满足建筑抗震性要求,相关人员在设计复杂高层与超高层建筑时,就要严格按照相关建筑结构设计规范进行设计工作。同时也要全面考虑到当前建筑项目所处的外部环境、需求的抗震类别以及施工条件,以保证复杂高层与超高层建筑结构设计抗震能力为建设目标。在按照相关规范设计后,利用相关分析方法对复杂高层与超高层建筑进行结构抗震性的深入分析。

3.4重视后期居住的舒适性,保证建筑结构设计的科学性

在复杂高层与超高层建筑结构设计中,除需要重视上述设计要点外,还需要考虑到后期人们居住的舒适性。一方面,这是当今社会人们生活水平提高后对建筑结构提出的要求,另一方面,也是复杂高层与超高层建筑必须达到的建设目标。由于复杂高层与超高层建筑竖向荷载相对较大,因此在前期施工以及后期居住中,都会出现一定的压缩变形问题[3]。基于此,为了保证后期人们能够居住的更加舒适,在进行建筑结构设计及施工过程中,就应该积极采取预变形技术,并通过计算机软件进行详细的模拟演练,从而保证建筑结构设计能够更加科学合理,更好的满足人们居住要求。

4总结

综上所述,相关结构设计人员在设计复杂高层与超高层建筑时,要深入分析建筑结构设计指标、相关建筑结构设计规范以及居住的舒适程度,从而保证设计人员能够设计出结构更加合理、抗震性能更高、科学性更高的复杂高层与超高层建筑结构方案,保证复杂高层与超高层建筑使用寿命与安全性,为人们居住、工作提供更安全的环境。

参考文献:

[1]刘国荣.试论超高层建筑结构的抗震性设计[J].中国新技术新产品,2015(11):118.

[2]关伟,于连友,贾国熠.关于超高层建筑的相关结构设计讨论[J].门窗,2013(2):215~216.

超高层建筑结构设计要点第2篇

关键词:超高层;复杂高层;建筑结构;设计要点

1超高层及复杂高层建筑结构设计的要求

(1)科学分析构造。在设计超高层及复杂高层建筑结构过程中,设计人员需要对建筑的整体构造进行合理设计,严格遵循实用性与稳定性的原则,对结构设计细节加以高度重视,加固设计部分应力符合集中的部位。同时设计人员需要综合分析外界的环境因素,如风向风力、温度变化等,以免建筑物出现形变和侧移等问题,确保构造的稳定性[1]。此外,设计人员需要准确把握建筑材料的性能,尤其是材料的形变能力和延展性,以便因材料质量问题而影响建筑构造的使用性能。(2)优选结构方案。结构方案的选择是超高层及复杂高层建筑建设的前提与基础,因此设计人员需要以工程实际情况为依据,科学确定结构方案,在确保结构安全稳定的基础上,协调好建筑成本投入及结构优化之间的关系。同时构建系统科学的评价方案,在评价体系中纳入相关的评价标准,如自然因素、施工工艺、工程材料和设计要求等,然后分析和对比超高层及复杂高层建筑的结构设计方案,优选出最佳方案,保证工程的有序实施。(3)完善计算简图。在结构设计环节,计算简图的目的就是为方案的选择提供数据支撑,达到结构精细化分析的目的。由于计算简图的完善与否直接关系到结构设计的科学合理,因此在实际工作中,设计人员应体现出计算简图的全面性与直观性特征,对结构简图的绘制误差进行科学控制,以便获得关键性的内容,真实准确反映出工程的结构信息,便于工程的顺利开展。

2超高层及复杂高层建筑结构设计的要点

超高层及复杂高层建筑结构设计的要点具体表现为以下几方面:(1)注重概念设计。在超高层及复杂高层建筑的结构设计中,需要高度注重概念设计,适当提高结构的均匀性、完整性、规则性,保证结构抗侧力与竖向的传力路径相对直接与清晰;同时在设计中适当融合节能和环保的理念,构建切实可行的耗能机制,关注材料与结构的利用率,保证结构受力的完整性。(2)加强抗震设计。抗震设计保证超高层及复杂高层建筑安全性的前提与基础,要想做好抗震设计应做好如下几点:①关注抗震结构设计的方法和质量。由于地震作用方向的随机性强,对地震荷载进行准确计算后,需要从构件与结构等方面出发,科学选用抗侧力结构体系,使刚心与形心相重合,提高结构安全性能[2]。②认真考虑抗震设防烈度。抗震设防烈度是建筑结构设计的重要内容,在烈度设计中应以建筑物最大承受强度大小为主,以此增强建筑物的安全性与经济性,有效减少建设误差,保证人们的生命财产安全。③科学选择建材。抗震设计材料应具备材质均匀、高强轻质等特点,并且构件连接应有良好的延性、连续性、整体性,这样才能有效消耗地震的能力,降低地震反应,减少因地震造成的损失。④加强构件强度。为了增强超高层及复杂高层建筑结构的抗变形能力和抗震性能,可以选择强度较大的结构,如钢结构、型钢混凝土结构、混凝土结构等。(3)合理选择结构抗侧力体系。要想保证建筑的安全性,必须要对结构抗侧力体系进行科学选择,但是在选择过程中需要注意几点:①在实际设计环节,应该高度重视相关结构抗侧力构件的联系,使其形成统一和完整的整体。②如果建筑结构中涉及诸多抗侧力结构体系,则需要对其进行认真分析,科学评判其贡献程度,对其效用进行详细考察[3]。③从建筑物实际高度出发,对所学的结构体系进行确定,如建筑物高度不超过100m,框架剪力墙、框架、剪力墙为最佳体系构成;高度保持在100~200m的范围内,剪力墙和框架核心筒为最佳体系构成;盖度在200~300m的范围内,框架核心筒和和框架核心筒伸臂为最佳体系构成;高度低于600m时,衔架、斜撑、组合体、筒中筒伸臂、巨型框架为最佳体系构成。

