欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

欧姆定律的适用范围(合集7篇)

时间:2023-08-16 17:05:49

欧姆定律的适用范围第1篇

关键词:欧姆定律;适用范围;微观机理;导电材料;能量转化

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

[1]普通高中课程标准实验教科书物理选修3-1[M].北京:人民教育出版社,2010.

欧姆定律的适用范围第2篇

【关键词】物理;欧姆定律;问题;解题思路

欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。

1在欧姆定律的学习中常遇到的问题

1.1欧姆定律的使用范围问题

在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。

1.2线性元件的存在问题

通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

1.3电流,电压与电阻使用的问题

电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式I=UR,I、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。

2欧姆定律学习中需要掌握的内容

本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式I=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式I=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/I;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。

3欧姆定律的解题思路及技巧

3.1加深对欧姆定律内容的理解

在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2A,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。

3.2利用电路图进行进行计算

在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式I=U/R及导出式U=IR和R=U/I进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的I、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。

3.3利用电阻进行知识拓展

本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=ΔI・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。

4总结

简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。

参考文献:

[1]高飞.欧姆定律在串并联电路中的应用技巧[J].才智,2009(27)

欧姆定律的适用范围第3篇

一、欧姆定律发现历程溯源

2.相同之处

欧姆定律适用于线性元件,如金属等,不适用于非线性元件,如气态导体等。

三、三点质疑

1.线性元件存在吗

材料的电阻率ρ会随其他因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

2.对所有非线性元件欧姆定律都不适合吗

在上述所有表述中都有欧姆定律适用于金属导体之说,又有欧姆定律适用的元件是线性元件之说,也就是说金属是线性材料,而我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,为了避免这种自相矛盾,许多资料上又说欧姆定律的应用有“同时性”,或者说“欧姆定律不适用于非线性元件,但对于各状态下是适合的”,笔者总觉得这样的解释难以让学生接受,有牵强之意,给教师的教造成难度,既然各个状态下都是适合的,那就是整个过程适合呀。

3.对欧姆定律适合的元件I与R一定成反比吗

I与R成反比必须有“导体两端的电压U相同”这一前提,在这一前提条件下改变导体的电阻R,那么通过导体的电流就会发生变化,因而导体的工作点就发生了变化,其制作材料的电阻率 ρ就随之变化,因此导致电阻又会发生进一步的变化,这样又会导致电流产生进一步的变化,所以实践中多数情况下I与R就不会成严格的反比关系,甚至相差很大。

四、两条教学对策

1.欧姆定律的表述需要改进

其实早就有一些老师对欧姆定律的表述进行过深入的分析,并结合他们自身长期的教学经验,已经提出了欧姆定律的表述的后半部分“I与R成反比”是多余的,应该删除,笔者也赞成这种做法,因为这种说法本身就是不准确的,这也是在上述三种大学普通物理教材中都没有出现这个说法的原因。

通过对欧姆定律发现历程的溯源,可知欧姆当时发现这一电路定律时也没有提出“反比”这一函数关系,只是定量地给出了一个等式,因此,笔者认为欧姆定律的现代表述有必要改进,既要传承欧姆当时的公式,也要符合实际情况,所以笔者认为欧姆定律应该表述为:通过导体的电流强度等于导体两端的电压与导体此时的电阻之比。

那么,为什么连“I与U成正比”也省去呢?当R一定时,I与U成正比是显然的,但如果在欧姆定律的表述中一旦出现“I与U成正比”的说法,学生就会很自然地想到“I与R成反比”,而这种说法是不对的,所以表述中最好不要出现“I与U成正比”和“I与R成反比”这两种说法。

2.线性还是非线性元件的区分不能以材料种类为判断标准

同样是金属材料,钨丝的伏安特性是非线性的,而一些合金材料导体的伏安特性却是非常接近理论线性,如标准电阻。所以我们在区分线性元件还是非线性元件时,不能以导体的材料种类作为判断的标准,而只能通过实验测定,得到I-U图象,以此来作为判断依据。

欧姆定律的适用范围第4篇

关键词:欧姆定律 高中物理教学方法

一、教材分析

《欧姆定律》的内容,在初中阶段已经学过,高中阶段《物理》安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了《欧姆定律》教学的教学目的和教学要求。教学不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

《欧姆定律》的内容在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定了基础。《欧姆定律》实验中分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,《欧姆定律》是后续课程的知识准备阶段。

通过《欧姆定律》的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用。《欧姆定律》内容的重点是进行演示实验和对实验数据进行分析。这是教学的核心,是教学成败的关键,是实现教学目标的基础。《欧姆定律》教学的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。

二、关于教法和学法

《欧姆定律》教学采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。

通过《欧姆定律》的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:

1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起了承上启下作用。

2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样既巩固了他们的实验知识,也调动他们尽早投入积极参与。

3.在进行演示实验时可请两位学生上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。

4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次高潮,通过提问和画图象使学生的学习情绪转向高涨。

5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提问请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次高潮,也使学生对电阻的概念是如何建立的有深刻的印象。

6.在得出实验结论的基础上,进一步提出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。

7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。

2.注意正确规范地进行演示操作,数据不能虚假拼凑。

3.注意演示实验的可视度。可预先制作电路板,演示时注意位置要加高。有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。

4.定义电阻及欧姆定律时,要注意层次清楚,避免节奏混乱。可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后。这样学生就不易将二者混淆。

5.所编反馈练习题应重点放在概念辨析和方法训练上,不能把套公式计算作为重点。

6.注意调控课堂节奏,避免单调枯燥。

参考文献:

欧姆定律的适用范围第5篇

一、刑事合作进程中的制度设计与缺陷

在刑事合作领域,1992年的《马斯特里赫特条约》,尤其是1997年的《阿姆斯特丹条约》大大提高了欧盟对成员国决策的影响。在《马斯特里赫特条约》中,第K1条以及第K3条规定,为了达到欧盟自由迁徙等目标,欧盟理事会(司法与内务事务理事会)可以适用共同立场、共同行动以及公约等法律形式来规范成员国之间的刑事合作。《阿姆斯特丹条约》第29条、第31条以及第34条则规定,为了使欧洲公民在“自由、安全与司法的区域”中享有高度的安全保障,欧盟理事会在成员国刑事合作方面可以适用共同立场、框架决定、决定以及公约等法律形式。

这些欧盟条约的规定意味着,欧盟在刑事合作领域除了拥有与成员国协商以缔结国际公约的权力外,还有权适用对成员国具有相当影响力的共同行动(《马斯特里赫特约》)、框架决定或决定(《阿姆斯特丹约条约》)等法律形式。在《阿姆斯特丹条约》生效后,框架决定和决定代替了共同行动。然而,无论是刑事决定的相互承认还是刑事法律的相互接近,“框架决定”的适用频率是最高的,也是最重要的。

框架决定的特点在于,对成员国的约束力仅反映在结果上,成员国可以根据各自的情况选择实施的形式和方法,其适用不需要经过成员国议会的批准或全民公决,即使框架决定的实施可能会造成成员国法律的修改或补充。虽然框架决定对成员国具有间接的约束力,但它对刑事合作领域的影响巨大,有学者甚至认为框架决定在第三支柱领域所起到的作用类似于指令在第一支柱中的作用。因此,通过制定对成员国具有约束力(但不具有直接效力)的框架决定,欧盟加强了对成员国刑事合作的影响。

《阿姆斯特丹条约》第29条规定,建立“自由、安全与司法的区域”所需要的三种途径包括,更加密切的警务合作、司法合作以及成员国刑事法律的相互接近。第31条第5项还规定,在有组织犯罪、反恐以及贩运毒品领域,欧盟将逐步建立犯罪构成要件以及刑罚的最低规则。此外,第34条第2款第2项还规定,为了使成员国的法律与规定相互接近,欧盟委员会可以适用框架决定。这些规定表明,除了使犯罪构成要件以及刑罚这两个刑事实体法领域相互接近外,框架决定不应当用于别的领域。此外,考虑到《阿姆斯特丹条约》首次规定刑事实体法的相互接近,应当对此进行严格的解释。因此,管辖方面的法律、刑事程序法以及在创制新的合作形式方面都不得适用框架决定。

然而,在实际操作中,欧盟除了在犯罪构成要件以及刑罚方面实施了相互接近外,还在管辖、刑事程序法以及新的合作形式等诸多方面运用框架决定,进而大大超越了欧盟条约的授权。比如,在创建新的合作机制方面,欧洲逮捕令的诞生完全取代了传统的引渡制度,并在规定中引入了32种犯罪不适用双重犯罪原则的做法,这样的变革是颠覆性的。

在犯罪种类方面,《阿姆斯特丹条约》第31条第5项仅规定了构成要素与刑罚相互接近的3种犯罪,即有组织犯罪、恐怖主义行为以及贩运毒品。如果适用严格解释,只有上述三种犯罪可以成为刑事法律相互接近的对象。然而,实际涉及到的犯罪种类远远超出了欧盟条约中的规定,甚至超出了欧盟理事会坦佩雷会议以及“打击有组织犯罪新千年规划”中所包含的犯罪类型,而坦佩雷会议以及“千年规划”中的犯罪种类已经超越了欧盟条约的规定。

