欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

微电子学论文(合集7篇)

时间:2023-03-30 11:35:43
微电子学论文

微电子学论文第1篇

关键词微电子技术集成系统微机电系统DNA芯片

1引言

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。

50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。

在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。

221世纪上半叶仍将以硅基CMOS电路为主流工艺

微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。

自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。

现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。

21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。

目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。

随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。

3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域

在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:

(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。

因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。

(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。

量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。

以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。

目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。

QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。

4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点

在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。

正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。

系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。

SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。

对于系统芯片(SOC)的发展,主要有三个关键的支持技术。

(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。

(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。

(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。

微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。

在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。

5微电子与其他学科的结合诞生新的技术增长点

微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。

微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。

MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。

MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。

目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。

当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。

微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。

采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。

DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。

目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。

6结语

在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。

回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!

参考文献

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,.1996.

[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2

[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997

微电子学论文第2篇

关键词微电子技术集成系统微机电系统DNA芯片

1引言

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。

50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。

在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。

221世纪上半叶仍将以硅基CMOS电路为主流工艺

微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。

自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。

现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。

21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。

目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。

随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。

3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域

在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:

(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。

因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。

(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。

量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。

以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。

目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。

QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。

4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点

在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。

正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。

系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。

SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。

对于系统芯片(SOC)的发展,主要有三个关键的支持技术。

(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。

(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。

(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。

微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。

在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。

5微电子与其他学科的结合诞生新的技术增长点

微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。

微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。

MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。

MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。

目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。

当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。

微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。

采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。

DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。

目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。

6结语

在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。

回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!

参考文献

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,.1996.

[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2

[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997

微电子学论文第3篇

1.1班级人数较多。大部分班级在45人左右,教师无法面面俱到,只能顾及少数同学,大部分同学只能处于跟随的状态,学习效果较差。

1.2课堂时间有限。课时安排有限,加之学生的接受能力较差,课堂教学推进缓慢,学生接受起来较为吃力,仅凭课堂上的45分钟进行教学,如果班级有45个学生,教师进行逐个指导的话,每人才1分钟,学生能学到什么,可想而知。

1.3学生学习兴趣不高。学生学习兴趣不高,主动性不够,学习能力不强,只依靠老师讲授,不愿意去学,是当前普遍存在于职业学校学生在学习电工电子技术课程时的问题,电工电子技术课程容量较大,涉及到的知识面较广,而且有些内容层次较深。

1.4教学目标不能很好的完成。不少学生对电工电子技术课程基本知识的掌握不够,思考问题解决问题的能力不足,学习的态度不够端正,学习的方法存在着一定的偏差。而教育的过程是循序渐进的,需要教师和学生两方面相配合。

1.5学生的心理情况。因为大部分学生在此前的学习过程中基本没有接触过电工电子技术的相关知识或者是根本没有学习过相关课程。还有一部分学生的基础知识很差,这就使得学生从心理上、思想上对这门陌生的课程有了畏难情绪,觉得这门课是一门难学的课程,吃力的课程,结果就会有厌学的情绪,从而不能深入的学习,最后的不良结果就是学不好这门课。

2微时代下“微教学”的现状分析

目前来看,国内外对于微教学单元方面的研究多集中于课堂应用方面。

2.1从国内研究来看,吴玉龙在《“微教学单元”高职教学策略研究———以“知识点”和“技能点”》就针对高职科目中的微教学单元进行阐述。王世群在《“微波炉”加热教育--微博在教学中的应用探析》一文中介绍了作者于实习期间在所处班级进行的微博实验教学活动。

2.2从国外研究来看,R.W.Lucky于2010年发表的“ToTwitterOrNottoTwitter?”,用情境导入的方式,介绍了微博教育前景。KellyWalsh在文章“100WaystoTeachwithTwitter”中则花费了大量的精力总结他人的研究成果,列举推荐关于微博教育应用的100多种方法。纵观国内外的研究,学者都是将微教学单元侧重于微博教学上。而对于电工电子技术课程的教学研究是将课堂的微教学与借助于移动互联网平台的现代网络微教学相结合,更具有研究价值和实践价值。

3“微教学”在电工电子技术课程中的作用研究

目前来看,职业学校的学生几乎每个人都有一部手机,基本每部手机都正常上网,而且学生对于现代移动互联网平台工具的应用炉火纯青,如何根据学生的实际情况,有效的借助于移动互联网平台,把“微教学”在电工电子技术课程中的教学与辅导作用有效的利用起来,拟从以下几个方面构建微教学单元:

3.1微课堂:针对电工电子技术课程某一知识点,开展5~10分钟的针对性攻略,让学生在短时间内集中精力,展开学习。慢慢地,在课题研究的过程中,通过课堂实施总结出一套更加适合电工电子技术课程学生情况的教学方式。举例:5分钟时间,集中学极管的伏安特性,举一反三,深入渗透。

3.2微辩论:针对电工电子技术课程教学,开展3分钟微辩论,将学生分为正方与反方,鼓励学生大胆发言。对于中职学生来说,他们的好胜心比较强,当被冠以“角色”的担子,他们会积极准备,认真学习,参与微辩论。举例:液晶电视与高清电视的区别在什么地方。

3.3微实训:电工电子技术课程是一门实践性很强的专业,因此,在教学中需要将理论与实践相结合。在实践教学上,我们就某一点知识,开展微实训教学。举例:就三极管开关电路实验为标准,让学生3人一组,组内进行实践训练。

3.4微竞赛:可以就某一电路设计或者某一知识点进行微竞赛,通过微竞赛来提高学生的参与度,不仅考核学生的知识,更是让学生感受到了学习的乐趣。与日常竞赛不同,微竞赛的重点在于知识趣味性。举例:就三极管放大电路的安装展开小组竞赛,既有组内合作,也有组组之间竞赛。

3.5微考核:在课堂上,就学生表现和教学进程进行阶段性考核,这样的考核一改传统的“以考试成绩为衡量标准”的方式,随时开展动态考核能够让学生随时保持考核的状态。举例:针对二极管整流电路这一节内容,让学生在课堂上做出一个整流电路的作品来,并检验其结果。

3.6微信圈:通过微博、微信等新媒体强化学生与教师、专家甚至企业家的沟通,通过媒体来获取信息资源,在很大程度上可以开拓学生的视野。教师也通过微信圈及时的对学生做出的成绩给予表扬,对学生还存在的问题给予纠正和点评。举例:在13高职电子班建立微信圈,老师随时发出问题,学生也可随时和老师沟通。

4“微教学”在电工电子技术课程中研究目标

“微教学”在电工电子技术课程中的研究目标主要包括以下方面:

4.1培养学生学习电工电子技术课程的兴趣。通过微教学单元在电工电子技术课程中的改革研究进一步提高学生参与电工电子技术课程学习的积极性,培养学生学习兴趣,提高学生学习能力。一改传统教学模式,让学生能够更主动投入到学习中去。

4.2提高学生电工电子技术课程的知识技能。通过微教学单元的构建,让学生的实践能力、团队协作能力、沟通能力及技能水平等都有较大的提升,有效达到技能目标。这就要求教师针对具体的课程内容,从学生角度出发,针对学生在学习该课程中可能出现或已经存在的问题,最后要让学生真正掌握并能有效的应用电工电子技术知识。

微电子学论文第4篇

中职电子商务是一门既重理论又讲究实践操作的学科,其主要知识点包括Internet应用、网上支付、信息安全、网店开设推广、商品知识、网店美工、电子商务物流和客户服务等等。例如电子商务物流中不同材质商品的包装,为了防止因商品包装而产生的客户投诉甚至退单的情况发生,不同类型商品均有其打包的注意事项和操作流程,如易变形易碎品需使用轻质填充物防止商品变形打碎,还有首饰类、衣服、鞋包、电子产品、液体类、书刊等商品,在教学中都会进行商品包装实操训练。因受场地和设备的限制,教师在全班演示操作后,不可能令所有学生看清楚并马上掌握,大多学生即使在课堂上领会操作要点,但过后又可能忘记,还得再次请教老师或其他同学。教育理论表明,知识的掌握在于重复,这就要求学生在课堂上学到的知识,在课后要及时反复学习,温故而知新。教师在组织电子商务项目教学时,可以利用微信的语音或图文功能将学习任务的主题、要求和学习要点发送给学生,学生在完成项目学习任务过程中,可以随时随地的打开微信查看图文,重听教师的讲授内容,从视觉和听觉上开拓学习思路。这样既能及时解答学生的疑问,又减轻了教师的工作量。上例中教师可以通过微信将不同商品包装的教学演示视频短片发给学生,使学生能够随时随地拿出手机观摩复习。学生反映,他们通过微信可以将课外的零碎时间利用来学习,如车站、厕所、宿舍、公交车、床上等都是他们学习的好地方,这对于学生熟练掌握初步习得的技能是非常有利的。

二、加强互动教学,拉近师生情感

中职电子商务教学质量的提高离不开良好的课堂教学,然而在课堂中学生不可能和教师有更多的交流,即使在课外也不可能有过多的时间交流。有些学生性格比较内向,平时不愿意和教师或同学面对面交流,加上中职学校教师一般都担任多个班级的课程,工作量较大,没有更多的时间与学生面对面的接触和解答学生的疑问,师生之间缺少实时互动与交流。反而有很多学生喜欢通过微信与老师交流,教师利用微信的互动功能加强与学生的交流,了解学生的需要,解答学生的问题。微信可以将通讯录中的一部分人组建在一起群聊,群成员的发言,其他成员可以及时听到看到,还能一起对讲,群聊中被人@到,也会收到提醒。教师在进行电子商务项目分组教学时,同组学生组建一个微信群,并给微信群起个响亮易记的名字,教师也是这个微信群的成员之一。成员可以随时联系,互相探讨学习任务,教师在微信群能够及时了解学生的学习情况和学习小组的任务完成进度,随时解答学习小组的疑问和及时调整学习内容。同时,教师还要组建一个班级微信群,将所有学习小组的成员都拉进群,并邀请电子商务行业的专家加入。

在班级微信群,学习小组互相分享学习成果,交流学习心得和体会,还可以通过语音、图文和拍照等功能形象生动地提问,并及时得到行业专家、老师和其他同学的解答,促进学习任务的完成,激发学生的潜能,培养学生协作学习的习惯。例如,在客户服务课程教学过程中,教师可以利用微信群对全班学生进行分组,通过微信的语音交流功能,指导学生分组进行“接待客户来电咨询”、“处理客户退换货”的电话客服的教学。学生在不同地点分别扮演客户、客服、发货员等不同的电子商务角色,创设出近乎真实的工作场景,教师和其他同学还能够在现场监听语音内容,分析比较学习任务的完成效果,更好地改进学习。利用微信的语音功能,行业专家、老师和学生都能听到对方亲切的话语,在学习知识的同时,感受到对方的热情,拉近了彼此之间的感情。良好的师生感情有利于增强学生学习的自信心,增加学生对教师的信赖,挖掘学生学习电子商务专业知识的动机,使学生真正“爱学”、“乐学”。

三、拓宽知识面,延伸知识深度

在有限的课堂教学中,教师为了完成教学计划规定的任务,不可能在课堂中讲授更多的电子商务最前沿的知识,也不可能在课堂中熟悉所有学生,了解学生的知识掌握程度,做到因材施教。电子商务是信息技术发展的产物,日新月异的互联网技术造就了诸如O2O、跨境电子商务、移动电子商务等新型的电子商务模式。然而,中职学校电子商务专业受到教材、设备和教学软件更新速度过慢的影响,同时中职学校电子商务的专业教师有很大一部分是非本专业出身或由计算机信息类专业、财经类专业的教师担任,这二个原因导致电子商务专业的学生在学习电子商务专业知识时更多只能停留在教材内容范围,根本不能适应电子商务的高速发展,更谈不上以就业为导向了。微信的公众平台即微信公众号,可以帮助教师和学生获取电子商务的最新动态和前沿知识。公众号分为服务号和订阅号,服务号是企业开展业务、信息的公众服务平台;订阅号为媒体和个人提供一种新的信息传播方式,构建与读者之间更好的沟通模式。因此,学生通过关注电子商务企业的服务号或订阅号,比如“卖家吧”、“腾讯电商那些事”、“网迷电商”等,这些服务号或订阅号都会定期推送电子商务最新的消息和技术给关注的微信用户,教师和学生通过查阅这些消息就可以很方便地了解电子商务前沿新闻和最新动态,及时把握电子商务发展动向,有意识地拓宽学习的视野,往更深层次地理解电子商务知识。

基于微信订阅号对个人开放申请和良好的互动模式,教师在微信公众平台申请用于电子商务教学的订阅号,要求电子商务专业的学生添加此订阅号,教师就可以很方便地在网页版的微信公众平台或通过手机微信公众号助手的群发功能,将电子商务内容及时快速地推送到每位学生的手机、平板电脑等移动终端。教师还可以通过公众平台的编辑模式设置“消息自动回复”和“关键词自动回复”,学生向订阅号提问或回复,就能自动获取想了解的电子商务内容,而且内容可以是文字、图片、语音和视频。例如,笔者申请开通了电子商务学习的订阅号“studyec”,要求电子商务专业的学生添加并关注,笔者在用户管理后台将电子商务专业的学生按不同年级和知识层次进行分组,有针对性地按分组群发图文、语音和视频等形式的教学内容。比如使用语音方式布置课外作业和解答学生的疑问,鼓励学生用心学习,设置自动回复消息开设O2O电子商务模式的专题知识拓展,学生只要回复相应的数字,即可获得相应的知识内容或知识难点,延伸了课堂。学生学习的自由度大了,主动性也提高了,也能把零散的时间用在学习上,更重要的是满足了不同层次学生的需要,真正做到“因材施教”。

四、分享学习成果,反思学习过程

微信朋友圈将微信的圈中好友紧密联系在一起,通过朋友圈,能够分享图文、语音、视频和链接,圈中好友点击阅读、参与评论。在学习电子商务项目任务的过程中,学生通过微信朋友圈“晒”照片、谈心得、分享学习成果,圈中好友评论、回复,在分享和评论中反思学习过程,总结学习经验,改进学习方式方法。例如,在学习签名邮件和加密邮件收发的项目内容时,教师组织学生通过微信朋友圈分享如何收发签名和加密邮件以及操作过程中最该注意的问题,分享学习的喜悦,反思学习过程中的不足,总结Outlook和Foxmail软件进行签名邮件和加密邮件收发的优缺点,师生们踊跃发言,或提出疑问,或解答迷惑,一个无形而卓有成效的分享讨论圈就此展开。

五、轻松点赞,收获评价

学生的学习任务完成得如何?学习成果有没有达到教学目标?通常需要进行定性和定量评价,教师预先按照制定的评价量规设计学习过程或学习成果评价表,组织学生进行自评、他评和教师评,最后统计评价结果。在微信朋友圈发表观点,分享有价值的信息,常常得到圈中好友的点赞,点赞越多,证明信息越受好友欢迎,越能体现信息主人的成就。教师可以巧妙地利用微信点赞的功能,快速有效地组织教学评价。例如,学生通过微信朋友圈分享签名邮件和加密邮件的学习成果,教师组织学生在规定时间范围内对学习成果进行点赞和评论,最后要求学生将点赞和评论结果截图发送给老师和班级微信群,老师和全班同学都可以及时了解评价结果,反思和改进教学。点赞和评论的主体可以是学生本人、其他同学和老师,点赞的个数相当于定量评价,文字评论相当于定性评价,体现了评价的趣味性、评价主体的多样性和评价方式的全面性。

六、微信在电子商务教学中应用的注意问题

第一,教学中不能过分依赖微信。

微信虽然给电子商务教学带来便利,对电子商务知识的掌握起到促进作用,但是电子商务还是应该以课堂教学为主,微信只能起到辅助教学的作用,是课堂教学的有益补充。因此,教学中需要运用微信时一定要计划周详,突出教师的主导作用和学生的主体地位,以提高教学效果为前提。

第二,加强信息的管理和更新。

微信毕竟是基于移动互联网的聊天交流工具,因此在利用微信进行电子商务教学过程中,教师应该严格控制学生使用微信时不偏离学习内容而转为娱乐,要经常监听学生发送的信息是否合法合理,绝对不允许胡言乱语和发送不切实际的信息。教师在利用微信公众平台时千万不能因过分强调群发功能,却忽视了电子商务知识的传授和教学互动,还要兼顾不同层次学生的学习需求,否则就和垃圾邮件、垃圾短信没什么区别了。同时,要注意教师订阅号的信息更新,如果长时间不更新订阅号的电子商务信息,粉丝就会流失,就会失去订阅号的互动教学功能。因此,定期更新电子商务的新知识、新闻、动态,甚至电子商务人物的故事案例,对于师生用好微信教学都是极为关键的。

第三,尽可能使用语音交流,利于增进情感。

微电子学论文第5篇

【关键词】电子技术教学 微课应用 意义分析

教育是一个国家立足的根本,尤其是我国这种有着数千年文化传承的国度,教学质量关系到了民族文化的传承与发展,而微课作为近年来教学事业中的新生事物,已经影响到了我国教育事业的各个方面。由于电子技术所涉及的领域十分广泛,电子技术教学又是现代教育中的重要组成部分,从宏观角度看,电子技术的教学质量将会深刻的影响我国各方面的发展。而微课作为新生事物,如果能科学合理地应用于电子技术教学中,将会打破传统教学的桎梏,使我国的电子技术教学达到一个新高度。

1 微课在电子技术教学中应用存在的问题

1.1 微课在电子技术教学中的应用范围不合理

由于微课是近年来的新生事物,所以在微课的应用方面仍然有许多问题需要注意,尤其是在应用范围的问题上,我国当今的电子技术教学中微课的应用范围就不是很合理,这一问题严重制约着我国电子技术教学的发展。微课在教学中是不可以独立存在的,需要与传统教学进行有机的结合,可是在当今的教育事业中,年轻的教师会过多的依赖多媒体教学,使微课在教学中所占的比例过大,而上了年纪的教师由于对相关技术掌握不熟练等多方面原因,不愿意将微课引入电子技术教学中。

1.2 部分教师对于微课的认识不够充分

在微课的应用过程中,需要深刻理解微课的高效性,对微课进行合理的安排。教在应用微课的过程中,常常会出现自我意识过强,对微课的安排以教师自我意志为转移的情况。微课作为打破传统教学模式的新生事物,在应用上需要仔细耐心的研究,根据电子技术教学的特点,合理的安排。因为电子技术需要极强的操作能力,所以电子技术教学一般都采用理论和实践相结合的方式,而微课就是在理论和实践结合的过程中起到关键作用的部分,但是许多教师仍然不能对微课有清晰的认识。

1.3 微课内容的针对性不强

微课作为电子技术教学中的辅助部分,在内容安排上需要有极强的针对性,只有提高了内容上的针对性,才能将微课高效性最大限度的发挥出来。而许多教师却步入了一个误区,将微课作为教学的主要手段,尤其是是在微课内容的安排上,在一个微课片段中,有很大一部分内容是起铺垫和引导作用的,对电子技术教学并没有实质性的帮助。电子技术教学重在对学生能力的培养,所以要想提高教学效率就要认真安排微课内容,避免微课“反客为主”情况发生。

2 微课在电子技术教学中应用的改进建议

2.1 调整微课在课堂中所占比重

在电子技术的教学中,教师需要调整微课在课堂中的所占比重,要明确认识到”微课只是教学中的一种辅助手段”这一点。不论是年轻教师还是上了年纪的教师,都应该与时代衔接,合理利用微课,而不是使微课的应用出现两个极端。电子技术教学过程中,理论部分可以通过微课进行,在教师进行适当引导过后,引入微课对理论知识进行整理,并加入论与实验将相结合的片段,将微课合理的运用到电子技术教学中。

2.2 充分提高教师对微课的认识

要想使教师在教学中合理的运用微课,就要要提高教师对微课的认知。微课是教学中的新生事物,所以在上了年纪的教师中,会出现两种情况:一种是认识到了微课教学在电子技术中的教学起到的关键作用,但是由于教师自身没有掌握相关技术,并不能很好的将微课引入教学课堂;另一种则是教师认为传统教学是不应该被改动的,过度的崇拜传统教学,使教师主观上对微课出现排斥,不愿学习相关技术。这就需要校方加大对教师的培养力度,提高教师对微课的认识。

2.3 提高微课内容的针对性

微课内容的安排上需要有一定的针对性,针对某一个理论知识、某一个习题或者电子技术的操作要点进行教学。这样不仅仅使教师在课堂上能够利用微课提高教学质量,同时也可以使学生在课后根据微课的内容进行对知识的整理并对相关操作技术进行熟悉。这样使微课既应用在电子技术教学的课堂,又应用到了学生课后的复习中,最大限度的发挥了微课的优势。

3 微课对于电子技术教学的意义

3.1 提高电子技术教学的教学效率

如果能将微课应用到电子技术教学中,将会在很大程度上提高电子技术课堂的教学效率。微课能将实践操作引入到传统教学的课堂,达到实践与理论完美结合的状态,使学生在接受理论的同时深刻理解如何将理论应用到实际操作的过程中。

3.2 增加课堂的趣味性,提高学生自主学习的积极性

由于微课是多媒体教学,很大程度上改善了传统电子技术教学课堂的枯燥乏味,为课堂教学增添色彩。传统的电子技术教学,由于在理论知识教学的同时并不能很好的与设备相连系,会出现理论与实际难以衔接的弊端,即学生的确掌握了理论知识,但是电子技术的实际操作能力并没有得到真正的提高。然而微课的应用能够使实践和理论有机的结合,有助于课后的复习,很大程度提高学生的学习兴趣,提高学生的创造性和主观能动性,使电子技术教学的课堂真正的成为了应用到学生们的课堂。

4 总结

本文主要针对微课在电子技术教学应用中存在的问题进行了分析并提出了有改进建议,主要包括教师对微课的认知、微课内容的针对性、微课的应用范围三个方面。微课是教育事业中的新生事物,如果合理利用,将会打破传统教学的桎梏,为学生提供一个全新的学习空间,使我国的教育事业达到一个新高度。微课在电子技术教学中的应用虽然存在一些问题,但仍然不可否认微课为电子技术教学带来了无限的发展空间。

参考文献

[1]李 艳,钟明航,蒋晓雁,姬 妍.“微课”在电力电子技术教学中的应用[J].中国校外教育,2012.

[2]王天雷,张京玲,王玉清,黄辉,张昕,应自炉.浅谈微课在《电子技术》课程混合教学的应用[J]. 教育现代化,2017(05):140-141.

[3]王国俊.浅谈“微课”在专业教学中的应用――以电子技术专业课为例[J].教育教学论坛,2016(06):217-218.

[4]高艳艳,陈湘,陈宏媛.微课在《电工与电子技术》教学中的应用[J].科技展望,2015(34):190.

作者简介

冯秀萍(1974-),女,陕西省咸阳市人。现为咸阳师范学院讲师。研究方向为电气控制。

微电子学论文第6篇

关键词:电子技术教学;微课应用;意义分析

教育是一个国家立足的根本,尤其是我国这种有着数千年文化传承的国度,教学质量关系到了民族文化的传承与发展,而微课作为近年来教学事业中的新生事物,已经影响到了我国教育事业的各个方面。由于电子技术所涉及的领域十分广泛,电子技术教学又是现代教育中的重要组成部分,从宏观角度看,电子技术的教学质量将会深刻的影响我国各方面的发展。而微课作为新生事物,如果能科学合理地应用于电子技术教学中,将会打破传统教学的桎梏,使我国的电子技术教学达到一个新高度。

1微课在电子技术教学中应用存在的问题

1.1微课在电子技术教学中的应用范围不合理

由于微课是近年来的新生事物,所以在微课的应用方面仍然有许多问题需要注意,尤其是在应用范围的问题上,我国当今的电子技术教学中微课的应用范围就不是很合理,这一问题严重制约着我国电子技术教学的发展。微课在教学中是不可以独立存在的,需要与传统教学进行有机的结合,可是在当今的教育事业中,年轻的教师会过多的依赖多媒体教学,使微课在教学中所占的比例过大,而上了年纪的教师由于对相关技术掌握不熟练等多方面原因,不愿意将微课引入电子技术教学中。

1.2部分教师对于微课的认识不够充分

在微课的应用过程中,需要深刻理解微课的高效性,对微课进行合理的安排。教师在应用微课的过程中,常常会出现自我意识过强,对微课的安排以教师自我意志为转移的情况。微课作为打破传统教学模式的新生事物,在应用上需要仔细耐心的研究,根据电子技术教学的特点,合理的安排。因为电子技术需要极强的操作能力,所以电子技术教学一般都采用理论和实践相结合的方式,而微课就是在理论和实践结合的过程中起到关键作用的部分,但是许多教师仍然不能对微课有清晰的认识。

1.3微课内容的针对性不强

微课作为电子技术教学中的辅助部分,在内容安排上需要有极强的针对性,只有提高了内容上的针对性,才能将微课高效性最大限度的发挥出来。而许多教师却步入了一个误区,将微课作为教学的主要手段,尤其是是在微课内容的安排上,在一个微课片段中,有很大一部分内容是起铺垫和引导作用的,对电子技术教学并没有实质性的帮助。电子技术教学重在对学生能力的培养,所以要想提高教学效率就要认真安排微课内容,避免微课“反客为主”情况发生。

2微课在电子技术教学中应用的改进建议

2.1调整微课在课堂中所占比重

在电子技术的教学中,教师需要调整微课在课堂中的所占比重,要明确认识到”微课只是教学中的一种辅助手段”这一点。不论是年轻教师还是上了年纪的教师,都应该与时代衔接,合理利用微课,而不是使微课的应用出现两个极端。电子技术教学过程中,理论部分可以通过微课进行,在教师进行适当引导过后,引入微课对理论知识进行整理,并加入论与实验将相结合的片段,将微课合理的运用到电子技术教学中。

2.2充分提高教师对微课的认识

要想使教师在教学中合理的运用微课,就要要提高教师对微课的认知。微课是教学中的新生事物,所以在上了年纪的教师中,会出现两种情况:一种是认识到了微课教学在电子技术中的教学起到的关键作用,但是由于教师自身没有掌握相关技术,并不能很好的将微课引入教学课堂;另一种则是教师认为传统教学是不应该被改动的,过度的崇拜传统教学,使教师主观上对微课出现排斥,不愿学习相关技术。这就需要校方加大对教师的培养力度,提高教师对微课的认识。

2.3提高微课内容的针对性

微课内容的安排上需要有一定的针对性,针对某一个理论知识、某一个习题或者电子技术的操作要点进行教学。这样不仅仅使教师在课堂上能够利用微课提高教学质量,同时也可以使学生在课后根据微课的内容进行对知识的整理并对相关操作技术进行熟悉。这样使微课既应用在电子技术教学的课堂,又应用到了学生课后的复习中,最大限度的发挥了微课的优势。

3微课对于电子技术教学的意义

3.1提高电子技术教学的教学效率

如果能将微课应用到电子技术教学中,将会在很大程度上提高电子技术课堂的教学效率。微课能将实践操作引入到传统教学的课堂,达到实践与理论完美结合的状态,使学生在接受理论的同时深刻理解如何将理论应用到实际操作的过程中。

3.2增加课堂的趣味性,提高学生自主学习的积极性

由于微课是多媒体教学,很大程度上改善了传统电子技术教学课堂的枯燥乏味,为课堂教学增添色彩。传统的电子技术教学,由于在理论知识教学的同时并不能很好的与设备相连系,会出现理论与实际难以衔接的弊端,即学生的确掌握了理论知识,但是电子技术的实际操作能力并没有得到真正的提高。然而微课的应用能够使实践和理论有机的结合,有助于课后的复习,很大程度提高学生的学习兴趣,提高学生的创造性和主观能动性,使电子技术教学的课堂真正的成为了应用到学生们的课堂。

4总结

本文主要针对微课在电子技术教学应用中存在的问题进行了分析并提出了有改进建议,主要包括教师对微课的认知、微课内容的针对性、微课的应用范围三个方面。微课是教育事业中的新生事物,如果合理利用,将会打破传统教学的桎梏,为学生提供一个全新的学习空间,使我国的教育事业达到一个新高度。微课在电子技术教学中的应用虽然存在一些问题,但仍然不可否认微课为电子技术教学带来了无限的发展空间。

参考文献

[1]李艳,钟明航,蒋晓雁,姬妍.“微课”在电力电子技术教学中的应用[J].中国校外教育,2012.

[2]王天雷,张京玲,王玉清,黄辉,张昕,应自炉.浅谈微课在《电子技术》课程混合教学的应用[J].教育现代化,2017(05):140-141.

[3]王国俊.浅谈“微课”在专业教学中的应用——以电子技术专业课为例[J].教育教学论坛,2016(06):217-218.

微电子学论文第7篇

关键词:电子商务概论;微课;教学设计

电子商务概论微课教学已经作为一种新型的教学手段走进了技校课堂,在信息化环境下开展微课教学研究,能够揭示微课教学活动的内在发展规律,对于提升电商专业教师的信息化教学水平,激发学生的创造力,有效促进电商微课资源建设等均具有积极的意义。

一、认识微课

微课是微型课程的简称,是一种新型的学习方法和教学模式。微型课程的特点可以描述为“短、小、精、悍”:微课教学活动时间一般控制在10分钟以内;教学目标明确、教学设计合理、教学内容精练、课程资源应用面广,适合通过互联网传播和使用。微课教学的应用,有利于形成优质高效的教学资源,促使课堂教学形式创新、有效提升专业教师的能力,有效促进职业教育与信息化技术的有效融合。

二、“电子商务概论”实施微课的可行性分析

1.传统电子商务概论教学模式较为落后

“电子商务概论”是我校电子商务专业的基础核心课程,理论学时为40学时。目前,技校电子商务概论的教学方式比较单一,还停留在教师主讲的模式上,学生学习枯燥,学习兴趣不高,进而难以培养具有良好的学习能力以适应职业发展需要的学生。

2.微课模式的引入具有现实基础

智能手机、笔记本电脑等设备已成为师生校园生活的必备工具,微课也正是借助移动设备供学习者进行学习。针对这种情况,选取电子商务概论中有深度、内容相对独立的知识点设计了系列微课,同时包括与学习相配套的扩展性学习资源,支持学生使用移动设备随时随地进行学习。由此建立起集趣味性、情景化为一体的数字化电子商务微课学习资源。

三、基于微课的电子商务概论教学设计流程

电子商务概论课程理论知识点多,教师大多数采用传统的“满堂灌”教学模式,学生学习枯燥,无心学习。而微课通过微视频的教学方式,将过去枯燥乏味以教师讲授为主的课堂教学变得生动有趣,从而吸引学生学习的注意力,激发学生的学习兴趣,进而取得比传统教学更好的教学效果。根据课程教材并结合电子商务考证理论鉴定考点,我从中选取第一章“电子商务概述”为例,开展微课的教学活动。

1.课前微课设计

对新课中概念性的电商知识点,通过网络先以微视频方式向学生展示相关知识,以便学生通过移动设备进行预习。当然,教师也可以将微视频在微信公众平台,加强师生互动交流。

2.课堂微课教学

由于电子商务的定义较多且叙述较长,在讲述其概念时,教师就可以播放电子商务相关发展过程的视频,将冗长乏味的文字描述以动态的形式、生动化讲解,便于学生在兴趣中学习。

案例:教学内容为电子商务概述

教学过程:

(1)教师导入新课:播放电子商务产生和发展现状的视频,吸引学生的注意力。

(2)教师用视频方式给出下列问题:电子商务蓬勃发展,电子商务的内涵包括哪些内容。

(3)教师讲解:①电子商务的定义,②电子商务的技术内涵和经济内涵,③电子商务的特点和影响。

(4)学生分组讨论:全班同学分成6个人小组,运用小组合作学习的方式,每个小组人数平均8人,允许同学自由搭配。小组成员互相讨论对知识的理解,加深印象,共同提高,小组成员以协作式进行讨论,并把相关结论做好登记。

(5)教师巡视:教师认真关注各个小组的讨论过程,对各小组在学习中存在的相应问题给予适当的引导。

(6)学生结果展示:小组组员展示本组的讨论结果。

(7)学生相互评价:每个小组对其他小组的讨论结果进行分析评价并且打分。

(8)教师评价:教师对作业中存在的问题部分,进行分析、讨论和讲解,教师首先以视频的形式给出解题的参考过程,接着通过针对性强的项目来实施教学活动,这样会更加容易使学生掌握教学内容。最后进行综合评价,对各小组成果进行点评。

3.课后提升阶段

由于微课的视频时间有限,单纯依靠微视频学习,学生难以深入掌握本课程的知识点,需要课后继续学习,消化相关知识。此时,授课教师可以通过微信公众等平台上传教学视频,便于学生进一步掌握教学内容。教师还可以上传一些相关的拓展性视频。这些微视频可以是电子商务的应用介绍等,引导学生拓宽知识面、提升应用能力。

四、微课教学的教学效果分析

为了对微课教学效果进行分析,我们找了电子商务专141与电子商务专142两个平行班级,电子商务专141班采用传统教学方式,电子商务专142班则采用微课教学。经过半个学期后,我们对两个班进行了电子商务概论测试,考试成绩按照分数段人数统计,电子商务专142比电子商务专141平均分高2分,微课教学有一定的效果,除了提高学生的学习成绩外,也增强了他们的自学能力、合作能力及其竞争意识。

五、结束语

将微课引入电子商务概论教学中,肯定能促进现代信息教育技术与教学内容的完美融合,促进学生掌握电子商务所需的专业课程知识。在以后的实践教学活动中,我们将继续探索、研究微课在电子商务课程的实践应用,进一步强化微课对课堂教学的补充功能。

参考文献:

[1]胡铁生.“微课”:区域化教育信息资源发展的新趋势[J].电化教育研究,2011(10).

[2]陈姝,胡冰新,王娜,林莹.“电力电子技术基础”微课教学设计与实践[J].中国电子教育,2015.

[3]夏仲文.利用微课程促进学科教学的应用研究与反思[J].中国信息技术教育,2012(11).

[4]邵华.微课理念引导的高职课堂教学模式改革研究[J].成人教育,2014,(5).