3结束语

在超高层及复杂高层建筑结构设计过程中,需要对其设计要点进行准确掌握,从施工过程、抗震设防烈度和结构方案等方面处罚,做到科学分析构造、优选结构方案、完善计算简图,并加强抗震设计,注重概念设计,合理选择结构抗侧力体系。这样才能提高材料的利用率,保证建筑结构的稳固性和安全性,增强建筑的整体质量和使用性能,达到良好的设计效果。

参考文献

[1]吴荣德,李国方.复杂高层与超高层建筑结构设计要点探析[J].住宅与房地产,2015,28:40.

[2]胡先林.试论复杂高层与超高层建筑结构设计要点[J].建材与装饰,2016,10:124~125.

超高层建筑结构设计要点第3篇

【关键词】:高层;超高层;建筑;结构;设计;

中图分类号:TU97 文献标识码:A

一.引言

目前我国复杂高层建筑与超高层建筑的蓬勃发展,从一定程度上反映了我国的建筑事业在向前发展。复杂高层建筑与超高层建筑能够发展的如此迅速,也是经济发展和建筑事业发展的必然结果。原因一方面是有些城市希望拥有一栋栋的高大的形象建筑,除此之外,还应该是因为高层和超高层建筑可以在有效面积的土地上发挥出最大的使用效益。建造高层建筑以及超高层建筑需要的费用要比一般建筑高很多。尽管如此,依然不会阻挡我们高层建筑的前进步伐,因为我国的建设发展需要它们。它们可以让土地使用率提高,因此高层建筑发展速度快就成为必然的现象。

二. 超高层建筑结构设计方法

(一)设计方略

1.超高层建筑设置避难层是消防的必然要求和选择,这样可以保证遇到火灾时人员得到及时的疏散。与此同时设置设备层也是对于机电设备使用的要求。一般超高层建筑要求是说可以两者兼而使用,但是对于更高的多功能使用的超高层建筑,要求不一样了。必须每15层设一个避难层兼设备层。当然了,还需要设有机电设备层。这就是说不但要考虑实际的荷载情况之外,还需要对设备的振动对相邻楼层使用的影响进行合理科学的考察。楼层的结构设计很重要,我们可以通过设置结构加强层,以此来提高结构的整体刚度。

2.超高层建筑的结构类型选择上要广泛选择,也就是说除了钢筋混凝土结构外,全钢结构和混合结构也是包括在内的重要结构内容。

3.超高层建筑的平面形状多为方形或近似方形,对于矩形平面其长宽比也要在要求之内,抗震设防的高烈度地区更要注意,应该采用规则对称平面。要不然的话会出现地震时候的扭转效应,效应太大,会直接影响建筑结构。

4.超高层建筑的基础形式包括等厚板筏基和箱基,一般不存在高层建筑中的梁板筏基。我们都知道,基底压力很大,这就要求建筑有很高的地基承载力,一般情况下基岩埋藏较浅。也就是说可以选择可选择天然地基,其他的一般均采用桩基。

5.房屋高度超过150m的超高层建筑结构要有良好的使用条件,这为了满足风荷作用下舒适度要求,结构顶点最大加速度的控制满足相关规定要求。

(二)注意事项

1.提高结构的抗震性能

抗震设防烈度与结构体系的选用密切相关的。要满足三个水准的设防性能目标,原因是地震作用太大,导致结构构件截面尺寸大,用材指标要求变高了。这就会导致工程造价也增加。对于超高层建筑房屋住宅必须要经抗震设防专限审查批准后方可进入正式设计。

2.根据建场地的岩土工程地质条件和抗震性能目标的确定进而来选择出合适的超高层建筑结构体系。同时还要考虑经济的合理性,总之综合考虑是关键。

3.建筑与结构的关系协调好。才能选择出合理的结构布置设计工作。

4.风作用水平力的降低 。

4.1迎风面积正方形平面形式要减小,最小的就是横向迎风面;我们在计算对角线方向的迎风面宽时候,圆形平面是最小的一面;风力降低最直接的方式就是在立面上适当位置开洞泻风。

4.2风力形心降低很关键。下大上小的立面体型要学会采用,也就是说要学会减小高风压迎风面积,特别指的是在高处的。这样可以使得重心降低,降低风的作用,可以做到减小建筑物底部的倾覆总弯矩。不仅如此还可以增大抵抗矩。这说的就是下大上小的立面体型对建筑底部的影响,可以让其稳定性得到提高,如巴黎的埃菲尔铁塔。