除了恐怖主义行为与贩运毒品外,借助“有组织犯罪”这个开放性的概念,其它许多犯罪都成为欧盟进行刑事法律的相互接近的对象,比如种族主义与仇外、高科技犯罪、贩运人口、财政犯罪、税务诈骗、对儿童的性剥削、环境犯罪以及未经许可的入境、中转与拘留等。因此,欧盟主导的刑事法律的相互接近完全超出了欧盟条约以及相关的重要政策文件。通过适用包含上述内容的框架协定,欧盟理事会以及欧盟委员会似乎在故意忽视欧盟条约规定的限制,进而扩大对成员国刑事合作的影响。

这种变化的一个重要因素在于,自从《阿姆斯特丹条约》生效后,欧盟司法与内务理事会几乎再也没有通过传统条约的形式来规范成员国的刑事合作,而是在绝大多数情况下选择了更加灵活的框架决定,尽管欧盟条约第34条第2款第4项规定公约在该领域中也是一种立法形式。

因此,有学者认为,欧盟司法与内务理事会越来越多地滥用了框架决定等立法形式,造成了欧盟决策的不透明与不民主:框架决定无需成员国议会的审查即可生效,而在此过程中欧盟议会也仅仅具有接受咨询的作用,监督力度不大,缺少共同决策的权力。

此外,尽管欧洲法院的司法解释能够部分地弥补一些缺陷,其司法管辖权也比《马斯特里赫特条约》中的规定有所扩大,但仍需成员国的同意才能启动,造成框架决定的适用缺少足够的司法控制。[1]这些刑事合作领域中的缺陷表明,这些不足将会影响成员国进一步制定与实施法律的动力,甚至会在某种程度上损害相关立法的合法性。

在刑事决定的相互承认方面,虽然它是“自由、安全与司法区域”的基石,并非所有的成员国都热衷于扩大其适用的范围。作为欧盟范围内首个生效的刑事决定的相互承认机制,欧洲统一逮捕令是在美国911恐怖袭击,使欧盟成员国受到震惊,进而达成一致政治意愿的情况下产生的。整个决策过程只有短短的三个月,成就了国际刑事合作领域中的重大转折,与其相关的欧洲统一冻结令也相继产生。

然而,在统一冻结令之后,对于其它领域的刑事决定的相互承认的框架决定,成员国的协商进程明显减缓,目前许多仍在草拟阶段,其中包括被判刑人的移转、以共同体为基础的惩罚、审前释放以及对犯罪嫌疑人的监督、从业禁止以及一事不再理等诸多方面。显然,目前上述框架协议已无法在海牙计划所设定的时间结点前产生。比如,与对儿童性侵犯相关的从业禁止的立法,海牙计划规定 2005年底完成,但目前仍处在筹备阶段,预计还要持续相当长的一段时间。

除了成员国的数量增加使决策进程减缓外,由于立法上的不足使执行已经生效的框架决定遇到诸多困难,进而也影响了其它框架决定的诞生。比如,欧洲统一逮捕令在德国的实施就遇到了宪法上的障碍。欧洲统一逮捕令规定了引渡本国国民的条款,但德国宪法规定本国国民不得引渡到他国,这样的巨大冲突使统一逮捕令在德国的执行一度受阻。最终,德国就此对本国宪法中的相关条款进行修改,才保证其实施。类似的情况也出现在塞浦路斯与波兰等国。虽然这些成员国最后都予以解决,但却是对本国现行法律体系进行重大调整后实现的。[2]

可见,虽然框架决定在制度设计上的价值之一是保障成员国在适用法律中的灵活性,为其根据本国情况对具体的制度安排留有余地。然而,目前已生效的框架决定的一些规定却显得越发细化,给成员国的实施带来了诸多不便。在立法过程中,决策者应当避免制定那些可能会导致成员国法律制度巨大变动的法律。

造成这种局面的关键原因在于,欧盟框架决定在第三支柱中的立法缺乏足够的透明度、不民主以及缺少监督。为了解决框架决定甚至是欧盟第三支柱的这些缺陷,许多学者建议应该完善立法程序,将欧盟条约标题6中关于第三支柱的规定完全纳入第一支柱,尽管这意味着成员国的主权将受到欧盟的进一步侵蚀。[3]

二、欧洲法院的重要判决

与第三支柱向第一支柱的转化相关,欧盟以及成员国曾一直在第一支柱与第三支柱各自“势力范围”的划分问题上存在分歧,而欧洲法院2005年的一个判决对此做出了初步的回答。欧盟条约第34条赋予欧盟委员会在刑事合作领域提出立法动议的权力。第31条第5款又将这些立法动议细化为有组织犯罪、恐怖主义以及贩运毒品等犯罪的法律的相互接近。第47条规定,当第一支柱与第三支柱领域发生冲突时,第一支柱优先于第三支柱。

