欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

电网系统论文(合集7篇)

时间:2023-04-20 18:04:25
电网系统论文

电网系统论文第1篇

配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。

二。配电网馈线保护的技术现状

电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。

随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:

2.1传统的电流保护

过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。

电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。

2.2重合器方式的馈线保护

实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。

目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。

2.3基于馈线自动化的馈线保护

配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。

这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。

三。馈线保护的发展趋势

目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:

1)电流保护切除故障;

2)集中式的配电主站或子站遥控FTU实现故障隔离;

3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。

这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。

四。馈线系统保护基本原理

4.1基本原理

馈线系统保护实现的前提条件如下:

1)快速通信;

2)控制对象是断路器;

3)终端是保护装置,而非TTU.

在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:

参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。

当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:

Step1:保护起动,UR1、UR2、UR3分别起动;

Step2:保护计算故障区段信息;

Step3:相邻保护之间通信;

Step4:UR2、UR3动作切除故障;

Step5:UR2重合。如重合成功,转至Step9;

Step6:UR2重合于故障,再跳开;

Step7:UR3在T内未测得电压恢复,通知UR4合闸;

Step8:UR4合闸,恢复CD段供电,转至Step10;

Step9:UR3在T时间内测得电压恢复,UR3重合;

Step10:故障隔离,恢复供电结束。

4.2故障区段信息

定义故障区段信息如下:

逻辑1:表示保护单元测量到故障电流,

逻辑0:表示保护单元未测量到故障电流,但测量到低电压。

当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。

为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。

4.3系统保护动作速度及其后备保护

为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。

在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。

4.4馈线系统保护的应用前景

馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:

(1)快速处理故障,不需多次重合;

(2)快速切除故障,提高了电动机类负荷的电能质量;

(3)直接将故障隔离在故障区段,不影响非故障区段;

(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。

四。系统保护展望

继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。

电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。在配电网,伴随贼配电自动化的开展。配电网馈线系统保护有可能率先得到应用。

电网系统论文第2篇

在建设心电网络之前,心电图机是采用热敏纸记录心电图,门诊、病房心电图检查依靠人工模式。随着医院患者越来越多,心电图室患者等候时间很长;心电图数据无法进行数字化保存,更不能全院共享;心电图检查设备大部分是单机工作形式,心电图资料大量流失的问题一直阻碍着心电图室的发展。面对心电图检查不能实现网络共享、不能获取患者申请信息,不能连接电子病历(EMR),不能使用电子签章、不能实现电子扣费和网络查询等问题,心电电生理检查的数字化、网络化已经是势在必行[3]。

1.1心电网络建设情况

心电网络系统的建设,其本质就是一套完善的心电检查的整体解决方案,包括心电检查开单、患者就诊、数据存储、数据读取和展示等功能模块,我院网络系统心电检查流程。首先从HIS获取患者申请信息,连接进入PACS、EMR,然后使用电子签章、电子记费、网络查询等共享患者信息,实现院内所有临床科室的床旁心电图采集传输,建立心脏病患者资料库,为心电图检查建立全新的集中式工作模式。在门急诊建立诊断中心,安装门诊预约登记系统、电子叫号系统、医生报告诊断系统、主任审核系统、夜间值班诊断系统,心电图机采集设备联网,统计检索管理系统。心电图检查包括预约登记、电子叫号、记费、检查、报告、集中存储、临床共享、统计检索等全流程的信息化管理平台。病房配备手持移动式心电图机,建立床旁心电图采集模式;同时通过WEB浏览系统或HIS医生工作站进行全院临床信息共享。信息化建设方面,需要安装心电图数据服务器、存储服务器,与HIS、EMR、门诊一卡通等系统进行集成对接[4]。

1.2建设效果

1.2.1简化患者检查和报告流程我院现有心电网络自2010年开始建设至今,已经顺利突破了心电信息的网络化、集成化、数据集中存储等难点。现在,医生只需要在医生站开具相应医嘱之后,患者即可凭借手腕上的腕带至心电中心进行心电检测。检测完毕后,检测结果经相关心电医生分析后,分析与检测结果一并上传至心电网络,医生只需在自己的医生站即可查看检测结果及心电医生的检测分析。通过系统建设,在各个科室现有常用软件上(如EMR系统)添加心电信息管理平台的相应接口,使门诊、病区等整体区域心电图检查流程化,专家在线诊断,提高诊断精确度与标准。检查后的结果由专业的医生集中处理,通过WEB方式将报告在全院医生工作站上,实现心电图信息图像全院并共享。临床医生可以获得专业的图文诊断报告,可以看到心电图原始数据以及保存的心电图资料。临床医生可以在区域内任意电脑上浏览电子心电图报告,随时打印,方便会诊[5]。

1.2.2心电网络数据库建设心电网络的建设,解决了心电图数据集中存储的问题。通过建立区域的心电图数据库,为将来患者再次就医提供历史资料,也为医院各种心脏病统计学提供数据基础。其优点主要表现在以下几个方面:①积累临床资料,资源共享,广泛讨论;②从个案的心电图资料中发现共性的特征,总结经验,有助于这类疾病的早期诊断和正确合理治疗;③随时观察、对比,改善预后,提高诊疗质量;④为青年医师、基层医生提供临床心电图信息资料,指导临床研究方向,促进学科诊疗水平的提高。