4.3 建筑平面形状可以选用体型系数较小的。圆形平面正多边形平面正方形平面,这属于体型系数从小到大可选择下列平面顺序。外形是采用流线光滑,避免建筑形式变得凹凸多变,体型系数可以减小整体和局部风压。

4.4 震动减小,输入能量耗散是重要的。采用阻尼装置是可行的,还可以加大阻尼比,降低震动影响,如台北国际金融中心大厦。

4.5剪重比。现在超高层建筑设计中对于剪重比的要求越来越严格,在实践重要的超高层建筑,剪重比的要求甚至还要更高。一方面,对6度区的最小剪重比要求是新增加的,然而严格的一刀切剪重比要求,也会存在一些问题。

4.6剪力墙的稳定性,新的高规征求意见稿对于墙体最小厚度要满足稳定性的要求强调了,但是规定的分析方法不够细致,墙体的水平无支长度是首先要考虑的问题,但是它并没有考虑到这里,也没有考虑到一边有翼墙,另一边没有的情况;只考虑了层高的楼层约束,是相对于沿着层高方向来的。还没有更好的考虑核心筒内部墙肢,可能几十层都没有楼板约束的情况,特别是当两边都是电梯井时。对于体稳定的简化计算公式无法涵盖这些情况的特殊性。

5.结构材料选用

超高层建筑结构材料的首选是要求:更轻、更强、更具有延性的材料。可以作为结构构件的主要材料包括钢筋混凝土、型钢混凝土、钢管混凝土和纯钢材;而玻璃幕墙、铝合金幕墙钢塑复合板材等是用于外墙维护的;轻质隔断是属于内部隔墙用的;楼层面常选用压型钢板加混凝土面层,并在的钢承重构件表面加涂防火涂料。 其实,现如今超高层建筑的不断向前发展,这就说明我国的复杂高层已经超高层建筑设计技术有了很大提高,可以说已经走在了世界前沿水平。 三 如何做好高层建筑结构设计

合理选择构方案

一个合理的设计必须选择一个经济合理的结构方案,一个切实可行的结构形式和结构体系是关键。受力明确,传力简捷是结构体系要做到的。不同结构体系在同一结构单元不可以混用,地震区应做到平面和竖向规则的注意。总之,各种情况都要进行综合分析,充分协调很重要,在只有这样才能选择好结构方案,必要时应进行多方案比较,择优选用。

四.结束语

我国国民经济的在不断的向前发展,我国的高层建筑以及超高层建筑的发展也是时代的要求和必然选择。复杂高层建筑与超高层建筑的发展已经取得了显著的成果,建筑工程设计者们在为这样的成果高兴的同时,还应该不断的努力提高技术水平,减少同发达国家的差距,争创更优秀的成果。为共同提高超高建筑结构的设计水平而奋斗。

高层建筑物结构设计的合理性非常之重要,在实际的设计的过程中,工程师们应该要重视概念设计,并且能够制定出一套合理可行的结构方案,安全性与经济性并存。采取技术措施要有针对性,应保证结构分析计算准确性和设计指标的合理性,让中震和大震下的结构安全性能得到重视。总而言之结构设计是个全面的系统性工作。需要扎实的理论知识,灵活创新的思维。在工作态度上要做到严肃认真负责的。千里之行始于足下,建筑工程设计人员在设计的过程中应该从一个个基本的构件做起,深刻理解规范和规程的意义,只有这样我们的建筑事业才会更美好 !

参考文献:

[1]范绍芝.侯家健.连体高层建筑结构研究综述.建筑结构.2009年8月

[2]苏健.高层结构体系弹性整体稳定性研究.浙江大学.2012年4月

超高层建筑结构设计要点第4篇

由于高层、超高层的高层建筑与普通的有所不同,因此就更需要设计人员引起注意。随着不断增加的超高建筑物,逐渐地暴露出一些关于设计方面所存在的不足,比如抗震设防不准确、建筑结构和类型的不合理,以及没有最大程度地考虑建筑的舒适度和施工过程等等,当问题出现时,就必须采取措施,解决问题。当然在采取措施的同时,还有相应的要点需要进行深度的分析,例如建筑时需注重抗震设计、科学并且合理地选择建筑结构的抗侧力体系以及重视概念设计等方面。与此同时,这些问题的存在同样为设计师积累了一定的关于日后超高建筑建设的经验。随着建筑技术的迅速发展,高层建筑的数量不断增多,其复杂性同样在持续增加,以至于对于建筑的安全性与经济性的要求也越来越高。无论是从结构设计所积累的经验还是理论研究,想要在一定程度上保证其安全性,还需继续探索。