然而,欧盟及其成员国对第47条的解读形成了两种截然相反的观点。大多数成员国认为,欧盟委员会在刑事法方面的权力仅限于提出动议,并不包括决定是否适用该动议的权力,后一项权力理所当然地归属于成员国。少数成员国以及欧盟委员会则认为,在刑事制裁成为保护欧共体核心利益的唯一手段的情况下,欧盟条约第47条实际上赋予了欧盟委员会决策权,进而迫使成员国将某种行为犯罪化。

多年来,代表欧共体利益的欧盟委员会与体现成员国利益的欧盟理事会在实践中达成一项不稳定的妥协:对于第31条第5项所规定的内容,欧盟委员会在其权力范围内可以通过决定,而欧盟理事会同时也可以在其所认为的权力范围内适用决定。欧洲法院2005年9月13日的判决宣告了这种妥协状态的结束。

2002年12月19日,欧盟理事会通过了一个用刑法保护欧盟环境利益的框架决定。但是,欧盟委员会认为理事会无权通过这样的决定,因为环境问题显然在第一支柱范围内,欧盟委员会对此独自拥有提出动议权,并与欧盟理事会和欧盟议会共同行使决策权。欧盟理事会中的成员国一致认为,即使刑事法涉及到了第一支柱的领域也应当是在第三支柱的范围内,欧盟理事会独自对此拥有决策权。在欧盟理事会通过这个决定后,欧盟委员会将这个问题提交给欧洲法院。

欧洲法院在关于此案的第C-176/03号判决中指出,在某些情况下,通过刑法保护欧盟环境利益的决定,能够并且应当在第一支柱范围内做出。然而,欧洲法院在此案中仅就环境问题的刑法规制问题予以裁判,并未涉及到欧盟委员会与欧盟理事会所关注的有关权力范围争议的其它广阔领域。因此,欧洲法院未来做出的涉及到其它领域的相关判决会逐步对该问题予以解答。[4]

欧洲法院的这个判例表明,第一支柱和第三支柱的界限还不是特别清晰,这给第一支柱向第三支柱的渗透留有余地。同时,欧洲法院的判决也顺应了欧盟一体化过程中第一支柱的影响日益扩大的趋势。除了欧洲法院的司法解释外,欧盟条约中也有个别条款为第一支柱的延伸打下了基础。

三、《里斯本条约》开创刑事合作的新局面

尽管《马斯特里赫特条约》规定,第三支柱领域的决定要在所有成员国一致同意的情况下做出,但在制定条约之时,立法者已经预见到欧盟的影响会逐步扩大,因此公约中一个条款就为此作了铺垫,即《阿姆斯特丹条约》第42条。

第42条规定,对于来自欧盟委员会或某一个成员国的提案,在向欧盟议会咨询后,欧盟理事会可以就第29条中的事项采取一致行动,决定是否应当将其纳入欧盟条约标题4(欧共体)的范围,同时决定相关的投票条件;欧盟理事会还应当建议成员国依据各自的宪法要求适用这些决定。

这意味着,欧盟理事会有权决定将部分或全部刑事合作的事项从第三支柱转移到第一支柱。一旦纳入到第一支柱,不但有效多数的表决机制将发挥作用,欧盟委员会还将在提出立法动议方面拥有更多的权力,而欧盟议会也会更多地参与立法过程,以往成员国全体一致的表决机制将被废除。

2006年6月底,欧盟委员会提议在条件允许的情况下适用第42条的规定。芬兰作为当时的欧盟轮值主席国与欧盟委员会共同提出了这个议案,引起了广泛关注。欧盟委员会与芬兰称,适用第42条使第三支柱纳入第一支柱的做法不仅可以提高欧盟区域刑事合作决策的效率,还由于欧盟议会更多的参与而弥补了“民主赤字”或“缺乏合法性”等诸多不足。[5]

随着欧盟一体化进程的不断深入,上述第三支柱向第一支柱转化的规定在2007年底的《里斯本条约》中得到了充分的体现。《里斯本条约》取消了欧盟三根支柱的划分,将第三支柱完全并入第一支柱:在刑事合作领域中,实施有效多数的表决机制,欧盟委员会独自享有提案权,欧盟议会通过共同决定机制也将发挥更大的监督作用。

下图将欧盟一体化进程与欧盟区域刑事合作进程的关系简单地加以表示:

─────────────────────┬──────────────────────────────────

│欧盟一体化进程 │欧盟区域刑事合作进程 │

├─────────────────────┼──────────────────────────────────┤

│1957年《罗马条约》 │成员国在欧洲理事会柜架下 │

│ 欧洲经济共同体 │缔结刑事合作方面的国际公约 │

├─────────────────────┴──────────────────────────────────┤

│欧洲经济共同体逐步发展经济一体化,成员国在欧洲理事会框架下开展刑事合作。 │

├─────────────────────┬──────────────────────────────────┤

│1986年《单一欧洲法令》 │1.创建申根机制 │

│ 欧洲共同体[6] │2.启动政治合作机制,成员国在欧洲经 │

│ │ 济共同体框架下通过政治合作制定一 │

│ │ 些刑事合作公约 │

├─────────────────────┴──────────────────────────────────┤

│由“共同市场”向“单一市场”转化,欧洲经济共同体开始探寻政治合作的途径。 │

├─────────────────────┬──────────────────────────────────┤

│ 1992年《马斯特里赫特条约》 │1.申根机制开始运作 │

│ 欧洲联盟 │2成员国在第三支柱框架下通过全体一 │

│第一支柱 第二支柱 第三支柱 │ 致表决机制: │

│欧共体 共同外交 司法与内务事务 │ 缔结刑事合作公约 │

│ 与防务政策(包括刑事合作) │ 制定并实施“共同行动” │

│(超国家)(政府间)(政府间) │ │

├─────────────────────┴──────────────────────────────────┤

│刑事合作被纳入欧盟的第三支柱,成员国开展“政府间”的合作。 │

├─────────────────────┬──────────────────────────────────┤

│ 1997年《阿姆斯特丹条约》 │1.欧盟吸收了申根机制 │

│ 欧洲联盟 │2.在“自由、安全与司法区域”里,欧 │

│第一支柱 第二支柱 第三支柱 │ 盟与成员国在第三支柱下通过全体一 │

│欧共体 共同外交 刑事方面的 │ 致表决机制制定并实施: │

│ 与防务政策 警察与司法合作 │ 刑事决定的相互承认的 │

│(超国家)(政府间)(政府间) │ 框架决定 │

│ │ 刑事法律的相互接近的 │

│ │ 框架决定 │

├─────────────────────┴──────────────────────────────────┤

│欧盟三根支柱的结构不变,但第三支柱框架下的刑事合作更为灵活。 │

├─────────────────────┬──────────────────────────────────┤

│2007年《里斯本条约》 │刑事合作领域的变化如下: │

│ 欧洲联盟 │1.取消“第三支柱”,欧盟区域刑事合作 │

│ (超国家) │ 被纳入“超国家”的立法机制。 │

│ │2.在刑事合作领域,欧盟理事会适用有 │

│ │ 效多数表决机制;欧盟委员会拥有单 │

│ │ 独的立法提议权;欧盟议会具有立法 │

│ │ 的“共同决定权”。 │

│ │3.欧盟以“指令”的立法形式进行: │

│ │ 刑事决定的相互承认 │

│ │ 刑事法律的相互接近 │

├─────────────────────┴──────────────────────────────────┤

│欧盟取消三根支柱的结构,刑事合作被完全纳入欧盟“超国家”的运作框架。 │

────────────────────────────────────────────────────────

转贴于   从对欧盟一体化以及欧盟区域刑事合作的进程分析中可以看出,欧盟逐步扩大对成员国刑事合作影响的三个关键节点分别出现在1992年的《马斯特里赫特条约》、1997年的《阿姆斯特丹条约》以及2007年的《里斯本条约》中。

关于前两个条约的重要影响,前面已分别做出某些分析。总体而言,1992年的《马斯特里赫特条约》通过创立第三支柱,将成员国的刑事合作纳入到欧盟范围内,使欧盟开始对刑事合作施加影响。然而,这种做法的代价是,成员国必须在欧盟理事会达成全体一致后才可以通过相关法律。

当时,要想在欧盟15国内部达成全体一致难度很大,往往需要经过长期的协商,而一旦其中的某一个成员国表示反对,整个决策过程将无果而终。即使法律在经过长期的协商后最终得以通过,也成为多方讨价还价的妥协,导致部分条款令人费解、包括诸多适用的例外、以及相互参照等技术上的勉强处理。这些不足都是“政府间”合作的实质体现,以换取欧盟在立法过程中对成员国施加有限影响,进而暂时达到一种机制上的平衡。

随着欧盟一体化的进一步发展,代表较为先进合作模式的申根机制被纳入欧盟,《马斯特里赫特条约》中的平衡机制被打破。但是,考虑到成员国当时的适应程度有限,1997年的《阿姆斯特丹条约》仍然保留了三支柱的结构,同时开始实施比传统公约更具灵活性的“框架决定”。框架决定保证了欧盟立法最终能被成员国接受,而成员国还可以根据本国情况选择各自的转化模式。于是,在建设“自由、安全与司法的区域”的初期,欧盟与成员国的利益在刑事合作问题上再次达到暂时的平衡。