2发展方向

2.1检查部分对于心电检查部分来说,其发展的趋势是逐渐向临床靠近,目标是通过移动心电检查设备的使用以及对科室医生的培训,让患者在床边就能及时完成心电图的检测,同时将检查数据实时传送到诊断中心,通过网络将结果展现在医生的电脑上。我院对无法移动或行动不便的患者,由科室专人负责使用手提式移动心电检测设备对其进行心电检测。但检测结果无法上传至心电检测中心。下一步建设的目标就是选用带有无线网络连接功能的心电检测一体化设备,通过现有的医护无线网络,实时上传检测结果,避免后期数据与系统分离,也减轻医生的工作强度,提高工作效率[6]。

2.2诊断部分建立统一的心电检查诊断中心。当各个检查点完成检查后,由系统自动将数据传至心电诊断中心,采用国际通用的诊断用语库编写报告,提供丰富的报告诊断库,避免过多的键盘输入,快速的报告输入,支持心电图原始报告多次对比功能。建立报告网络系统,将临床送达的心电图进行诊断报告网络,缩短医生获得诊断报告时间。诊断医生可以将接收到的心电图进行自动报告录入、给出标准报告,经WEB系统给临床医生,临床医生可以在医生工作站或护士工作站上获得心电图诊断报告。并支持心电图、测量分析参数、心电图特征描述、心电图诊断等报告输出[7]。

3存在的问题

心电网络的建设给患者、医生带来便捷和高效的就医过程,但同时也不可避免地存在一些无法回避的问题,如网络传输不稳定、临床医生技能不熟练等问题。所以,随着心电网络的逐步建立和完善,为了保证其日常的正常运转,需要投入大量的维护工作,如:系统与硬件供应商的售后服务;信息中心的网络保障和应急方案;临床科室正确使用设备,严格按照规范进行操作,尽量减少和避免无效心电图的产生;心电图室在保证日常工作正常开展的同时,还需要对以上工作进行协调、支持与帮助。

4总结

电网系统论文第3篇

1.1诊断思路

网络系统故障一般有电源系统引起的故障、节点故障和线路故障[5];通信线路的故障形式主要有CAN线短路、CAN线断路、CAN高低线短路、CAN线以及线路物理性质引起的通讯信号衰减或失真,这些都会引起控制单元无法工作或电控系统错误动作[6]。控制单元的正常工作电压一般在10.5V~14.5V范围内,如果提供的电压低于该值就会造成一些对工作电压要求高的控制单元出现停止工作,从而使整个网络系统无法通信。所以诊断前应先保证电源供电正常,再使用专用诊断仪或解码器对整个电控系统进行故障诊断,若诊断结果为控制单元通讯故障、失去通讯、通讯总线故障时,一定要弄清控制单元之间的通信关系,选取合适的检测点测量信息传输线路波形,最后查明故障原因。

2供电企业试验测量

2.2试验结果与分析

2.2.1CAN线断路波形机理分析

1供电企业计算机网络系统安全保障的必要性

首先,供电企业的计算机网络具有分布十分分散、网络节点多的特点,管理起来较为困难。供电企业需要对整个城市的供电进行管理和控制,那么必然会使用大量的网络节点。由于这些网络节点较为分散,出现问题不易查找出源头进行处理,势必会影响正常的供电工作。其次,供电企业本身担负着用电安全的重要责任。供电企业跟普通企业不同,它担负的责任更重,普通企业的网络安全出现问题,仅对企业自身造成不良影响,很少会对社会或者是大范围的人群造成生活上的影响。而供电企业计算机网络系统一旦出现问题,很可能会对人民的正常生产生活造成损失。最后,当前影响计算机网络系统安全的因素太多,严重影响其稳定性。计算机网络系统安全问题不容小觑,各种主观和客观的因素共同制约着其安全稳定地运行,所以我们想要确保其安全和稳定,就必须站在宏观的角度去看问题,全盘考虑,找出对策。

2影响供电企业计算机网络系统安全的因素

影响供电企业计算机网络系统安全的因素较多,主、客观的因素都有,其中可以分为两类,一类是供电企业自身的问题造成的安全隐患,一类是外部的因素对其供电企业计算机网络系统的安全保障研究曹凡国网湖北省十堰供电公司湖北十堰442000安全性的影响。供电企业自身的问题完全是可以通过管理手段杜绝的。这些因素大致上分为下面几种:第一,计算机本身的硬件故障和软件问题。计算机网络系统是由很多硬件组成的,其输入输出、存储、电源、主板等原件较为复杂,任何一个原件出现问题,都会对整个计算机网络系统产生影响,一旦出现信息的错误接收或者发出,又或者存储的数据丢失,都会造成难以想象的损失。另外,只有计算机硬件无法实现其具体功能,整个计算机网络的运行是依托于各种软件,这些软件本身可能是有缺陷或者漏洞的,又或者软件开发者故意留有“后门”,都将直接影响系统安全。第二,员工个人操作时常会因为不按规范进行而出现安全隐患。计算机即便再便捷、迅速,它也需要人的操控。人总是会因为疏忽大意或者是不重视操作规范而造成问题,特别是当前供电企业某些工作人员具备供电常识,但计算机操作能力较差,当今电力企业的发展又要求必须要使用计算机,这些工作人员在操作时候很可能会造成网络设备的损坏或者留下安全隐患。特别地,员工操作计算机最易出现安全隐患的阶段就是数据的传输阶段,在数据传输时没有做好安全保障常会造成重要数据的泄漏或者被窃取,严重时候还可能被破坏。第三,管理不善导致的安全问题出现。管理方面主要体现在机房的门禁制度不健全,无法阻止不相干人员进出机房,这样任何人都会对计算机系统造成威胁。