二、设计复杂高层以及超高层建筑时需要考虑的问题

1.抗震设防烈度。对于超过一百米以上并且承受不同强度的抗震设防烈度的建筑物,所被要求建筑物的高度同样是不尽相同的。通常情况下,三百米及以上的建筑物不适合建在抗震设防烈度为八度的区域,因此,复杂性高层以及超高层建筑更加适合建设在六度抗震设防烈度的地区。综合考虑以上因素,在建设复杂高层以及超高层建筑时,就应该将该地区的抗震设防烈度考虑在内,以免造成技术错误,防止人民的生命财产产生不该有的损失。作为一名设计师,就应该十分重视抗震技术,提高高层建筑的质量,包括建筑的安全性以及经济性,从建筑的细部处理出发,坚持以人为本的原则,才能切实有效地保障人民群众的财产安全。

2.结构方案与结构类型。想要成为一名优秀的建筑设计师,首先一定要考虑到在设计中的建筑物结构方案的问题,特别是复杂性高层以及超高层建筑,结构方案的不合理选择,很容易导致整个方案的调整,产生许多不必要的麻烦,给设计单位带来损失。因此,设计单位就应该在进行建筑方案设计的同时,具备结构专业知识,并将其参与到设计当中。与此同时,在高层结构类型的选择上,设计师不仅仅要将方案所在地自身岩土工程地质条件充分考虑在内,而且要充分考虑所在地的抗震度要求。除此之外,为了可以更好地节约建筑成本,工程造价问题和施工合理性问题也应该充分考虑在内,同等条件下,当然青睐造价较低的方案。

3.关注舒适度和施工过程。(1)高层建筑水平振动舒适度。通常来说,复杂性高层以及超高层建筑的结构比较柔软,因此,在设计的时候,除了要保证结构安全之外,更多的是需要满足居住人群对于建筑舒适度的要求;当然对于高钢规程以及高层混凝土规程同样提出明确的设计要求,这就需要设计师及时控制,特别是在高层建筑物已经达到顺风向与横风向顶点的最大加速度。进行舒适度分析是复杂高层建筑进行分析的主要任务,对于混凝土的结构,阻尼比最好取0.02,对于钢结构以及混合结构,其阻尼比可以根据实际情况在0.01~0.02之间取。公共建筑与公寓类建筑相比,水平振动指标限值也有很大的区别,其主要原因就是功能的不同。增设TMD或者TLD可以在水平振动舒适度不合格的情况下,进一步提高舒适度水平。(2)在设计的同时应考虑建造过程的可实施性。及时注意钢材传力以及复杂节点部位钢筋的可靠性、施工的可实施性,这是设计人员在结构设计的同时必须要做到的。通常来说,有四种处理的方法来解决型钢与其混凝土梁柱节点中主筋相交的问题:①钢筋与表面的加劲板焊接;②钢筋绕过型钢;③钢板上开洞穿钢筋;④其表面的焊接钢筋和连接套筒。复杂的高层建筑则会在施工方法上采取另外一些特殊的工艺。

三、设计要点分析

1.注重概念设计。通过大量的实践经验,我们可以总结出,在复杂超高建筑的结构设计上,应该要重视建筑的结构概念设计,尤其应该重视以下环节:(1)应该尽可能地提升建筑结构的规则性以及均匀性;(2)确保结构的传力途径清晰而又直接,特别是抗侧力以及结构竖向的传力途径;(3)在设计上,将结构的完整性保持在一个较高的水平上;(4)节能减排的意识要渗透进设计,能够建立一个比较合理的耗能机制;(5)重点提高建筑构件材料利用效率与结构,保证结构的受力完整性。在这里,所有过程的实现,都是离不开建造师与工程师较好地沟通与交流的,只有沟通,才能将建筑与结构相统一。

2.科学、合理选择结构抗侧力体系。大量的理论与实践证明,正确地选择了合理的抗侧力体系,可以更有效地保证复杂高层以及超高层建筑结构的安全。因此,在选择上要特别注意以下因素:(1)与建筑的实际高度相结合,选择合理的结构体系。(2)对于建筑设计上,最大可能地保证结构抗侧力的构件之间的互相联结。(3)对于采用多重抗侧力结构的情况下,综合分析结构体系的效用,正确估计和评判各自的贡献度。

四、总结

超高层建筑结构设计要点第5篇

关键词:超高层建筑;结构设计;抗震

超高层建筑不仅可以为用户提供舒适的工作和生活环境,还可以很好地缓解大中城市由于人口增长带来的用地紧张的局面;同时,超高层建筑可以凭借其高度高、外形美观的特点而成为该地区的标志性建筑。现根据在超高层建筑结构设计中的实践,就超高层建筑的特点、结构方案选择的主导因素以及混合结构的设计等方面的内容与同行探讨。

1超高层建筑的特点

(1)超高层建筑由于消防的要求,须设置避难层,以保证发生火灾时人员能够安全地疏散。由于机电设备使用的要求,还需要设置设备层。一般超高层建筑是两者兼顾,设备层与避难层并做一层。而对于更高的有较多使用功能要求的超高层建筑,除每15层设一个避难层兼设备层以外,还需要设有专门的机电设备层。为提高结构的整体刚度,可以将设备层或是避难层设置为结构加强层。