然而,随着欧盟一体化的迅速发展,第三支柱的协调机制本身限制了框架决定的效力,导致立法上的“民主赤字”以及执行不畅等诸多弊端。为了解决这些难题,2007年的《里斯本条约》彻底将第三支柱纳入第一支柱,在欧盟超国家平台上运行。但是,这意味着成员国主权在很大程度上受到“侵蚀”。

为了打消27个成员国的疑虑,《里斯本条约》为此特别设置了“紧急刹车”条款,规定某个或某些成员国可以紧急阻止适用关乎其切身利益的敏感立法,而其它成员国仍旧可以适用该项立法。对于英国以及爱尔兰这两个普通法系国家,《里斯本条约》为它们保留了原来在《阿姆斯特丹条约》中规定的“选择退出或加入”的机制。于是,欧盟与成员国的利益在刑事合作问题上第三次达到平衡。

总之,欧盟区域刑事合作的进程表明,随着欧盟一体化的发展,成员国的刑事合作逐步被纳入到欧盟的运作框架中。欧盟与成员国在该领域中经历了两次短暂的“动态平衡”后,在2007年的《里斯本条约》中又形成了一次新的平衡。在从1957年到2007年的50年里,欧盟区域范围内的刑事合作从无到有,范围从小到大,最终形成了欧盟这个“超国家”实体掌控的27国的刑事合作局面。

然而,欧洲的有识之士已经指出:“欧盟的一体化进程不能冒进,欧盟目前的法律与政策应当着重解决那些成员国自身再也无力解决的问题,比如全球化的挑战、移民、能源安全以及反恐等事项”。[7]这样才有利于在欧盟与成员国之间形成具有一定稳定性的平衡。因此,任何体制结构的设计也都应当在保障成员国利益的基础上,有助于欧盟权力的行使,进而保障刑事合作顺利运行,并推动欧盟区域刑事合作的良性发展。

【注释】

[1]Gert Vermeulen, Where do we currently stand with harmonization in Europe? Harmonization and harmonizing measures in criminal law, edited by Andres Klip and Harmen van der Wilt, Amsterdan, 2002, pp.65-71; Some critical reflections on the process of harmonization of criminal law within the European , Harmen van der Wilt, Harmonization and harmonizing measures in criminal law, edited by Andre Klip and Harmen van der Wilt, Amsterdan, 2002, pp.80-81.

[2]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.32-33

[3]Dionysios Spinellis, Harmonisation and harmonizing measures in criminal law: Objections to harmonization and future perspectives, Harmonization and harmonizing measures in criminal law, edited by André Klip and Harmen van der Wilt, Amsterdan,2002, p.90; Some critical reflections on the process of harmonization of criminal law within the European , Harmen van der Wilt,Harmonization and harmonizing measures in criminal law, edited by Andre Klip and Harmen van der Wilt, Amsterdan, 2002, p.81.

[4]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.31-32.

[5]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.33-34.

欧姆定律的适用范围第6篇

关键词: 物理 欧姆定律 复习

在物理复习的整个知识体系中,电学知识板块儿尤为重要。一是:它占整个三式合一理化试题物理部分的40%左右,即70分中的近30分属于物理电学试题。二是:电学知识在生产实践中的重要作用已凸显出来。而要学生全面掌握、领会初中阶段电学知识,对于相当一部分初中生来说具有较大的难度。从教以来我听过一些初中电学复习课:有的先把所要用到的电学公式板书在黑板上,再讲典型例题,接着练习;有的则通过学生作题中所反馈的问题对知识进行补充强调,再练习;有的直接强调万变不离其宗,让学生多看教材,然后讲例题等。复习中讲例题没错,但选择的例题过多,又无代表性,既延长了复习时间,又不能使学生的知识得到升华。久而久之,学生疲劳,老师厌烦。要使复习课在短时间内生动、奏效,应选择恰当的例题,在讲例题的基础上,对知识进行归纳和升华。

复习课,一要体现“从生活走向物理,从物理走向社会”,教学方式多样化等新课程理念;二要体现“知识与技能、过程与方法以及情感态度和价值观”三维目标的培养;三要优化学生的认知结构,让学生在教师的引导、帮助下,把学到的知识归纳起来,从而便于提练和记忆。所以对电学的复习要从学生喜闻乐见的小电器起步,从典型例题入手进行归纳总结。

例1:如图-1是一个玩具汽车上的控制电路。小明对其进行测量和研究发现:电动机的线圈电阻为1Ω,保护电阻R为4Ω。当闭合S后,两电压表的示数分别为6V和2V,则电路中的电流为?摇 ?摇?摇?摇A,电动机的功率为?摇?摇 ?摇?摇W。(这是陕西师范大学出版社出版,经陕西省中小学教材审定委员会2008年审定通过的《物理课堂练习册》中的一道题)

学生通常按下列方法计算电路中的电流:

R中的电流:I=U/R=2V/4Ω=0.5A,

电动机中的电流:I=U/R=4V/1Ω=4A,

由此得第一空电路中的电流就有两个值0.5A和4A。

于是第二空的对应值为:P=UI=4V×0.5A=2W与P=UI=4V×4A=16W。这就存在两个问题:

1.根据欧姆定律计算出两个串联元件中的电流不相等,与串联电路中电流的特点相矛盾。

2.由串联分压原理得:U:U=R∶R=1∶4,得:

①当U=2V时,U=8V,得到U+U=2V+8V=10V≠U源;

②当UM′=4V时,U′=1V。U′+U=1V+4V=5V≠U,这与串联电路中的电压关系相矛盾。

对此,应找出题中所涉及的知识点,分析这些知识点间的联系,那上面的矛盾就迎刃而解了。

首先,应对欧姆定律有深入的理解。

例2:如图2所示电路(R≠R≠R)。引导学生分析如下:

1.对电路状态的分析。

(1)当S、S、S都闭合时,R与R并联,并联后作为一个整体再与R串联。A测R中的电流,V测R或R两端电压。

(2)当S、S闭合S断开时,则由图-2演变为图-2(a)到(b)。

R与R串联,R处于断开状态,A测整个电路中的电流。

(3)当S、S闭合S断开时,则由图2演变为图-2(c)到(d)。

R与R串联,R处于断开状态,V测R两端电压。

2.欧姆定律中涉及I、U、R三个量间的关系。

(1)欧姆定律中的I、U、R三个量是针对同一个用电器或者同一部分电路而言的,即必须满足“同一性”。

当图-2中的S、S、S都闭合时,A测R中的电流为I,V测R两端电压为U。此时能否用U与I的比值来计算R或R阻值呢?(即R=U/I)。

如果R=R时,由于R与R并联,所以R两端电压U等于R两端电压U,即U=U=U。根据R=U/I得R=U/I,R=U/I。这样计算出的R2的值虽然是正确的,但属于不正确的方法得出了正确的结果,实属偶然巧合。

若R≠R时,那么R=U/I,若再按R=U/I来计算R的电阻值就没有上述的巧合了。因为电压相等是并联电路电压的特点,R、R中的电流是不相等的。上述中错误地认为R、R中电流相等。这里的电压是R两端电压,而电流是R中的电流,电压与电流是两个不同电阻(或用电器,或电路)的对应量,也就违背了“同一性”。

这就告诉我们,在应用欧姆定律解题时,一定要遵循“同一性”原则,切忌“张冠李戴”,电学中的所有公式都不能违背“同一性”原则。如:W=UIt、Q=IRt、P=UI等。

(2)欧姆定律中的I、U、R三个量必须是同一状态、同一时刻存在的三个物理量,即必须满足“同时性”。

在图-2中,当S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小是否相等?

在图-2中,当S、S闭合S断开时,不难看出,R与R串联:I=I=I则I=U源/(R+R);当S、S闭合S断开时,R与R串联:I=I=I,则I=U/(R+R)。因为R+R≠R+R所以U源/(R+R)≠U源/(R+R),即两次电流不相等。S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小不相等,这是因为S、S闭合时与S、S闭合时电路状态不同,R是在不同的状态下工作,不是同一时间内电流的大小,电流不相等。

在利用公式计算的过程中,不能用第一状态下的量值与第二状态下的量值代入关系式计算。如:要计算R的电阻值,就不能用第一状态下R两端的电压值与第二状态下R中的电流的比值来计算R的电阻值。在计算电流、电压时,也不能这样处理。

因此在利用公式计算时,带值入式的物理量必须是同一状态下的物理量,必须满足“同时性”。

(3)欧姆定律中的I、U、R三个量的单位必须同一到国际单位制,即I―A、U―V、R―Ω。即应满足“统一性”。

除各物理量的主单位外,还应记住常用单位及其单位换算关系,将常用单位换算为国际单位制单位,在利用其它电学公式计算时也要统一单位。

如:电功的公式W=UIt中,各物理量的对应单位:U-V、I-A、t-S;这样W的单位才是J。电热的公式Q=IRt中:I―A、R―Ω、t―S;这样Q的单位才是J。电功率的公式P=UI中:U-V、I-A,这样P的单位才是W。

我们要确定欧姆定律的适用条件。

1.欧姆定律只对一段不含电源的导体成立,即只适用于纯电阻电路。因此,欧姆定律又称为一段不含源电路的欧姆定律。

例1中涉及到电磁转换的知识,电动机工作时实质上也是一个发电机。电动机工作时,其闭合线圈切割磁感线会产生感应电流,所产生的感应电流对流过电动机线圈中的电流有一定影响。