而影响计算机网络系统安全的外部因素大致上分为两类,首先是不可抗力的作用。这里的不可抗力主要是指自然灾害。因为计算机需要线路去传输,而计算机线路最怕遇到暴雨、火灾、雷电或者其他自然灾害导致的线路中断。一旦线路被外力中断,其系统安全就无从保证。其次是病毒和木马的感染,这项因素严格来说是由工作人员操作不当和黑客刻意操作两方面的原因构成的。无论是哪种情况,都会使网络安全无从谈起,而会出现这种情况,无非是自身管理的漏洞等原因,都需要企业从自身入手进行解决。

3供电企业计算机网络系统安全保障措施探析

针对上述的影响因素,我们需要从多个层面共同保障。首先,从管理层面来说,要建立健全完善的管理手段,不仅是在计算机网络安全领域,还要从整体入手,做好整个企业的宏观管理,制定出相关的操作规范和管理规范,设立专门的计算机网络系统管理部门,由专业的技术人员对整个系统进行实时的监测和控制,使其安全有最基础的保障。

其次,应当注意相关工作人员的素质提升。供电企业工作人员往往是电力知识较为稳固,对计算机的使用并不能尽如人意。而仅靠专门的计算机专业人才是远远不够的,需要对工作人员进行必要的计算机培训,培养复合型人才。另外,还要提升工作人员的安全责任意识和对故障的敏感性,在操作计算机时一定注意各种风险和隐患。

再次是从技术层面来说,要进行多个领域技术的研究和应用。一是要做好抵御外部攻击的准备。要进行防火墙以及入侵检测系统的设置。必须在企业网络系统内安装防火墙,并且运用IP伪装等技术,保护内部网络的安全。同时,安装入侵检测系统,与高等级防火墙配合使用,共同抵御外部的网络攻击。另外,还要运用一些成熟的技术来抵御黑客的袭击。例如运用应用技术和PacketFiltering技术。前者是一项较为稳定的监测系统,对于这项技术来说,整个防火墙的线路近乎于透明,可以很清晰地对外界数据进行监控和排查,确保外来数据的安全。而PacketFiltering则是指包过滤技术,它是使用较为广泛的一种技术,主要是为各种基于TCP/IP协议数据报文出进的通道。现代多数情况下使用的是动态过滤,区别于以往的静态过滤,它现对信息进行分析,然后运用防火墙预设的规则进行效验,确保有问题的某个数据包能够及时被发现并阻止;二是做好企业内部计算机网络的日常管理。我们知道,来自计算机网络内部的问题要远大于外部的问题,要想内部不出问题,就需要从内部多个方面入手。技术人员应当定期地进行病毒和木马的查杀并且不定期地进行抽查,将可能出现的问题扼杀在萌芽阶段。要进行必要的身份设置,根据工作人员工作权限和工作内容的不同设置不同的身份口令,建立不同权限的身份账号,设定访问和修改的权限,并且对这些身份资料进行定期的核查。最后是做好各种补救措施。安全隐患的预防措施再完备也无法保证不会出现问题,企业应当做好各种准备,将重要数据进行备份,确保在出现问题时能够及时解决,将损失降低到最低范围内。

4结语

电网系统论文第4篇

微网系统将风力发电机所发电力,经风机逆变器转变为交流,提供给微网控制器进行离并网控制。太阳能发电通过光伏控制器转为交流上网,储能系统充放电管理由控制及数据采集系统统一控制和管理。除了风、光等多种新能源,还可以通过柴油发电机以及其它小型发电机结合储能系统统一给负荷供电。

2站用电微网系统关键技术

站用微电网是由光伏发电、风力发电以及储能装置和监控、保护装置汇集而成的变电站供电的小型发配电系统,它能够不依赖大电网而正常运行,实现区域内部供需平衡。当站用电正常供电时,首先消纳微网系统电能,实现系统电能消耗的减少和节约,当变电站电网系统出现故障,站用微电网可以为变电站提供必要的电源,从而保证控制系统正常运行,降低变电站故障恢复时间。

2.1站用电微网系统组成

1)风力发电系统,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;

2)光伏发电系统,利用太阳能电池板将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;

3)储能系统,使微网既可以并网运行,也可以独立孤网运行,并保证功率稳定输出。储能电池组在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用;

4)逆变系统,由几台逆变器组成,把蓄电池中的直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;5)监控系统,系统可以监控分布式能源运行数据,调整运行策略,控制运行状态。智能能量控制管理部分是保证电源系统正常运行的重要核心设备。

2.2站用电微网系统功能系统主要实现以下功能

1)微网系统包含光伏发电、小型风力发电机和储能设备。通过微网控制系统监控分布式能源运行数据,调整运行策略,控制运行状态;

2)微网系统独立运行时,储能设备作为独立运行时的主电源;当光伏发电系统和风力发电系统全部退出运行时,主电源的功率大于微网内所有负荷的功率时,微网系统会根据实际情况对所供负载进行容量调节和超限保护;

3)对于主从控制的微网,如果分布式电源的出力大于负载,会出现多余功率到送给主电源情况(如果不允许倒送),因此在微网独立运行时,可根据实际情况调节分布式电源出力的控制策略;

4)通过微网监测平台,全方位实时展示分布式电源运行状态、风、光信息及微网运行过程,为分布式电源及微网技术的推广应用,起到示范作用。

2.3引入微网系统条件

将微网系统引入站用电系统时,主要考虑其发电单元可利用的自然资源情况。参考风电场和太阳能光伏电站的设计条件以及相关规程规范,站用电系统中引入微网时,该变电站应满足以下条件:

(1)变电站所在地区10m高度处,年平均风速在5.6m/s以上;

(2)变电站所在地区太阳能总辐射的年总量在1050~1400kWh/(m2a)以上;

(3)变电站所在地区太阳能资源稳定程度指标在4以下。

3站用电微网系统设计

3.1功能定位

1)作为站用电系统电源的补充,减小站用电系统从电力系统的受电比例;

2)作为变电站启动电源,取代常规变电站站外电源。在变电站完全停电时,利用微网系统发出的电能启动站用电系统,完成主变压器和站用变压器的充电,再利用站内电源完成整个变电站的启动。在整个启动过程中,尽可能利用微网系统。本文考虑经济性因素,推荐变电站微网系统应以取代站外电源作为启动电源为目标,在现阶段技术条件下,采用站外电源和微网系统共用的过渡方式。

3.2接线方案

站用电系统结构如图1所示,储能设备、光伏发电和风力发电以图2的形式并列接入交流低压母线。微网与外部电网有一个统一的联络开关。控制策略采用主从控制设计,即在并网运行时,主电网作为主电源;在孤网运行时,蓄电池储能设备作为主电源。图1站考虑到微网系统的可靠性要求相对较低,而站用直流系统的可靠性要求较高,因此推荐为微网系统单独设置蓄电池,而不将站用直流系统的蓄电池与微网系统蓄电池合用;考虑到站用电负荷的特性,具有一定的分散性,且常规负荷均为交流负荷,因此推荐微网系统采用交流并网模式。

3.3设备选型及布置方案

1)风力发电机根据运行特征和控制方式可分为变速恒频风力发电系统和恒速恒频风力发电系统,根据风轮轴的位置可以分为垂直轴风力发电机和水平轴风力发电机。现风力发电机多采用变速恒频系统,而采用垂直轴还是水平轴则需要结合自然条件和功能需求确定。布置风电机组时,在盛行风向上要求机组间隔为5~9倍风轮直径,在垂直于盛行风向上要求机组间相隔3~5倍风轮直径。风电机组具体布置时应根据风向玫瑰图和风能玫瑰图确定风电场主导风向,对平坦、开阔场址,可按照以上原则,单排或多排布置风电机组。在多排布置时应呈梅花型排列,以尽量减少风电机组之间尾流影响。

2)太阳能光伏电池单晶硅、多晶硅太阳电池由于制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高,被广泛应用于大型并网光伏电站项目。太阳能光伏电池一般均安装在户外,电池板必须采用能经受雨、风、砂尘和温度变化甚至冰雹袭击等的框架、支撑板和密封树脂等进行完好保护。光伏方阵有3种安装形式:

1)安装在柱上;

2)安装在地面;

3)安装在屋顶上。采用哪一种安装形式取决于诸多因素,包括方阵尺寸、可利用空间、采光条件、防止破坏和盗窃、风负载、视觉效果及安装难度等。

3)储能装置

目前,国内变电站或配网运行的储能系统大多采用铅酸蓄电池,其维护量较小,价格低廉,但使用寿命和对环境的影响是其较大缺点。

4站用电微网系统应用实例

依托辽宁利州500kV变电站,对站用电微网系统的应用开展研究。根据站用电负荷需求以及站址位置的自然资源条件,提出了微网系统的配置方案。

4.1站用电负荷分析

根据本站的建设规模以及对站用辅助设施的用电量计算分析,本站在远景规模下的最大用电负荷为633.6kVA。变电站启动负荷主要考虑2台500kV断路器和2台66kV断路器伴热带负荷。经计算,变电站启动所需功率为20kW,容量为10kWh。

4.2风机配置

根据本站站址位置风资源实测结果,并考虑以下因素:

1)站址内设备众多,高空线缆密布,东西侧为进出线方向;

2)作为站自用电风机,不宜距离用电地点过远;

3)站址区域地形影响;

4)风机安全距离取两倍塔高,防止意外情况发生时造成周围建筑、设施二次损害;

5)办公楼楼顶的光伏设施不能被遮挡,因此风电机组的高度受到限制,不宜超过40m。本站考虑选用1台50kW风力发电机。

4.3太阳能光伏电池板配置

通过对站址太阳能资源评估成果计算,本区域固定倾角形式的光伏板在倾角为38.4度左右时,接受的太阳能辐射量最大,同时考虑与楼宇的协调性和光伏板间距等,最终决定光伏板倾角为30度。为保证全年真太阳时9时至15时内前后光伏板组件互不遮挡,结合光伏板的尺寸和布置形式,根据冬至日上午9时的太阳高度角和方位角进行计算,得到各光伏板间的南北行距为2m,该间隔同时可以供维护人员过往使用,板与板东西间隔预留5cm。综合上述布置要求,共布置98块190Wp光伏板,计18.62kW。经估算,系统25年运行期年平均发电量为24.64MWh,多年平均等效利用小时数为1323h。

4.4储能装置配置

考虑储能装置的经济性及变电站内可利用的占地面积,采用蓄电池作为储能装置,容量按满足变电站启动要求考虑。蓄电池放电功率按20kW、放电时间按0.5h考虑,经计算,考虑一定裕度,蓄电池容量取200Ah。

4.5微网系统的控制与保护

1)监控系统:系统可以监控分布式能源运行数据,调整运行策略,控制运行状态;

2)控制系统:保证站用电系统优先使用分布式发电装置发出的电能,并满足蓄电池智能充放电要求;

3)保护系统:配置有硬件故障保护和软件保护,保护功能配置完善,保护范围交叉重叠,没有死区,能确保在各种故障情况下的系统安全。

5经济技术分析

根据辽宁利州500kV变电站微网系统的配置方案,同时对原站外电源引接方案进行优化,对站用电微网系统引入进行经济技术比较。

5.1站外备用电源经济技术比较

前期设计方案中,站用备用电源采用66kV接网方案,站内外总投资约525万元。该方案可靠性较高,投资也较高。将站外备用电源优化为从变电站附近的10kV线路“T”接,站内设10kV箱式变电站1座。该方案站内外投资共约为256万元,比66kV站外电源方案节省投资约269万元。此方案可靠性比66kV站外电源方案略低,但能够满足本站对备用电源可靠性要求。

5.2站用电微网系统投资分析

依托工程微网系统发电装置总投资约为253.2万元,总计站用电系统投资509.2万元,比前期可研方案略低,但由于增加了新型能源发电方式,可靠性水平比可研方案明显增加。新型能源年发电量约为139.6MWh,每年节约资金139.6MW×0.6元/kwh=83760元,在变电站全寿命周期内,具备可回收性。新型能源产生的发电效益,不但明显减少了站用电系统电量消耗,也为降低网耗做出贡献。

6结论

电网系统论文第5篇

水力发电系统由发电机、AC/DC转换、PWM逆变器、LCL滤波器组成。发电机使用异步电机,异步电机并网发电是利用电网提供以同步转速转动的旋转磁场,在转差率为负值的工况下,其磁力矩与转速方向相反,机械力矩方向与转速方向相同,磁力矩作负功,机械力矩作正功(转化为电能),向电网输出电能。常用作发电的一般为三相鼠笼式异步电机,三相绕线式异步电机和单相电容式异步电机也可作为发电使用,但技术性指标差。电能经PWM逆变器后变为正弦调制波,这时的电能含有大量的高次谐波,为了减少谐波污染,加入LCL滤波器。

二、电力系统谐波危害

并网系统的电能质量主要取决于输出电流的质量,为了能够给电网提供高质量的电能,并网逆变器的电流控制发挥了重要的作用,因此,对并网发电用三相逆变器研究就显的尤为重要。

由于三相PWM逆变器具有功率因数高,效率高等诸多优点,因此在可再生能源的并网发电中得到广泛应用。但是三相PWM逆变器在其开关频率及开关频率的整数倍附近,产生的高次谐波注入到电网中,会产生谐波污染,这将对电网上的其他电磁敏感的设备产生干扰。

谐波对电力系统和其它用的设备可能带来非常严重的影响,主要危害可归纳为:

在电力危害方面:

(1)使公用电网中的设备产生附加谐波损耗,降低发电、输电及用电设备的使用频率增加电网损耗。零线会由于流过大量的3次及其倍数次谐波造成零线过热,甚至引发火灾。

(2)谐波会产生额外的热效应从而引起用电设备发热,使绝缘老化,降低设备的使用寿命。

(3)谐波容易使电网与补偿电容器之间产生串联并联谐振,使谐振电流放大几倍甚至几十倍,造成过流,造成电容器以及与之相连的电抗器、电阻器的损坏。

(4)降低产生、传输和利用电能的效率。

在信号干扰方面:

(1)谐波会引起一些保护设备误动作,如继电保护的熔断器等。同时也会导致电气测量仪表计量不准确。

(2)谐波通过电磁感应和传导耦合等方式对邻近的电子设备和通信系统产生干扰,严重时会导致它们无法正常工作。

所以,减轻直至消除这些危害,对于供电和用电设备的节能降耗,乃至于对整个社会能源利用率的提高,都具有极其重要的意义。由于LCL在抑制谐波方面具有的优点,因此研究LCL滤波器具有很重要的现实意义。

三、并网逆变器矢量控制

控制电路的目的就是控制并网逆变器六个开关管的通断,产生与正弦波等效的一系列等幅不等宽的矩形脉冲波形,等效的原则是每一区间的面积相等。如果把一个正弦半波分作n等份,然后把每一等份的正弦曲线与横轴所包围的面积都用一个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等份的中点重合,而宽度是按正弦规律变化。这样,由n个等幅而不等宽的矩形脉冲所组成的波形就与正弦半周等效。同样,正弦波负半周也可用相同方法与一系列负脉冲波来等效。

为了达到控制目的,我们选用矢量控制的方法。矢量控制最初用于控制异步电机,把交流电动机等效为直流电动机控制,后来经过多年的发展,逐渐形成了一套比较完整的矢量控制理论体系。最近二十多年来由于电力电子、计算机及微电子技术的飞速发展,矢量控制技术在高性能交流驱动领域的应用已经越来越广泛。矢量控制大大简化了控制的难度,并会获得较好的控制效果,因此我们将采用矢量控制的方法对并网逆变器进行控制。

我们采用两个电流内环、一个电压外环的双闭环系统,来达到实际需要的精度和动静态性能。这种方法是取直流侧电压与给定电压比较,产生作为输入的直轴电流,取逆变器侧电感电流作为反馈,产生控制逆变器的脉冲信号。当发电机的直流电压不稳定时,通过逆变器侧电感电流的反馈,可以调节逆变器6个开关管通断时间,使其输出与电网电压幅值、相位相吻合。

四、LCL参数设计

逆变器侧是三个电阻为R、电感为L的电抗器,网侧是三个电阻为Rf、电感为Lf的电抗器,网侧电抗器和变流器侧电抗器之间是三个星形联结的电容器Cf。六个功率开关由控制电路产生的脉冲信号控制其通断,从而产生与正弦波等效的等幅矩形脉冲序列波。经逆变器形成的三相交流电经LCL滤波器滤除谐波后并入电网。

由于在LCL参数选择比较复杂,国际上也没有一种统一的设计方法,因此文章综合考虑电网侧电流最大允许脉动、逆变器开关频率和阻尼特性等要求,通过计算的方法得出一种简单有效的设计方案:通过选择逆变器侧所需要的电流纹波来设计内部电感L,通过选择在额定状态下吸收的无功功率来决定电容值,通过选择期望电流纹波减少量来设计Lf。由于逆变器开关管通常工作在高频方式,一般为15kHz,所以该滤波器属于低通滤波器,目的是滤除高频开关纹波。

通过计算得出LCL参数后,我们采用MATLAB中的SIMULINK模块进行仿真,通过反复实验后得出一个满足要求的实验结果。

五、主动阻尼控制器的设计

由于LCL滤波器是谐振电路,对系统的稳定性有很大影响,如果不采取很好的控制策略,会使电流的谐波畸变率增大。为了抑制LCL滤波器的谐振,可以采取增加滤波器阻尼的方法,但是增加无源元件,如电阻等,会造成功率损耗,降低系统的工作效率。除此之外我们还可以采取增加主动阻尼的方法,所谓主动阻尼,是指主动采取控制策略的方法,达到与被动阻尼相同的效果。

用主动阻尼的方法替代实际的谐振阻尼电阻作用,这样即使主动阻尼的阻值很大,也不会造成功率损耗,降低系统的效率。由于电压电流双闭环控制具有系统对参数变化不敏感,稳定性高的优点。采取这种控制策略与通常的双闭环不同之处在于,增加了对电容器电流的前馈控制。

结语

IEEE1547标准严格限定负载注入电网的电流总谐波畸变要小于5%,35次以上谐波的畸变率要小于0.3%。通过我们对逆变器矢量控制、LCL参数和主动阻尼器的设计,将基本达到这一要求。

参考文献

[1]魏昊,张淼,严克剑.基于空间矢量控制的PWM整流系统的研究[J].广东有色金属学报,2006,16(3).

[2]罗悦华,伍小杰,王晶鑫.三相PWM整流器及其控制策略的现状及展望[J].电气传动,2006,36(5).

[3]李时杰,李耀华.PWM整流器无电流传感器前馈控制策略的研究[J].电气传动,2006,36(12).

电网系统论文第6篇

1.1标准帧与扩展帧的选择

CAN2.0包括A部分和B部分,即CAN2.0A与CAN2.0B。其中,CAN2.0A是按CAN1.2规范定义的CAN报文格式的说明,规定CAN控制器必须有一个11位的标识符。CAN2.0B是对CAN报文的标准格式和扩展格式的说明,CAN控制器的标识长度可以是11位或29位。遵循CAN2.0B协议的CAN控制器,可以发送和接收11位标识符的标准帧或29位标识符的扩展帧。如果禁止CAN2.0B,则CAN控制器只能发送和接收11位标识符的标准帧,而忽略扩展格式的报文结构,但不会出现错误。标准帧与扩展帧如图2所示。标准帧理论上最多可以标识211(2048)个数据类型。由于协议规定标识符最高7位不能同时全是隐性位,所以最多可以标识211-24(2032)个数据类型。扩展帧使用29位标识符,最多可标识5亿多个数据类型。当采用CAN2.0B传输报文时,需对标准帧和扩展帧进行选择。从延迟的角度分析,它用于表示网络响应速度,延迟越少,响应越快,性能越好。CAN最高位速率可达1Mbps,此时每位的传输时间是1μs。总线竞争获胜的标准格式报文在传输不被中断的情况下,长度为最大值的报文总线访问时间只有111μs,加填充位为134μs;扩展帧格式最大长度报文的总线访问时间为131μs,加填充位为159μs。从总线吞吐量分析,它在数值上等于网络或信道在单位时间内成功传输的总信息量。标准格式信息帧的长度为47+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/47+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)(/47+8×DLC)×1Mbps。扩展格式信息帧的长度为67+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/67+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)/(67+8×DLC)×1Mbps。当数据域长度为8字节时,若不考虑填充位,则标准帧的总线吞吐量为577kbps,而扩展帧的总线吞吐量为488kbps。从以上分析可见,虽然扩展帧格式可以表示的数据类型比标准帧格式多得多,但在总线访问时间和总线吞吐量方面,标准帧格式明显优于扩展帧格式,所以在满足节点数量要求的条件下,应优先考虑采用标准帧格式。

1.2标识符分配和网络实时性分析

1)标识符分配。CAN只提供与物理层和数据链路层相关的协议,并没有制定与特定应用相关的应用层的内容。因此,根据具体应用的特点,在总线协议的基础上,定义详细的标识符分配及网络配置管理的具体方式是开发基于CAN的客车网络控制系统的前提。标识符分配可以通过两种方式来实现:一是用户自定义;二是采用CAN的高层协议标准,如SAEJ1939、CANOpen等。无论采用哪种方式,都必须保证与安全性相关的高实时性的信息能够获得高优先级。如SAEJ1939中,信息优先级顺序为控制参数、驱动状态参数、驱动系控制、驱动系配置参数、信息参数、信息状态参数等。2)网络实时性分析。客车网络控制系统是分布式实时系统,许多任务具有严格实时性和硬实时性,信息传输与控制必须满足任务截止期要求。客车网络控制系统的实时性可以通过信息的响应时间来衡量,典型的理论方法有Worst-case、Actual-case、Average和Maximum等。Actual-case同时考虑到周期性信息和非周期性信息,Worst-case考虑到信息传输过程中的最坏情况,一般将两者结合进行实时性分析。位速率是网络实时性分析的一个重要参数,它的确定必须考虑到通信距离,尤其在高速通信的情况下,距离的增加带来的传输延迟是不可忽略的。表3为通讯位速率与总线两个节点间最大距离的关系。

2典型的电动客车整车网络结构设计及控制策略优化

随着客车电子控制单元的增多和信息通讯性能要求的不同,单总线网络结构引发网络通讯负载大、通信效率低、实时性能差和通信距离与网络性能矛盾突出等问题。因此,一般采用多网段结构来构建基于CAN的客车整车网络控制系统。一个典型纯电动客车的整车网络的拓扑图见图3。多网段结构适合于连接功能相对独立的网段,信息交换通过网关来实现。其特点是:同一网段的节点通过总线方式连接;不同网段之间通过网关连接,并实现相互通信;网络管理和集中控制的功能由网关实现。如采用低速总线连接低实时性要求的车身控制单元,增加通信传输距离,提高抗干扰能力;采用高速总线连接动力传动系统,以满足与行驶安全相关信息的高实时性要求;采用带双通道CAN控制器的微处理器,实现两条CAN总线信息的通信和控制功能。对于网络层可以采用静态地址分配机制,可以参照SAEJ1939通讯协议为公路设备定义地址分配表。

2.1整车控制器的拓扑结构

根据电动汽车整车网络的特性,整车运行、安全性、经济性等整车控制策略主要是由整车控制器(VMU)完成。整车控制器VMU的结构图见图4。整车控制器一般采用两路CAN总线(参照商用车SAEJ1939协议):CAN1为VehicleCAN与电池管理系统、ABS防抱死系统、仪表等设备相连,接收车身系统相关信息;CAN2为MCUCAN,只与驱动电机控制器相连,专用的MCU内部CAN2的设置会使整车驱动系统响应速度更快、实时性更高、性能更稳定可靠。

2.2整车控制器控制策略与优化方向

2.2.1整车控制器VMU整车控制器VMU是纯电动车辆的主要管理单元,与车辆的牵引系统及车上的其他主要部件的相互通讯。整车控制器读取并识别驾驶员的输入信号(踏板、换档器、按钮等),并确保驾驶的舒适性。扭矩控制(TorqueManagement)是整车控制器驱动控制的最关键的策略,成熟的转矩管理算法编程时,应设计为可进行系统参数配置软体,以满足整车集成时不同参数的需求,如踏板传感器参数、扭矩转化斜率、最大速度(正向和反向)等。扭矩控制需要满足以下几个方面功能:1)扭矩过渡处理平滑,以确保乘客的舒适性。2)科学有效地管理挂档器(DriveSelector),以防止因挂档器误操作带来的安全隐患。3)超速保护(OverSpeed)功能。4)驻坡功能(HillHolder)、跟车功能(Creep)等增值功能。5)能量回馈与电制动策略管理,基于不同回馈能量需求及电制动限值条件,如防抱死(ABS)及客户指令需求时,可以自动切断电制动。

2.2.2优化管理整车控制器除了常规的行车控制及保护功能外,在以下这些方面也可以做针对性的优化管理:上下高压电安全控制;行车动态数据监测及安全行车管理;节电模式及动力电池管理等。整车控制器控制策略的智能控制方法有递阶控制、专家控制、模糊控制、神经控制和学习控制等[10]。

3结束语

电网系统论文第7篇

整体的配网系统是由发电厂、输配电网以及用电方共同构成的。发电厂对于整个配网系统来说起到的是基础的保障作用,电能目前作为全世界最通用、最普遍的能源形式,有诸多能源都被以各种方式转化成为电能被人类使用。在经济快速发展的今天,电力市场格外繁荣,越来越多的行业都需要应用电能。因此,提供稳定的电能资源已经成为了各行业发展的基础。由此可见,发电厂对于整个配网电力系统的重要性。而另外一方面,输电、配电系统以及用电方对于整个配网电力系统也是非常主要的组成部分。在整个电网的建设中,一切都要以用电方的需求为最根本的目标,因此,如果说发电厂在整个配网系统中起到基础的作用,输电和配电系统就是发电厂与用电方之间的桥梁和纽带,也是电力资源安全地、高效地传输给用户的运输通道。因此,一个高效的、安全的配网系统需要发电厂以及输电、配电系统三者有机结合起来,进行协同、高效的工作,最终将电能供给用电方,形成一个完整的配网电力系统才是电力企业发展的最终目标。具体来说,配网系统实现了实施监控与离线管理的有机结合与共同合作。配网系统可以智能地将整个电力系统的各种数据进行整理和分析,同时,兼顾到电网接线图和实地情况,将地理图形和电网接线图相结合,再将图形与数据相结合,这种多方面的整合体现了配网系统较高的集成性、科学性与安全性。然而,虽然配网系已经能够达到一个较为可靠的开发程度,但在实际的配网电力工程中还是存在着一些问题的,针对这些技术问题以及相应的解决对策文中进行相关的讨论和分析。

210kV配网电力工程存在的技术问题

2.1外力破坏问题

过去的一些年,我国普遍采用10kV配网建设,而10kV配网工程的主要接线方式为架空线路形式,这种形式存在着一个较为严重的弊端,那就是给一些外力破坏提供了便捷。近些年来,越来越多的住宅区以及工业园区不断建成,而不论是居民用电还是工业用电,对于建筑区的电网建设都是非常重要的。而这些建筑区主要的供电方式为环网供电,这就造成了一些建筑施工队伍为了方便就直接在相近的架空线上取电,还有的用户甚至在配网工程还未完善之前就私自接线,给用电安全以及整个电网的安全都带来了极大的破坏。另外,随着近些年来高层建筑的不断普及,许多建筑施工过程都可能会影响到10kV配网电力工程的安全性。

2.2闪路问题

闪络是指固体绝缘子周围的气体或液体电介质被击穿时,沿固体绝缘子表面放电的现象。其放电时的电压,称为闪络电压。发生闪络后,电极间的电压迅速下降到零或接近于零。闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘体。在电力系统的运行过程中,由于设备的绝缘长期处在工作电压之下,当绝缘体受到污染以后,表面的污染物达到了一定的含盐量,就会造成闪络的危险。当闪络发生以后,就可能会引起单相接地的情况,甚至发生相绝缘闪络击穿的情况,给电力系统的运行造成严重障碍并带来一定的危险。

2.3过电压问题

过电压是指在电力系统发生特殊情况时,出现的超过工作电压的异常升高电压,当电压过高时,就可能会击穿一些绝缘设备,从而引发用电危险以及对于整个电网的威胁。我国目前正在运行的一些10kV配网系统在前期的建设过程中存在着各种各样的问题,这就对于电力系统正常的运行造成一定的影响。而电力设备在一些条件较为恶劣的地区,就要承受由于攀爬距离不足等原因而带来的工频电压、内部过电压及大气过电压等作用,给电网系统整体的安全性与可靠性带来了不小的隐患。

3解决10kV配网电力工程技术问题的对策

对于以上提出的关于10kV配网电力工程存在的技术问题,包括外力破坏问题、闪络问题以及过电压问题等等,需要一些有效的解决对策以及处理手段,通过预防和处理来避免这些技术问题在电力系统正常的运行过程中出现安全隐患以及供电障碍。

3.1尽量避免外力破坏的发生

由于许多外力破坏会对配网系统造成安全性以及可靠性的威胁,因此,在10kV配网电力工程的设计过程中应该充分地、系统地权衡当地的实际情况,包括地理环境与人文条件,做好地形的提前勘察以及当地管道等的铺设情况,将情况分析清楚再对10kV配网电力工程进行设计。同时,在设计与施工的过程中要严格按照相关的标准和要求执行,考虑当地实际情况,准确地布置好线路的走向、位置以及间距等方面。另外,在项目设计的过程中,还应该尽量避开自然环境非常恶劣的地区,从根本上避免配网系统受到外界的损害和影响。同时,对于10kV配网电力工程本身,在建设过程中必须按照相关要求以及标准,选择质量达标的工程材料,增强配网系统对抗外界破坏的能力。

3.2采取综合处理措施

10kV配网电力工程常见的技术问题通常都是伴随发生的,比如上面提到的闪络问题以及过电压问题,过电压的发生也有可能会引起闪络,从而影响电力系统的正常、安全地运行。因此,在对于配网系统的安全性保障上,要综合考虑各种因素,采取总格处理的措施,比如,在设备表面添加防污装置,既能够起到防污的作用,又能够减少外界恶劣环境对于设备的损害,从根本上预防了外界损害带来的危险以及恶劣环境引发的闪络或是过电压问题,这种综合措施的实施有效地克服了10kV配网电力工程存在的技术问题,同时也大大提升了电力系统运行过程中的稳定性与安全性。

3.3提升10kV配网的供电能力

由于10kV配网电力工程的特殊性质,其采用单端电源进行供电,而分支线较多,配电变压器等设备也相对较多,这样一来对于整体的安全性就要求非常高,因为一旦局部发生了故障,那么整个供电区域都会随之受到影响,引发大面积的用电故障或是用电事故。因此,可以采用联络开关,当局部发生了电力故障的时候,不会使大面积全都受到影响,这样就减小了受影响区域。同时,还应该按时对整体网络进行维护,即便在日常中受到一些外界损害,但只要维护和修护及时有效,也还是不会产生太大影响的。因此,采取一些有效措施来提升10kV配网的供电能力也是一种较为有效的解决对策。

4结束语