(2)超高层建筑的平面形状多为方形或近似方形,其长宽比多小于2。否则,在地震作用时由于扭转效应大,易受到损坏。

(3)超高层建筑在基岩埋深较浅时,可选择天然地基作为基础持力层,采用筏基或者箱基,若基础持力层较深时,可采用桩基。较少采用复合地基。

(4)房屋高度超过150m的超高层建筑结构应具有良好的使用条件,满足风荷载作用下舒适度要求,结构顶点最大加速度的控制应满足相关规范要求。

(5)超高层建筑结构设计一般都需要进行抗震设防专项审查,必要时还须在振动台上进行专门的模型震动试验,才能确保工程得到合理地设计和建造。

2超高层建筑结构方案确定的主导因素

2.1建筑方案应受到结构方案的制约

超高层建筑方案的设计与实施应有结构专业在方案阶段的密切配合,保证结构方案实施的可行性。另外,在与建筑方案设计的协调配合过程中,结构方案设计应力求做到有所创新,能获得良好的经济效益和社会效益。

2.2结构类型的选择应综合考虑

(1)应考虑拟建场地的岩土工程地质条件

一个拟建在基岩埋藏极浅场地上的超高层建筑,具有采用天然地基的条件。一般这样的场地其场地类别为Ⅰ类或Ⅱ类,在该地区抗震设防烈度较低的情形下,其所采用的结构体系可优先采用钢筋混凝土结构。而对于在第四纪土层上的抗震设防烈度为7度或8度区的超高层建筑,为降低地震作用,结构选型应考虑采用结构自重较轻的混合结构或钢结构。

(2)应考虑抗震性能目标

一般抗震设计的性能目标要求竖向构件承载能力较高,达到中震不屈服;剪力墙底部加强区达到抗剪中震弹性。显然,在抗震设防烈度7度区,尤其是8度区,钢筋混凝土结构就很难满足这一条件。所以,为减小结构构件在地震作用下产生的内力,应优先考虑选用混合结构或钢结构,这样可以基本由型钢承担地震作用下产生的构件剪力和拉力。若是采用全钢筋混凝土结构,竖向构件则会因截面计算配筋量太大,导致钢筋无法放置;单纯增大构件截面则会使结构自重加大,同时地震作用产生的结构内力也会相应增加,截面配筋率仍得不到很好控制。

(3)应考虑经济上的合理性

通常从工程造价上比较,钢筋混凝土结构最低,其次是混合结构,最高则是全钢结构。所以,超高层结构方案的选用应着重考虑工程造价的合理控制。另外,超高层建筑中的竖向承重构件由于截面积大而会使建筑有效的使用面积减小。采用型钢混凝土柱或钢管混凝土柱作为主要承重构件可较大提高主体结构的承载能力,而且使整个结构有较好的延性,柱截面比单纯采用钢筋混凝土柱减小近50%,增大了建筑有效使用面积。即使采用钢筋混凝土结构方案,为减小柱截面,也可在一定标高框架柱内设置型钢,可获得较好的经济效益。

外框架采用型钢混凝土柱或圆钢管混凝土柱,混凝土核心筒构件内设型钢;类似于这种混合结构,正普遍运用于超高层建筑结构设计。此种结构相对全钢筋混凝土结构自重要小,尤其具有较大的结构刚度和延性,在高烈度地震作用下易于满足设计要求,同时具有良好的消防防火性能,其综合经济指标较好。

(4)应考虑施工的合理性

众所周知,房屋高度愈高,施工难度愈大,施工周期也愈长。一般钢筋混凝土结构高层建筑出地面以上的楼层施工进度约每月4层;混合结构(型钢混凝土框架+钢筋混凝土核心筒,内外框梁为钢梁)约每月5层~6层;全钢结构约每月7层。因此,在结构设计当中,应根据不同的房屋高度和业主对工程施工进度的要求,综合考虑选择合理的结构类型。

另外,由于超高层建筑施工周期长,从文明施工和尽量减少对城市环境不良影响的角度考虑,应尽量减少现场混凝土的浇捣量,使部分结构构件能放在工厂加工制作,运到现场即可安装就位。同时在楼盖结构设计中考虑尽量减少模板作业,采用带钢承板的组合楼盖,这对于保证工程施工质量和加快施工进度是极其有效的措施。

3.超高建筑结构类型中的混合结构设计

3.1型钢混凝土和圆钢管混凝土柱钢骨含钢率的控制

一般设计中,混合结构构件的钢骨含钢率中都是由构造控制,目前国内相关的设计规范和技术规程的规定各不相同,但有一个共同点是框柱中钢骨的含钢率不宜小于4%,这是型钢混凝土柱与钢筋混凝土柱区别的一个指标。在混合结构设计过程当中,设计者可根据计算结果来设计柱纵筋和箍筋,并设置大于4%的含钢率的型钢截面即可。

3.2钢筋混凝土核心筒的型钢柱的设置

在地震作用或风荷载作用下,钢筋混凝土核心筒一般要承受85%以上的水平剪力;同时筒体外墙还要承受近楼层面积一半的竖向荷载。所以,在筒体外墙内设置型钢柱既可保证筒体与型钢混凝土外框柱有相同的延性,还可以减小两者之间竖向变形差异。同时,筒体墙内设置型钢柱,可使剪力墙开裂后承载力下降幅度不大。尤其在抗震设防的高烈度区,剪力墙底部加强区的抗震性能目标要按中震弹性或中震不屈服设计,其地震作用下剪力、弯矩很大,更需在墙体内设置型钢柱。否则,内筒边缘构件配筋面积太大,增加了设计和施工的难度。通过设置型钢柱,可取代边缘构件内的纵筋。

3.3关于结构的抗侧刚度问题

超高层建筑混合结构的钢筋混凝土核心筒体是整个结构的主要抗侧构件,所以筒体的墙厚尤其是外侧墙厚,主要是由抗侧刚度要求决定。因此,外框柱截面的设计除满足承载力和轴压比要求外,其刚度在整体结构刚度设计中应予以充分考虑。

在超高层建筑结构设计中,由于框架-核心筒或筒中筒结构(钢筋混凝土或混合结构)的结构抗侧刚度有时不能满足变形要求,需要利用避难层或设备层在外框或外框筒周边设置环状桁架或同时设置水平伸臂桁架。采用这种桁架式的加强层可使外框架或外框筒与核心筒紧密连接成一体,增大结构的抗侧刚度和扭转刚度,满足结构的变形(层间位移)要求。对于外框柱与筒体的剪力墙间设置的水平伸臂桁架,应使设置水平伸臂桁架处筒体的墙定位与外框柱相对应,水平伸臂桁架平面应与内筒体墙刚心和重心重合,方能形成较好的结构整体抗侧刚度。

4结语

结构设计是基于建筑的表现,以实现建筑优美的外观和良好的内部空间。因此在设计过程当中需要建筑表现和结构方案的完美统一,这就必须依靠建筑师与结构工程师在整个设计过程中相互密切配合,综合考虑结构总体系与结构分体系之间的传力路线关系,并充分考虑结构材料选用、施工的可行性和经济性,避免施工图设计中产生不合理的结构受力体系。

参考文献:

超高层建筑结构设计要点第6篇

关键词:超限高层建筑防震设防结构设计

Abstract: the paper mainly with an engineering example, in view of some overrun highrise structure design key points are analyzed, and the main structure of the building from the selection, structure calculation and result, and seismic fortification, etc, this essay aims at strengthening high-rise structure design level and ensure the quality of the construction and security.

Keywords: overrun highrise shock resistance structure design

中图分类号:TU318文献标识码:A 文章编号:

一.工程概况

某超限高层建筑,总建筑面积为4.797万。本工程地下3层,地上39层,地上通过抗震缝分为两栋楼,房屋高度120.18米,采用部分框支剪力墙结构体系,其中部分剪力墙在2层转换。地基基础设计等级甲级。混凝土结构的环境类别为一类及二a类,相应地,混凝土结构的裂缝控制等级为Ⅲ级(对一、二a类环境分别为wlim=0.3mm及0.2mm)。混凝土受弯构件的挠度限值按跨度由小到大依次为l/200、l/250。建筑场地类别Ⅱ类,抗震设防烈度Ⅶ度,设计基本地震加速度值为0.10 g。

二.建筑结构选型

(1)主楼高度(±0.00以上)120.13m,地面以上结构层为39层,其中出屋面3层,高度为8.8m。

(2)建筑规则为平面扭转不规则;平面凹凸不规则;布置不均匀;结构层第2层为转换层,竖向构件布置不连续; 其他不规则(局部穿层柱)。

(3)本工程为现浇钢筋混凝土结构,楼盖整体性好。

(4)结构类型:框架―剪力墙结构,属于复杂类型。

(5)超限类型:本工程高度超限;扭转不规则、凹凸不规则、构件间断(带转换结构);

其他不规则(局部穿层柱)。

(6)抗震等级:本工程地上剪力墙抗震等级为一级,地下则同首层一样;地上框支框架抗震等级为特一级,地下二、三层则是逐层降低一级。

三.结构结果分析

(1)计算软件:PKPM系列结构分析软件SATWE模块,中国建筑科学研究院PKPMCAD工程部编制。

(2)楼层自由度为3(刚性楼板)。

(3)周期调整系数:0.9。

(4)主楼结构总重: 5.72万吨(SATWE)。

(5)基底地震总剪力:32581 KN(X向)36421 KN(Y向)(SATWE)。

(6)扭转位移比:X向1.17 ;Y向1.28。

(7)转换层的上下刚度比:0.6027。

(8)最大轴压比:n=0.85。

(9)最大层位移角为1/1176,在17层(SATWE)。

(10)时程分析采用人1/1176工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。

四.结果计算

(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。

(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。

(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h =1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。

(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。

(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。

(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。

(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于 1.3 的规定。

(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80% 的规定。

(9)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。

五.屈服判别法分析

按本工程在设防烈度地震作用下的抗震性能目标的要求,对其进行中震屈服判别分析,以判别结构在中震作用下的抗震性能。框支墙柱、框支梁在设防烈度地震作用下的抗震性能为中震弹性,标准层剪力墙的抗震性能为中震不屈服,连梁、框架梁的抗震性能为中震少量屈服,判别结果如下:

(1)框支墙柱、框支梁:个别构件需按中震弹性及小震计算结果进行包络设计,可满足中震弹性的抗震性能目标。

(2)底部加强区剪力墙:个别构件需按中震弹性计算结果进行设计,可满足中震抗剪弹性的抗震性能指标。

(3)标准层剪力墙: 个别剪力墙需按中震不屈服计算结果及小震计算结果进行包络设计,可满足中震不屈服的抗震性能目标。

(4)连梁、框架梁: 中部楼层部分连梁、框架梁出现屈服,通过实配钢筋并考虑放大,可满足少数连梁、框架梁屈服的抗震性能指标。

六.大震弹塑性分析

采用PERFORM-3D软件对结构进行弹塑性时程分析得到以下结论:

(1) 对结构输入峰值加速度为220gal的ELCentro波和安评波,进行双向地震作用的计算,结构竖立不倒,反应历程中最大层间位移角小于1/120,满足规范要求;

(2)连梁和框架梁出现弯曲塑性铰,梁端塑性铰在各个楼层分布较为均匀,计算结果显示柱未出现屈服,框支墙柱、框支梁在大震下未出现塑性铰或钢筋不发生屈服;

(3)层间位移角曲线不存在突变的情形;

(4) 综合以上,认为该结构能够满足“大震不倒”的设防目标和本工程罕遇地震作用下的抗震性能目标。

七.结构超限的抗震加强措施

(一) 超限情况

(1)房屋高度120.18米,超过《高层建筑混凝土结构技术规程》4.2.2规定的钢筋混凝土部分框支剪力墙结构房屋最大适用高度A级最大高度100米、B级120米的限值;

(2)本工程首层(二层楼面)设置梁式转换结构,属于竖向抗侧力构件不连续的竖向不规则结构;

(3)标准层在水平地震考虑质量偶然偏心作用下,结构楼层的扭转位移比大于1.2,属于扭转不规则的平面不规则结构;

(4)标准层楼板存在凹凸不规则,属于凹凸不规则的平面不规则结构。

(5)局部穿层柱,属于其它不规则类别。

(二)针对本工程超限情况,采取了以下措施:

(1)采用三个不同力学模型的空间分析程序SATWE、MIDAS GEN、ETABS进行分析计算,互相校核计算结果,确保总体计算结果吻合,确保局部构件的分析判断一致。

(2)采用SATWE软件进行了弹性时程分析,三条波基底剪力的平均值小于规范反应谱的相应值,说明规范反应谱的计算结果是偏于安全的。

(3)对结构在设防烈度地震作用下的分析结果表明,个别框支墙柱需按中震弹性及小震计算结果进行包络设计,可满足中震弹性的抗震性能目标。

(4)用PERFORM-3D进行了结构在大震作用下的弹塑性动力时程分析。

(5)采用ETABS软件对楼板的应力分析结果表明,地震作用下楼板的面内剪应力较小,楼板的剪力满足承载力验算条件,可以认为本工程楼板在常遇地震作用下处于弹性状态。

(6)针对结构薄弱部位采取比规范更严格的配筋构造。

超高层建筑结构设计要点第7篇

关键词:复杂高层 ;超高层建筑 ;建筑结构 ;设计 ;

中图分类号:TU97 文献标识码:A 文章编号:

我国复杂高层及超高层建筑不断崛起,建筑企业为了提高自身企业在建筑市场中的竞争力,对复杂高层及超高层建筑结构设计也有了更高的要求。复杂高层及超高层建筑结构设计中包含了诸多设计方面及影响因素,在设计施工前要根据高层建筑规范要求及实际情况进行科学合理的设计分析,确保建筑结构设计施工的科学性合理性,从而提高复杂高层及超高层建筑的安全性能,促使建筑企业走向一个新的里程碑。

复杂高层及超高层建筑结构设计中的抗震设计分析

复杂高层及超高层建筑相对于普通建筑而言,具有一定的特殊性,复杂高层及超高层建筑结构较为繁杂,且具有一定的高度,若出现紧急情况或者是地震自然灾害等不易救援,在这种情况下在复杂高层及超高层建筑中进行抗震设计就显得尤为必要。评价一个复杂高层建筑或者是超高层建筑结构抗震设计是否合格,可以从以下两方面进行分析:

1.抗震设计时要保证其为弹性状态

复杂高层建筑及超高层建筑倘若出现地震自然灾害由于其海拔过高必然会影响到周围的建筑物,给城市带来一定高的灾害,对其进行抗震设计是防患于未然的一种措施,在抗震设计中保持其为弹性状态,能够降低地震对建筑物的损坏率。

抗震倒塌设计

在复杂高层建筑及超高层建筑结构抗震设计中,要对建筑所能承受的地震振动侵害的大小,对其最大地震振动进行计算分析,能够在一定程度上降低地震灾害的侵害程度。其次,对于地震结构设计中的延性构件进行合理设计,其非弹性变形的能力不得超过其本身的变形能力,而对于非延性构件,其承受地震自然灾害的抗压力应该大于其本身建筑所能承受的压力,不论是复杂高层建筑结构设计还是超高层建筑结构设计,都要对其构件进行合理的控制,保持抵抗地震自然灾害的弹性。

复杂高层及超高层建筑结构设计要点分析

复杂高层及超高层建筑在建筑施工中相比普通建筑而言,具有一定的难度,其工程量较大,楼层较高,所以在建筑结构设计中要遵循一定的施工要求,准确把握施工要点,这样才能提高施工质量,保证复杂高层建筑及超高层建筑的安全性及稳定性,以下笔者根据诸多建筑企业进行复杂高层及超高层建筑结构设计施工中所总结的建筑结构设计要点:

重视建筑结构概念设计,着眼整体

复杂高层及超高层建筑其施工程序较为繁杂,在对其进行施工设计时,需要全面把握其结构概念,重视复杂高层及超高层建筑结构的概念设计,要做好复杂高层及超高层建筑结构概念设计,首先,应该从建筑的规则性及均匀性着手,在实际施工中要重视建筑施工中的对称性,保证建筑整体的美观;其次,结构设计中需要多个施工人员的配合,所以在建筑结构概念设计中要注重传力途径的建设,要保证施工中有一条清晰直接的通道实现传力,在传力途径建设中主要从结构竖向传力及抗侧立传力两方面出发;再者,在建筑结构设计施工中,要把握好复杂高层及超高层建筑的整体性,它在一定意义上直接体现了建筑企业的施工水平,另外我国提倡节能减排,建筑企业要想适应这一形势,在超高层建筑结构设计施工中就要融入节能减排的理念,在建筑物内部安装节能设备。

合理选择抗侧力结构体系

抗侧力结构设计是复杂高层及超高层建筑结构设计中的重要组成部分,良好的抗侧力结构设计能够提高复杂高层及超高层建筑的安全性能,为用户提供良好的居住或办公环境,因此在建筑结构设计施工中一定要合理选择抗侧力结构体系。选择合理的抗侧力结构需要了解建筑的实际高度进行科学的分析选择,另外在整个结构设计中要尽量使抗侧力结构体系中的各构件紧密连接在一起,保证其内部构件的整体性。结合建筑实际状况对每种抗侧力结构体系进行分析,了解其在建筑结构设计中所发挥的作用,根据复杂高层及超高层建筑的不同特点及当地的地理环境从而选择正确的抗侧力结构设计方法。

注重抗震设计各个环节的把握

抗震设计是复杂高层及超高层建筑结构设计的重中之重,它直接关系着建筑整体的安全性及稳定性,是确保建筑安全的重要环节,因此在复杂高层及超高层建筑结构设计中一定要严格把控抗震设计中的各个环节,提高抗震设计各个环节的合理性与科学性。在抗震设计中对抗震材料的选择是十分重要的,它在一定程度上直接影响了抗震设计的抗震性能,选择抗震材料要根据复杂高层或者是超高层建筑的特点进行购买,针对不同的高度选择抗震性能等级不同的材料。在建筑结构抗震设计施工前,要拟定行之有效的设计方案,确定建筑结构的变形弹性,在抗震施工中对其变形弹性的把控需要符合地震预期要求,另外还需要合理控制地震作用下的层间位移,进行层位位移在一定程度上能够降低地震给建筑带来的侵害。

全面了解所要设计的建筑结构特点才能准确把握结构设计的要点,在抗震设计中要科学对建筑结构的变形及结构位移进行科学的研究分析,精确两者之间的连带关系,从而更好的进行抗震结构设计,提高复杂高层及超高层建筑的安全性能,延长复杂高层及超高层建筑的使用寿命。倘若该建筑处于地震灾害的常发地区,应该进行多方面抗震设计,提高其抗震延性,增强复杂高层及超高层建筑的抗压力,减少因地震灾害而出现建筑倒塌事件的发生。

建筑结构抗震设计的质量及方法从一定意义上来讲直接决定了其抗震能力及效果,在整个建筑结构抗震设计中,设计人员一定要按照高层抗震设计的相关规定,而后再结合超高层及复杂高层建筑所在的具置,周边环境进行分析,从而制定出符合建筑结构施工要求的抗震设计方案,以便后期施工人员抗震结构设计施工的顺利进行。抗震设计对复杂高层及超高层建筑结构设计具有重要的意义,良好的抗震性能能够降低降低地震自然灾害对建筑的侵害,确保建筑的安全,从而保证住户的人身安全。

总结

复杂高层及超高层建筑与普通建筑相比,施工难度大,注意事项较多,所以要做好复杂高层及超高层建筑结构设计,要结合复杂高层建筑或者超高层建筑所在的地理位置及特点进行全方位的结构概念设计,制定科学合理的设计方案,从而保证设计人员顺利进行结构设计施工建设,提高复杂高层及超高层建筑的结构设计水平,从而确保整个建筑的安全质量,为住户或者办公者提供良好的建筑环境。

参考文献:

[1]陈惠信.对超高层建筑结构设计技术要点的探讨[J].中国建筑工业出版社,2012,10(5):116-118

[2]陈天虹;林英舜;王鹏种.超高层建筑中结构概念设计的几个问题[J].建筑技术,2011,10(5):357-359

[3]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012,6(12):45-48