实际上图1相当于一个“RL”串联电路,总电压的有效值不等于各分电压有效值的代数和,即U≠U+U。但得到的电流有效值的关系I=U/Z与直流(或部分)电路的欧姆定律相似,各元件上的分电压与该元件的阻抗(Z)成正比。

虽然电动机工作时产生的阻抗目前初中阶段无法计算出来,但无论电动机工作时产生的阻抗为多少,电路中的电流都等于电阻R中的电流,即I=U/R=2V/4Ω=0.5A。电动机两端的实加电压等于总电压(电源电压)减去电阻R两端的电压,即U=U-U=6V-2V=4V。则电动机的功率为:P=UI=4V×0.5A=2W。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

上述分析说明,电阻R所在的这部分电路与电动机所在的这部分电路有着本质的不同。从能量转化的角度看:电阻R所在的这部分电路是将电能全部转化为热能;而电动机所在的这部分电路电能只有少部分转化为热能,大部分转化为机械能。前者属于纯电阻电路,后者属于非纯电阻电路。

欧姆定律只适用于纯电阻电路,即用电器工作的时候电能全部转化为内能的电路。例如电熨斗、电暖气、电热毯、电饭锅、热得快等。而电动机、电风扇,等等,除了发热外,还对外做功,所以这些是非纯电阻电路,欧姆定律不再适用。由欧姆定律导出的公式也只适用于纯电阻电路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)

2.欧姆定律适用于金属导体和通常状态下的电解质溶液;但是对于气态导体(如日光灯管中的汞蒸气)和其它一些导电元器件,欧姆定律不成立。欧姆定律对某一导体是否适用,关键是看该导体的电阻是否为常数。当导体的电阻是不随电压、电流变化的常数时,其电阻叫线性电阻或欧姆电阻,欧姆定律对它成立;当导体的电阻随电压、电流变化时,其电阻叫非线性电阻,如:电子管、晶体管、热敏电阻等,欧姆定律对它不成立。

3.欧姆定律只有在等温条件下,即导体温度保持恒定时才能成立。当导体温度变化时,欧姆定律对该导体不成立,因为电阻是温度的函数。

在讲解欧姆定律的应用时,常举白炽灯的例子,实际上白炽灯的钨丝在温度变化很大时电阻具有非线性,随着电流的增大,钨丝的温度升高很多,其电阻也随着变化。对非线性电阻,欧姆定律不成立,但是作为电阻定义的关系式R=U/I仍然成立,只不过对非线性电阻,R不再是常量。

综上所述,例1中第一空电路中的电流有两个值0.5A和4A,一个是在纯电阻电路(电阻R)中用欧姆定律算出的电流0.5A。另一个是用欧姆定律计算在非纯电阻电路(含电动机的电路)中的电流为4A,显然不对。

通过对例1的全面、透彻的分析,我们对电学知识得到了进一步升华:(1)判断电路的连接方式;(2)判断电表的作用;(3)利用欧姆定律解决实际问题时必须注意“三性”;(4)复习了电功率、焦耳定律等相关电学公式;(5)欧姆定律的适用范围。

学生能够领悟到,复习不是为了解题,而是要掌握知识的前后联系,优化知识结构;仔细观察,认真分析;发散思维,以点带面;举一反三,融会贯通。这样,从而体现出知识与技能、过程与方法,以及情感态度和价值观的培养。

参考文献:

[1]王较过.物理教学论.陕西师范大学出版社,2003.

[2]阎金铎,田世坤.初中物理教学通论.高等教育出版社,1989.

[3]梁绍荣等.普通物理学―电磁学高等教育出版社,1988.

[4]新课程实施难点与教学对策案例分析丛书,(初中卷).中央民族大学出版社.

欧姆定律的适用范围第7篇

近年来,“说课”活动在一些中学广泛开展,成为受广大教师欢迎的一种新型教研模式.“说课”不是简单的教案复述,而是对备课、讲课等各教学环节从教育理论上进行阐述,把执教者的教学设想,教学思想及其理论依据说出来,供同行商榷和交流。本文是我根据张宗一老师在一次全地区优质课评选活动中的“说课”整理而成。“说课”的内容是《欧姆定律》一节。下面介绍说这节课的过程。

一、教材分析

《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了本节课的教学目的和教学要求。这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础。本节课分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,本节课是后续课程的知识准备阶段。

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析。这是本节课的核心,是本节课成败的关键,是实现教学目标的基础。

本节课的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。

二、关于教法和学法

根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用。2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样使他们既巩固了实验知识,也调动他们尽早投入积极参与。3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次高潮,通过提问和画图象使学生的学习情绪转向高涨。5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次高潮,也使学生对电阻的概念是如何建立的有深刻的印象。6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。

2.注意正确规范地进行演示操作,数据不能虚假拼凑。

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆。