欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

传动技术论文(合集7篇)

时间:2023-03-23 15:19:15
传动技术论文

传动技术论文第1篇

当系统压力低于先导阀调定压力时,先导阀关闭,此时没有油液经过阻尼孔e流动,主阀心上下两腔压力相等,主阀在弹簧4的作用下处a)系统压力低于先导阀调定压力b)系统压力高于先导阀调定压力图2溢流阀工作原理于最下端位置,进油口P与回油口T不相通。当系统压力升高,作用在先导阀心上液压力大于调定压力时,先导阀被打开,主阀上腔的压力油经先导阀开口、回油口T流回油箱。这时有压力油经主阀心上阻尼孔流动,因而就产生了压力降,使主阀心上腔的压力低于下腔的压力。当此压力差对主阀心所产生作用力超过弹簧力时,阀心被抬起,进油口P和回油口T相通,实现溢流作用。通过Flas直观形象的液压油走势再配合讲解,学生基本上对先导式溢流阀的工作原理有了明确的概念,这时候就进入教学的第三部分,可以播放一些先导式溢流阀在机械制造等领域中实际工作过程的视频,让学生直观地感受到先导式溢流阀的工作原理、结构特点以及阀体在生产实际中的使用等内容,还可以让他们各自谈谈自己了解的先导式溢流阀的应用内容并加以讨论,加深对理论知识的理解。

但科学研究表明,在学习的过程中,不动手最多能记住70%的知识点,如果将耳朵、眼睛和手三者结合起来,既听又看并动手加以实际操作,则能记住高达90%的知识点,由此可见,最佳的教学方式应该将手、眼、耳结合到一起去进行。而我们在以上教学过程中,虽然已经将理论的、抽象的、静态的内容转换为生动形象的知识进行讲解,并积极组成学生参与讨论,但参照前面的研究结果,最多只能记住70%的知识点,如何才能记得更多的知识呢?这就需要我们教师从缺漏的“动手”层面更进一步探索了。

液压传动这门课涉及的实验较多,而很多学校由于受客观条件影响,有可能存在实验器材不是很充分的状况,这时候如何实现动手功能呢?最有效的方式就是借助相关的仿真软件来解决,最常用的液压仿真软件就是FluidSIM软件,它是由德国Festo公司Didactic教学部门和Paderborn大学联合开发的,是专门用于液压与气压传动的教学软件,FuidSIM软件分两个软件,其中FluidSIM-H用于液压传动教学,该软件CAD功能和仿真功能紧密联系在一起,既可以系统学习的概念也可设计和液压气动回路相配套的电气控制回路,易于上手操作。以FluidSIM-H软件为例来看,它的主界面非常直观,元件库在左半部分,设计界面在右半部分,采取直接用鼠标从左边的元件库中拖拉液压元件放在右边的设计区进行设计,回路可以课前设计,也可在课堂上现场设计。这样一来,耳朵、眼睛和手配合,既听又看并加以操作,达到了教学中对于动手能力的要求,能记住更多的知识点。

传动技术论文第2篇

1.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

1.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

1.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

1.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

2新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

2.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

2.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

2.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

3先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

[3]AnsimagInc.AcidicPumpagePlaysHavocwithRotaryLobeUnits[J].WorldPumps,1997,(5):26

[4]MichaelSmith.SideChannelPumpSolvesMethanolTransferProblem[J].WedPage,2001.

作者简介

传动技术论文第3篇

1.1现场总线与网络技术及公共直流母线技术的兴起

1.1.1现场总线及网络技术的普及和应用现场总线是连接智能现场设备和自动化系统的全数字、双向、多站的通信系统,其主要解决工业现场的智能化仪器仪表、控制器和执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制系统之间的信息传递问题。目前世界上存在着大约40余种现场总线,如法国的FIP,英国的ERA,德国西门子公司的Profibus,挪威的FINT,Echelon公司的LONWorks,PhenixContact公司的InterBus,RoberBosch公司的CAN,Rosemounr公司的HART,CarloGavazzi公司的Dupline,丹麦ProcessData公司的P-net,PeterHans公司的F-Mux,以及ASI(ActraturSensorInterface),Modbus,SDS,Arcnet,国际标准组织-基金会现场总线FF:FieldBusFoundation,WorldFIP,BitBus,美国的DeviceNet与ControlNet等等。现场总线技术改变了整个工业控制过程的系统结构,使仪表信号(4~20mA)过渡到全数字通讯信号。这个改变对于造纸传动自动化是颠覆性的,使整个控制系统结构和方式进入到了一个信息化和智能化的崭新阶段。

1.1.2人机界面取代按钮和操作器由人机交互式操作屏全面取代传统的按钮操作,也彻底改变了造纸传动工业现场。操作屏不仅可以任意设置按钮的功能和数量,还可以实时监视系统的各个运行状态以及参数等。在系统结构方面,目前普遍采用双端口网络系统,其中一个端口用于传动系统及各个执行单元,另一个用于操作屏进行数据传输,提高抗干扰能力。操作屏的使用,使用户节省了大量的现场电缆的铺设以及操作台的安装,节约了自然资源和工作量。目前由于自然资源的价格上涨,显示操作屏的价格下降,在一次成本投入上已经十分相近,如果考虑辅助传动控制的按钮连线,操作屏的投入成本更具优势。

1.2公共直流母线的推广和应用

1.2.1公共直流母线与交流母线的区别与特点公共直流母线系统的应用在造纸传动自动化技术领域具有标志性作用。所谓公共直流母线,简单地说就是将变频器的交直交内部结构,变为交直交外部系统结构。图1和图2是公共直流母线和交流母线的原理结构图,以说明两者的区别。从图中可以看出,交流母线变频器是各个变频器分别与交流电网连接,各自工作是独立的;而公共直流母线结构则是有一个总的进线整流单元,通过直流向各个逆变器单元供电。这种结构上的变化,导致其工作方式和效果不同。从相关资料和研究分析可以归纳这两者的主要区别和特点如下:(1)由于烘缸等大惯性负载的存在,在交流母线系统中往往会出现过压跳闸等情况。但在公共直流母线系统中,因为能量可以通过直流母线在所有电机之间互相流动,从而解决因为负载波动引起的跳闸,很好地克服多电机间电动状态和发电状态之间的矛盾。(2)通过集中整流,可以使公共直流母线电压在技术手段上做得更加可靠,降低故障率。但是事物总是利弊相伴,集中整流尽管可以通过技术手段提高可靠性,但毕竟是一个单机运行,一旦整流单元故障,也会造成整个系统停机。而交流母线系统,由于每台变频器都是独立的,因此,一台故障不影响整个生产线的运行,排除故障相对简单。(3)关于节能和降低成本。由于在技术上明显复杂,如果不采用特殊手段,公共直流母线的价格目前高于交流母线的价格。关于节能的观点,目前尚没有理论和实验数据证明这一说法。(4)关于谐波抑制问题。变频器的谐波主要来源于高频开关的脉冲电流,使电网的电流波形失真,导致大量谐波产生。从统计学的角度看,当采用公共直流母线后,母线上的电流是多台变频器不规则的脉冲电流叠加,各个变频器的电容相当于并联,理论上比交流母线电流波形好,谐波影响会得到改善。但由于整流单元的集中,对变压器的影响比交流母线要大,特别是普通六脉波系统,会在电网侧产生很大的5次谐波,甚至达到干扰其他用电设备的程度。因此,当功率超过2000kW时,建议采用12脉波整流单元,这样可以有效减小谢波干扰的影响。而交流母线系统,由于没有集中大功率整流,因此5次谐波的影响要小。关于回馈制动问题。由于纸机传动是一种长期稳速运行的系统,是否考虑增加回馈制动单元,应当根据系统的总投资、运行车速及停机的要求综合考虑。一种说法是通过能量回馈可以节省能源,但实际上纸机正常生产后是很少需要紧急停车的,因此用相当增加一套整流系统的代价来解决回馈能量的回收问题值得权衡利弊。当车速1000m/min以上时,为使惯性部分尽快停下来,适当增加一定功率的能耗制动,也是一个不错的选择。

1.2.2公共直流母线实现方案及运行维护成本分析目前在ABB、AB和西门子公司的标准产品系列中,都有标准的直流母线系统。除AB系统在直流母线产品和交流母线产品中差别不大以外,其他两家公司的直流母线系统都比交流母线系统价格要高。特别是整流逆变单元,比国产产品价格要高出数倍。因此,目前普遍解决方案是在不带逆变回馈单元时较多采用的是国产整流单元,配以上述公司的逆变器或变频器,这已经在国内许多造纸生产线上使用。当然如果系统投资资金充足,客户要求,采用更高性能的PWM整流逆变系统,既可以实现整流回馈,又可以降低谐波影响。现将可能的方案介绍如下:(1)可控硅整流逆变回馈供电系统。这种系统是目前各大公司主推的系统,造价较高,具有能量回馈能力,谐波影响根据功率大小、6脉波和12脉波而不同。(2)国产整流单元,配逆变器加能耗制动公共直流母线系统。这种系统经济性较好,性能与整流回馈相同,谐波影响与上一方案相同。(3)国产整流单元,配变频器加能耗制动公共直流母线系统。这种方案是国内的系统集成商,在激烈竞争下采用的一种降低成本的方案。这种方案适合于当变频器价格低于逆变器价格时,具有一定竞争力,但如果与逆变器价格相当,则与方案(2)相同。(4)局部直流母线方案,其是在交流母线系统的基础上,为了解决惯性负载的过电压跳闸问题或针对某些负荷分配点需要能耗制动的情况下而采取的方案。整个系统仍然是交流母线即通常的变频器系统方案,但是将惯性负载传动点的变频器外接制动单元的端子通过一定的技术手段相互连接,在相连接的变频器之间形成公共直流母线。其性能和工作特点与集中整流直流母线相当,只不过集中整流由分散整流代替。特点是简单、低成本,但系统接线复杂,给系统的可靠性和维护带来不便,在小系统中应用比较适合。总之,从目前来看,公共直流母线、网络通讯和操作屏等现代信息技术已经成为纸机传动自动化的发展趋势;以AB公司等为代表的工业以太网技术以及远程监控和服务等将成为下一步技术发展的大方向,甚至无线网络和远程调试等在今后的发展中都是可能的;对纸机传动自动化来说,还有优化设计、程序化的安装和调试,以及精准的故障诊断与维护等问题。

2现代纸机传动自动化系统的组成与设计特点

2.1现代纸机装备的最新技术动向从2014CIPTE国际造纸技术报告会获悉,以芬兰维美德公司、德国福伊特公司为代表的纸机装备制造商,分别从各种不同的角度为纸机装备的发展提出了多种解决方案。其中,优化概念模块化纸机实际上是在整个系统中,将不同纸机的各个部分部件,用统一的设计和规划方案,尤其是连接部分、通用部件的标准方面,如同组装模块一样,可以批量生产适合各种不同纸机的产品部件。在需要的时候,可以迅速地通过模块组装和连接形成不同的造纸机生产线,这就是优化和模块化的核心所在。在纸机装备的模块化和优化设计的推动下,纸机传动自动化其实也正在朝着这个方向发展和变化。无论是从软件设计还是硬件结构,国外的大公司以及国内的一些企业已经在不同程度上实施并推进这一方法的实现。所谓面向对象的设计方法和解决方案,实际上是从软件工程的开发角度,来设计和构建电气传动系统的软件和硬件系统,从而最大限度地减少重复性工作和最大限度地降低制造和设备采购成本,提高工作效率,降低系统的故障率和增加可靠性。

2.2硬件模块化、通用化设计根据模块化的设计思想和标准化的系统目标,ABB和西门子的大功率变频器就是一个典型的实例。在ABB的大功率变频器设计中即采用了模块化的设计,一台大功率变频器可以由若干个硬件功率模块组成。当某个模块故障时,可以在不停机的状态下降低功率继续使用,直至更换新的模块以后恢复原功率运行。西门子S120变频器系统则在模块化方面体现更加彻底,不但主回路模块化,连控制回路也一起模块化了。在新的系统中变频器本身就组成了一个小型分布式控制系统,控制中心管理着变频器的各个主回路模块,每个模块仅相当于一个功率单元。如果说ABB变频器是变频器并联运行的话,西门子变频器就是一个小型集散控制系统。控制单元独立于功率单元,一台控制器可以管理多个功率单元。这种硬件结构的设计使模块化达到了电力电子装置的最新高度。除此之外,在诸如电控柜、操作台以及辅助传动的控制回路设计方面,模块化的设计也体现了面向对象的特征。将一台电控柜从柜体设计到安装板以及柜内的每一个部件和回路,统统按照对象描述和封装模块的思想进行设计。在硬件的选择上尽可能做到对于整个公司的硬件系统要求做到模块化设计,即凡是运转方式、功率等级基本一致的对象,采用一样的模块加以控制,同时在对比较重要的控制单元的柜体设计中,凡是控制模块在条件许可的情况下再增加一块备用的控制模块(与厂家协调),这样当某个受控对象的控制回路出现故障时,抽出故障模块,换上备用模块,系统先恢复运行再维修故障模块。在整个系统的硬件设计中,类的设计即每一种抽屉状模块的设计中,系统面向对象所必须具备的封装及数据隐藏得以着重体现。在这里,我们强调的是每个受控对象(独立的用电负载)不仅仅要有一个实实在在的硬件类与之对应,在PLC程序中也会存在一个相对应软件类与硬件类对应,这样,每一个受控的实体对象都在控制系统对这两个相互依存的类对象的调用中,实现工艺的要求。而在此时面对纸机装备的优化概念模块化处理中,对于相对应的控制系统,我们也应该有同等的要求。在面向对象的硬件系统设计中,最大的特点就是控制回路的模块化,使其在强电回路封装的基础上继续封装控制回路,从而使得系统具有以下特点:(1)尽管模块受到被控对象功率的不同、运行方式的差异导致具体电路上的差别,但在外观上尽量标准化,使得除了模块之外,柜体也可柔性化设计;(2)从元器件到模块,应尽量体现出最大程度的通用与互换性;(3)模块的接口尽量简单,互换时简单方便;(4)模块设计应尽量使得可靠性足够高。在面向对象的硬件系统设计中,我们可以做到:(1)大大简化系统构建及设计过程的难度;(2)形成柔性化的控制系统;(3)更加利于专业化分工;(4)更有利于系统未来的扩容和改造。在这里,我们以最为常见的电动机控制回路的设计来详细说明面向对象的硬件系统如何实现:首先分析普通电机(对象)的特性:(1)电机直接启动,自由停止;(2)无反接制动及能耗制动的需求;(3)电机内无报警装置,提供额外异常信号指示;(4)短时间的电机堵转等异常情况在热保护等手段作用之前,不会给电机带来伤害。下面以一个简单的电机控制系统为例,说明我们在硬件设计时采用的方法,如图3、图4。我们将一个普通的电机作为对象,对它进行分析,从而得到控制要求,利用面向对象技术,将跟它有关系的操作封装在一个结构系统,使得在一张图纸上可以看到它的全部信息,并且全部模块化设计,利用端子接线。对于图4,我们可以在它的基础上,针对具体的工控要求,很快进行修改而不破坏其内部封装,改造成适用于变频和软启等硬件设计,几乎没有什么太大的变化,这一现象,体现面向对象中继承的思想。同样的设计完全可以在电控柜和操作台上实现,从而将我们的关注点完全放在这样一个个对象上,而不是一个庞大系统的每一个细节,可以极大地节省设计时间,简化设计步骤。而对于相同或者差异不大的对象或者项目,完全可以很方便的完成,而不用再担心改动错误。因为在封装对象的时候,我们投入了极大的精力,使得每一个对象里面的每个元件都有跟随作用。如果封装后有错误,是无法通过测试的。这首先保证了自己所使用的“元件”是无误的,而不像面向过程中每一步都没有电气属性,改动完之后不知道是否正确的尴尬局面。目前,对于整个造纸机传动自动化来讲,我们往往对于辅助传动的着力点过少,从现在这个行业的故障率来讲,目前应该将辅助传动控制与主传动进行一体化设计。对此,我们还是针对于每一个项目进行具体设计,因为辅助传动在各自的分布可能要求不一致,系统之间又没有具体的联系,还是采用面向过程的设计思路,简单方便、可靠性高。

2.3软件模块化、通用化设计在国外,1999年Benitez等人提出面向对象方法在PLC程序设计应用中的必然性。2010年ChiacchioP.等人提出IEC61131标准中的PLC程序设计方法已无法满足自动化系统的发展需求,提出面向对象的编程方法。AdnanSalihbegović等人也提出将软件工程方法运用到工业自动化控制中。在国内,2000年陈娟等人将面向对象方法运用到粮食储运自动化系统中,讨论了类的抽象和封装的实现。2009年张逸群等人将面向对象方法运用到煤炭输送机控制系统的PLC程序设计中,阐述了基于STEP7的面向对象程序设计方法。2009年12月,祝瓛冰出版了《面向对象的现代工业控制系统的实用设计技术》一书,更是取得突破性技术,使得面向对象的方法更加实用于PLC程序设计。综上所述,在国内外研究中面向对象方法已经在工业控制中崭露头角。但在此时,纸机传动自动化软件设计还是处于传统的阶段,对于此次当代纸机装备制造商提出的优化概念模块化纸机,为了提高工业效率的适应性,还是难以满足,所以我们将面向对象方法引入纸机传动自动化行业,在硬件上加以强类封装,同时相对于每一个硬件类,都有一个相对应的软件类。这样对于一个控制系统的对象,我们只要通过接口,操作硬件类与软件类相互联系,就可以很好地完成控制任务。下面以普通电机为例,介绍其每个环节的做法:(1)建立需求分析表,如表1。其作用就是以控制系统对此类目标的需求,对未来对象所执行的任务进行反向递推,将需求层层细化。(2)建立变量表,如表2。这个需要好好琢磨,以至于反复修改。(3)编制类的梯形图,测试修改,反复多次。这样,所有编程均基于所述接口,对于每一个具体的工程对象,仅仅只需要修改相对应的外部变量,而不需要在所封装的程序内部做修改。当然这个过程是循环往复的,它需要我们有足够的测试对象以及测试次数,但这一点,相对于以往工程项目毫无头绪的修改,导致的出错率还是可以接受的。

3现代纸机传动系统常见技术问题分析与处理方法

纸机在运行中,由于机械、电气紧密联系,相互配合,因而故障出现时,往往会导致很难确定是何原因。作为电气技术人员,在对所管设备充分了解后,理应对于其工作原理以及设计思想有所了解,最后依据现象做出分析判断,区分故障,从而解决问题。在造纸生产中,不可避免地会出现一些类似操作失灵、频繁断纸等表面现象,操作人员往往第一时间会认为是出现了电气故障。此时,作为电气工程师则必须首先对故障现象进行仔细分析,完整描述,准确判断。要做到一看、二想、三检验,即:一看就是先看准问题的部位和现象,进行细致分析和准确描述,分清问题所在。二想就是对于问题表现的现象,要冷静思考、综合判断,特别是结合公共和电气参数的记录值,对现象的产生原因做出判断,防止误判。三检验就是在可能情况下,通过一些参数的人为变化,检验和核对问题的原因,最终确定问题的原因和处理方法。下面通过对几种常见问题的分析和判断,以说明问题的处理方法。

3.1速度不稳、断纸、引纸困难这类问题在早期的新纸机调试和二手机开机过程以及更换产品品种时较易发生。由于目前机械和传动设备都已经设计比较完善,操作人员也已经比较熟练。在设备和工艺以及电气之间发生问题梳理不清的情况已经减少。但是,从电气技术原理的角度分析问题的根源和找出解决办法仍然是电气工程师应当具备的基本能力。面对速度不稳、断纸这样的现象,往往会伴随着工艺和机械设备等相互交织的问题。有经验的车间主任、班组长可以很快判断问题的原因所在。以下通过电气传动的参数数据分析来说明逻辑分析方法:(1)仔细观察上位机记录的转速和转矩变化曲线,在反应的断纸点观察是否有速度的突变和转矩突变以及突变的方向和规律。这一点非常重要,传动参数的记录数据,特别是实时数据对分析判断至关重要。(2)基本分析和判断:如果在断纸附近速度曲线变化不明显,而转矩或电流在断纸附近显著波动,通常可以认为调速系统是正常的。可以不予理会关于速度波动的说法,这是因为如果速度没有明显变化而转矩或电流有明显波动,则恰恰说明调速系统是正常的。在双闭环系统中,速度反馈是外环,电流或转矩是内环。内环的响应要远远大于外环,因此正是电流的波动才抑制了或抵消了速度的波动,是正常的响应。(3)反之如果先有速度的变化,不论是缓慢变化还是突变,之后才是电流的变化,那么可以怀疑调速系统或在设备的某些部位存在问题。可能的问题有:编码器或速度反馈干扰或不稳定,引起速度波动;可以进一步观察速度反馈系统或电机和编码器的连接部位,进行必要的检修和加固,对导线连线以及屏蔽等进行检查和再次接线;如果电气系统检查无误,则可以怀疑设备或安装存在的可能问题。在某厂的系统中曾经发现过施胶部在施胶过程中主传动点速度缓慢变化的情况,后经检查发现是由于主从控制的安装不当引起,当胶辊在受热后形变较大时,会发生直径增加的情况因而导致线速度缓慢增加。引起不稳定或张力增加而出现断纸,更改主从配置后问题得以解决。(4)另外,在压榨部也会出现莫名其妙断纸的现象。在观察电气记录后如果没有发现问题,则可以提醒操作人员注意真空度和湿纸的干度,真空度的变化也会引起纸的强度变化。同时,应当充分注意速度环PID参数整定要合适。举例说明,如图5。此为卷取部换卷时的曲线记录。从曲线上看,当换卷时从三烘到卷取的纸幅所承受的拉力减小,从而导致三烘部的负荷加大,引起速度下降,在速度闭环系统的控制下,变频器进行了自动调节,但是此过程持续时间较长,从而可以明显看到三烘之前的纸幅下垂现象。从图5(上)明显还可以看出,速度控制的调节时间太长,速度下跌较大,因此需要增大速度环的比例系数,缩短积分时间。从图5(下)明显可以看到,同样在进行换卷时,速度有波动,但是速度下跌较小,而且调节过程的时间明显缩短,纸幅变化量不大。总之,应对速度不稳问题,一定要以记录数据为依据,然后再根据工艺过程分析问题的根源所在。电气工程师不但应当能够发现自身系统的问题,更要能够分析和判断出其他方面的问题,才能是合格的工程师。

3.2负荷分配控制方案及存在问题对策在网部和压榨部以及施胶部等,都存在负荷分配的控制问题。早期直流系统中负荷分配控制是由模拟的转矩电流分配器来完成的,现代纸机由于采用了通讯控制方式,这种分配关系由模拟变为数字,但基本的控制原理是相同的。本文所要阐述的是在负荷分配控制中针对不同情况的控制策略选择问题,这也是本人及其团队多年来研究和实践的总结,现分几个问题介绍如下:(1)刚性负荷分配控制的稳定性问题通常情况下压榨部、网部、施胶部等各部分的负荷分配问题,都可以定义为刚性连接的负荷分配控制问题。所谓刚性连接就是指两个连接的电动机之间没有速度误差,例如压榨部,上下辊之间在正常时是不可能有速度偏差的,否则纸页就会产生质量问题,网部和施胶部都可以做类似的解释。在这种负荷分配控制中,普遍采用的方案是用转矩或电流叠加进行分配,其中一台作为主传动,另一台作为辅传动。通过转矩电流的比例分配,满足协调所需的工艺控制要求。但是,这种方案是否存在稳定性问题呢?长期以来一直没有理论的证明和分析,陕西科技大学2013届研究生张洪涛在参考相关资料的基础上,将速度反馈微差注入的方法引入到负荷分配控制的稳定性仿真分析中,在理论上证明了刚性连接情况下采用转矩或电流进行负荷分配控制是稳定的。现将这一原理仿真模型进行说明。图6中编号1代表的是速度给定,编号2和3是负载和负载扰动的加载点。模型中刚性耦合的模拟是通过求取两者的速差,然后再乘以刚性系数去叠加到各电流调节器的输出上,从而代表由于速差而引起的转矩传递。主传动点的速度给定直接乘以一个补偿系数作为从传动点的速度给定,此补偿系数一般大于1,目的是为了使从传动点的速度调节器饱和。将主传动点的电流反馈和主传动点的转速调节取最小运算,目的是为了使主传动点的电流反馈值对从传动点的电流给定值起到一个限幅的作用,也即从传动点跟随主传动点的电流反馈,从而模拟转矩控制的效果。仿真波形如图7所示。由仿真波形可以看出,速度的稳定性较高而且从点电流在整个过程当中都仅仅跟随主点电流,保证主从出力相同。在25s时在标号2处添加一个负载扰动信号,此时转速变化很小,而电流的波动相对转速要大,但在不到2s时间内又稳定下来,且主从电流一致。从仿真波形来看,用转矩控制的负荷分配方式对刚性耦合的负载进行控制,系统始终是稳定的。(2)柔性耦合的负荷分配控制的稳定性问题图8是柔性耦合负荷分配控制系统中基于速度控制的仿真模型,其中主从传动点都处于速度控制模式,通过比较主从点的电流反馈值,然后求差,再乘以柔性补偿系数叠加到从点的速度给定上,从而微调从点电流,使得从点的电流值跟随主点电流的目的。在柔性耦合的负荷分配控制中,同样先采用主从传动点都处于速度控制模式进行仿真分析。在速度控制模式下通过比较主从点的电流反馈值,然后求差,再乘以柔性补偿系数叠加到从点的速度给定上,从而微调从点电流,使得从点的电流值跟随主点电流。模拟柔性耦合机械上的连接还是通过求速差,再乘刚性系数去叠加到各电流调节器的输出上。和刚性耦合中不同的是,当在主点加负载扰动时,其对从点转矩的影响需要经过一定的延时,所以在此还是通过求速差,再乘刚性系数去叠加到各电流调节器的输出上。在此模型中,添加了一个延时模块,其延时取决于实际转矩的传递时间。仿真时,在编号2处加负载扰动,而延时环节则加在去主点电流环的一侧,此时代表当从点负载发生波动时,其到主点转矩的传递需要经过一定的延时。仿真波形如图9所示。从仿真波形可以看出,当从点加负载扰动时,主从点转速的波动仍然很小,电流波动相对较大,但在短暂调整后又趋于平稳,从点的电流跟随性良好,说明主从点负载均衡,达到了负荷分配的目的。从上面仿真结果来看,对柔性耦合的负载采用速度控制的负荷分配方式是稳定的。图10是柔性连接的转矩控制方式仿真模型,模型中柔性耦合的模拟与刚性连接相同,均采用求取速度反馈差值的办法,用差值乘以刚性系数后叠加到各电流调节器的输出上,代表由于速差而引起的转矩传递。主传动点的速度给定直接乘以一个补偿系数作为从传动点的速度给定,此补偿系数一般大于1,目的是为了使从传动点的速度调节器饱和,从而形成转矩控制的方式。将主传动点的电流反馈和主传动点的转速调节取最小运算,目的是为了使主传动点的电流反馈值对从传动点的电流给定值起到一个限幅的作用,也即从传动点跟随主传动点的电流反馈,从而模拟转矩负荷分配控制的效果。与刚性连接不同的是增加一个延时环节,图10是将主扰动的影响经过延时后叠加到从点上。由图11仿真波形我们发现,当柔性耦合的负载采用总线通讯转矩控制的负荷分配方式时,主从点的转速与转矩都发生了振荡的现象。而前面采用总线通讯速度控制方式时,主从点的速度与转矩都能经过短暂的调节趋于稳定,且从点的电流和主点的电流基本相等。这也说明了柔性耦合的负载当采用转矩控制的负荷分配方式时是不稳定的,此跟实际调试当中遇到的现象完全吻合。总之,对于负荷分配控制系统而言,正常情况下我们都可以看作是刚性连接的系统。因此,无论是速度控制方式还是转矩控制方式,系统本身都是稳定的。但是如果具有延迟特性的负荷分配控制系统,由于转矩和速度之间增加了反馈延迟,就会造成不稳定现象。典型的例子如高速卫生纸机的负荷分配控制系统,在网部和大缸之间由10m以上的毛布进行连接,毛布的弹性作用会导致转矩和速度的延迟。这时如果采用转速控制的负荷分配方案则是稳定的,反之如果采用通常的转矩负荷分配控制方案则极有可能会造成系统不稳定,理论研究和实践都证明了这一点。

3.3高速纸机传动系统的特点目前针对高速纸机,在控制精度要求上有一种流行的观点,是高速纸机要求的控制精度更高或者变频器的性能要更好等等。究竟纸机进入高速以后,在传动技术要求和控制精度等问题上与普通纸机传动有什么区别和不同?在这个问题上,由于资料和信息都不甚充分,在此针对传动系统的基本原理和高低速的区别提出以下几点看法:(1)从控制系统特征看,纸机的速度指标是线速度,而电机的指标是转速,因此我们应把电机和纸机分开来看。对于纸机侧,只关注线速度多少;对于电机侧,则关注的是转速。因此同样的转速,可以工作在1000m/min,也可以工作在500m/min,所以控制性能和精度要求没有本质的差别。(2)由于高速纸机速度高、惯量大,所以在动态特性指标上应当有更高的要求。比如转矩的响应应当更快,速度环的闭环指标应当注重与超调量尽可能小等等。这些指标对于任何速度的要求都是一样的,但是对于高速纸机而言,应当更注重调试的质量和性能。(3)静态或稳态速度精度问题,稳态下对速度精度的要求是由纸张特性决定的。纸机在高速和低速条件下工作时,相同控制精度下对纸张的形变量是一致的。根据胡克定律:F=K×Δv×t,对于高速纸机而言,运行在高速和低速情况下,对于同一控制精度,速差相对而言是一样的,因此得出结论是控制系统的稳态精度与车速无关。(4)变频器的频率分辨率和速度闭环精度没有直接的联系。只要闭环稳态精度在0.1%以上,则高速纸机控制系统对变频器没有特殊的要求。但是由于控制原理不同,在变频器的不同品牌中,转矩控制特性不同,即动态响应不同。这一点对系统的影响需要考虑。总之,对于高速纸机而言,由于动态响应的要求较高,所以变频器的选择应当以矢量控制型和直接转矩控制型为主,且要求转矩控制最好是独立的,能够形成转矩闭环。

传动技术论文第4篇

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术论文第5篇

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术论文第6篇

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术论文第7篇

1.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

1.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

1.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

1.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

2新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

2.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

2.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

3先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

[3]AnsimagInc.AcidicPumpagePlaysHavocwithRotaryLobeUnits[J].WorldPumps,1997,(5):26

[4]MichaelSmith.SideChannelPumpSolvesMethanolTransferProblem[J].WedPage,2001.