欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

物联网安全论文(合集7篇)

时间:2022-05-12 07:39:41
物联网安全论文

物联网安全论文第1篇

煤矿安全管理信息移动传输技术系统利用移动通信网络技术,将矿山企业内部现有的各种数据信息(包括井下矿压监测系统、水文监测系统、人员定位系统、生产调度报表数据、矿井安全日报表等数据等),进行数据的采集、分析和相关处理,将矿领导和相关科室技术人员需要的数据提取后通过系统移动公司的无线网络通过客户端的形式提供给相关领导和部门,供他们随时随地的进行查询。通过后台可以进行系统配置、系统性能检测、故障诊断、用户管理、业务员管理、数据管理操作,大大降低了系统维护和管理的复杂程度,而通过前台,可以实现井下作业人员管理系统、视频监控系统、安全日报表和调度日报表等数据的查询,煤矿领导和各级管理人员不在生产一线的情况下,可以实现对矿安全生产信息和情况的及时掌握和了解,大大提升了企业工作效率。本信息化管理系统建立了用户鉴权访问机制,各项数据经过严格的加密算法进行传输,同时配有专线与运营商之间进行连接,保证了数据传输的实时性、安全性、以及稳定性。同时也提供相关报表的导出为Excel报表的功能,并且在淄博矿业集团许厂煤矿局域网内的任何地点通过联网的电脑均可上网查询。该课题主要具有如下5个关键技术创新点。

1)引入第三代移动通信技术和移动智能终端,实现了生产设备运行状态的实时监测,并可对生产设备进行移动远程控制。

2)应用物联网技术,进行煤矿安全生产相关信息的传输。物联网就是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络概念。在煤矿企业中应用就是将井下各种传感器、测量设备及井上各种数据进行交互,并集中呈现在指定位置,例如WEB、终端等。

3)利用智能分析对采集到的设备运行信息进行处理,并将其报警信息主动发送到相关人员的手机上。

4)应用视频压缩技术,对生产监控视频进行压缩后,供手机视频软件调取。煤矿井下作业场所远离地面,环境恶劣、地形复杂多变,现场生产环境随时都有可能发生变化,利用井下工业电视系统,对井下工作现场进行实时的监控,并将现场图像上传到地面矿调度监控指挥中心,可以让地面人员能够实时监控记录井下作业环境和设备的运行状况,对出现的事故苗头及时发现和制止,即使出现了生产事故,也可以对事故分析提供第一手的资料。该系统可以将矿方原有监控系统的主要场景,转移到手机端,管理层可以通过手机实现对井上、井下主要工作面的实时查看或监控。

5)研发煤矿安全管理信息软件系统。①自主研发煤矿安全管理信息软件分析系统。系统平台客户端采用连接池连接业务系统数据库,以及http解析xml文件的方式,将煤矿内网的各个业务系统后台和手持终端进行联系;通过业务的处理分析支撑整个移动监控系统的运行。客户端软件要求基于C#或java环境开发,移动监控平台和移动终端之间采用C/S架构的方式连接。②数据库:开放式,无容量限制,与分析软件自动连接。每次测试完成自动可保存之前测量数据与内容。

2结论

物联网安全论文第2篇

危险品运输车辆现代化程度普遍不高,有相当一部分运输危险品的车辆是由普通车辆经过简单改装而来,对于危险品缺乏切实有效的隔离防护处理措施,易造成危险品泄露或变质。从业人员素质不高,处于节省成本等原因,装载危化品不按规定操作,由于各种人为的原因、管理上的漏洞,以及客观原因等引发的事故时有发生[2]。运输过程中对于危险品的掌控仅由驾驶员一人负责,驾驶员可能缺乏在紧急情况正确处理危险品的技术方法,尤其是在城际间道路上,技术指导和救援不能及时到达,驾驶员若采取错误的施救措施会造成更大的安全隐患和事故。近年来,车载监控设备发展速度较快,危险品运输企业普遍采取车载嵌入式监控和车辆行驶记录仪的方式来监控运输车辆的行驶状态和行驶路径,通过GPS与无线通信技术相结合的方法实现对车辆的定位和通信,已经实现了一定的对城际运输车辆监控的能力。但监控系统构成比较简单,系统各部分是独立工作的,只能进行基础的数据采集,数据分析和处理缺乏时效性。存在诸如定位精度不够、定位有偏差;山区间信号覆盖强度不足,数据信号丢失等问题。实时监控能力的不足可能造成对潜在隐患发现不及时,增加事故发生风险,若事故在城际间的道路上则会延误最佳救援时机。另外,对于运输危险品的实时监控、危险实时预警也是亟待解决的问题。

2物联网技术

物联网(InternetofThings)技术的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术叫做物联网技术。物联网技术的特点是感知全面、传递可靠和智能处理。物联网典型体系构架分为三层,自上而下依次是感知层、网络层和应用层。结合城际危险品运输实际需求,每个层级有各自的功能划分。感知层由各种有感知功能的传感器和检测器组成,包括监控记录摄像头、GPS全球定位系统、RFID标签及读写器、胎压监测器等设备,用于识别和检测运输车辆的胎压、车速、地理位置、海拔高度、行驶路径等指标,也用于监控所运输危险品的实时状态,如液体和气体浓度、温度、压力、有无泄漏和变质等指标及状态。感知层用以采集各项状态信息,是物联网体系的基础和信息来源。网络层对感知层的所收集的信息进行数据传递,利用互联网、移动通信网、无线接入网及无线局域网等基础网络设施进行传输[3],如3G/4G/Wi-Fi等技术手段。网络层的主要作用是信息数据的传递。应用层用于连接物联网和用户,将物联网技术结合到实际的危险品运输行业中,对资源加以整合开发利用,使行业专业应用实施智能化,推出更为全面具体的低成本且高质量的问题解决方案。

3系统中主要应用的物联网技术

3.1传感技术

主要指各类传感器,通过各类传感器采集车辆及危险品的物理信息及指标,它是构成物联网的基础单元。目前最新的MEMS传感器技术的快速发展为系统的建设提供了技术支撑。系统主要应用的传感器包括倾角传感器、速度及加速度传感器、温度传感器、液位传感器、压力传感器、阀门开关传感器和泄露浓度传感器以及其它MEMS传感器等[4]。

3.2物体识别技术

RFID技术是物体识别技术的代表,RFID读写器能自动识别读取RFID的标签信息,标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者由标签主动发送某一频率的信号,解读器读取信息并解码后,送至中央信息系统进行有关数据处理。能高效识别运输车辆身份和所运输危险品的类型等各种基本信息。具有识别速度快、数据容量大、标签数据可动态更改、动态实时通信等优点。实现对车辆及危险品的智能监控。

3.3位置识别技术

GPS是目前较为成熟,运用范围广泛的定位技术,在全球范围内应用的比重达到40%以上。GPS定位系统具有在轨卫星数量多、定位速度快、精度高等优点。而我国研制开发的北斗卫星导航系统也逐渐趋于成熟,北斗卫星导航系统相较于GPS具有通信和目标定位等新兴优势。

3.4地理识别技术

以GIS地理信息系统为代表,具有强大的数据采集、管理、存储、分析处理以及输出空间数据的能力,将GIS系统与车辆运行情况相结合,提供车辆位置可视化的地理位置等信息,基于GIS地理信息系统集成已经成为物流发展的必然趋势。

3.5无线通信技术

无线通讯技术发展势头迅猛,3G标准的TD-CDMA技术已经成熟,最新的4G标准的TD-LTE技术相较于前几代技术在数据传输速度上有很大提高,100MB的理论下载速度、50MB的理论上传速度,能够适应高速移动的车辆的数据传送,具有很强的时效性,且可以与云端存储完美结合,随着网络覆盖的广泛化和深入化,4G技术能够胜任物联网的数据传输需求。

4城际危险品运输安全监控系统结构

城际危险品运输安全监控系统由三部分组成,分为车辆及危险品综合工况信息采集系统、信息数据传输系统和远程监控调度指挥中心系统。实现对危险品状态的监测与安全预警、位置跟踪、运输过程信息记录等功能。安全监控系统结构如图1所示。

4.1车辆及危险品综合工况信息采集系统

城际之间道路形式多种多样,有路况良好的国道及高速公路,也有路况差的乡道县道等道路。运输空间跨度较大,距离少则一百公里,多则上千公里。危险品运输车辆需要在复杂的道路条件和气候环境条件下长距离长时间行驶,对车辆及危险品的各项指标进行实时监控显得尤为重要。车辆工况信息采集系统主要完成车辆车况的采集和集中处理工作,是整个车载系统的核心,该系统由各种传感器和数据变换设备组成[4]。根据制定的危险品运输规则,对车辆的行驶速度、加速度、地理位置、海拔高度以及车辆所在的道路环境,气候温度进行实时监测;对于所运输的危险品的温度、湿度、浓度、震动情况以及是否泄漏等信息进行实时数据采集;对于驾驶员和车辆前方的路况使用摄像头进行录制,将采集的数据发送给驾驶员和监控指挥中心,如果有信息数据的异常情况和检测导致危险的因素,驾驶员和监控中心能及时做出反应,排除安全隐患。若运输车辆已经发生突然事故,系统也能及时通报驾驶员和远程监控中心,给出发生问题的原因,为监控中心迅速派出救援和指导驾驶员正确救灾提供便利。车辆及危险品工况采集流程如图2所示。

4.2信息数据传输系统

通过卫星及无线数据通信技术,使采集的信息得以传输到驾驶员端和远程监控调度中心,同时使车辆控制终端和远程监控中心实现实时通信。基于GPS全球定位系统和3G技术,加上北斗系统作以辅助。能够有效传输信息采集系统收集的数据,在发生紧急情况的时候,信息传输速度以及信号强度具有重要的意义。快速的信息传输速度和高强度的网络信号是紧急情况下指导及救援的重要保证。3G技术的成熟度已经很高,在传输数据和声音速度上相较之前的GPRS制式网络有了质的提升,适用于对于采集数据的传输和紧急通话。随着3G网络覆盖面的加深和4G网络的普及,即使在城际间复杂的地形中,如山区之间和隧道内部,都能保证信息和数据的顺利传输。若在通信网络不佳的极端条件下,北斗卫星导航系统也可用于紧急通信,驾驶员通过车载终端能及时与远程监控中心取得联系,同时能标定运输车辆及危险品所在位置,作为常规通讯手段的辅助和保障,多重手段保证通讯不中断,及时发现问题,迅速排除危险。

4.3远程监控调度指挥中心系统

远程监控调度指挥中心是整个系统的关键部分,起到信息汇总、数据分析、通信传输、信息管理、监控与指挥的作用。通过接收从车载终端发回的信息数据,随时监控运输车辆的行驶状态诸如速度、位置、海拔高度等信息,通过摄像头和无线网络能实时检测驾驶员的状态,是否有超速及吸烟等违反规定易触发危险的行为。同时能监控危险品的各项参数指标,配置各类服务器、专用的应用管理程序等,用于数据的周转和数据分析以及指导解决方案的导出。配以救援调度系统,结合详尽的突发事件应急预案,与运输车辆邻近城市救援系统联动,对发生事故或危险的地点及时派出救援力量,规划出最佳路径,在最短时间内到达现场进行救援工作。通过查询事故发生前的车辆及危险品状态的信息记录,加上专业软件技术人员的分析,能推导出事故的诱因或直接原因,使得在责任认定时证据充分、更准确更直接,也对后续运输工作方案及操作流程提出警示和整改方案。

5结论

物联网安全论文第3篇

1.1物联网信息特点

终端设备的异构性,使得物体属性在建模上存在差别,导致不同物体对数据的识别、对信息的描述产生较大差异;而终端数量的庞大规模,又会导致在采集和处理数据时,容易产生海量数据。数据受多种因素制约,产生位置的分散性、形式的差异性都给信息描述带来了不便之处。例如,以监测森林区域的着火点为例,对温度的描述,不同的采集系统可能采用华氏温度,或摄氏温度,作为采集单位,那么在处理时就面临数据统一性的问题。不同的应用对采集点的数量、存储空间的要求都有不同。大量的数据在不同采集点之间复制,由于传输线路、传输介质等客观因素,也会影响到网络通信带宽。在数据传输阶段,短距离的无线传输是物联网中普遍采用的技术,而无线传输由于其扩散性,使得信息、数据被盗窃的几率大大增加。物联网应用在不同层次对数据的使用都提出了复杂的要求,使得信息安全问题更为棘手,也更加受到重视。

1.2信息安全的传统要求

国际标准化组织把信息安全定义为“信息的完整性、可用性、保密性和可靠性”,控制安全则指“身份认证、不可否认性、授权和访问控制”。完整性强调数据的防篡改功能,可用性强调数据能按需使用,保密性强调数据在授权范围内使用,可靠性则强调系统能完成规定功能。在物联网信息处理的各个环节,这些要求应当得到满足。例如,在数据感知技术中普遍采用的RFID,在阅读器和RFID标签之间进行数据传输时,由于标签的运算能力非常弱,且两者之间采用的是无线方式通信,恶意用户通过克隆、重放、中间人攻击等手段,从而达到窃听、修改数据的目的。

2物联网应用对传统的信息安全提出的新要求

通常认为物联网中的实体都部署有具备一定感知能力、计算能力和执行能力的嵌入式芯片和软件,即“智能物体”。终端的智能化,使得物联网中的信息安全面临更多的挑战。下面列举几个实例加以说明。

2.1智能物体更易暴露隐私

近年来屡见不鲜的手机用户信息遭遇泄露,只是隐私权遭到侵害的实例之一。定位技术的日臻成熟,使得诸如智能化手机等智能物体的应用也日趋普及,与之相关的LBS(LocationBasedServices)为生活带来极大便捷。通过LBS,可确定移动终端所在的地理位置,更重要的是能提供与位置相关的信息服务。这些信息服务能够对“什么人”“什么时间”在“什么地点”从事过“什么活动”做出精确描述。如果攻击者通过某种途径获取到信息服务,那么,合法用户的隐私信息必将一览无遗。

2.2设备可靠性要求得到更高保障

传感技术是信息技术的支柱之一。经过VigilNet、智能楼宇等应用的验证,传感器在数据采集方面的功能已毋庸置疑。物联网应用中也普遍采用传感器作为感知层的重要设备。大量部署的无线传感器节点在传统的传感器基础上,集成了智能化的处理单元和无线通信单元,能够分析、处理、传输采集到的数据。无线传感器网络的部署方式影响传感器网络的覆盖质量、网络拓扑结构、网络的连通性和网络的生存时间等性能。受到通信能力和处理资源的限制,在传统的无线传感网络基础上,研究者开发出CSN(认知传感器网络),即“认知无线电传感器节点的分布式网络”。受传感节点的物理特性、部署环境等制约,且认知无线电所用频谱具有不确定性,CSN的安全问题也面临着更为复杂的挑战。

2.3无线接入增加了数据传输风险

日益成熟的无线通信技术,例如Wifi、3G、4G技术,因其具备的廉价、灵活、高速等特性,在数据传输中具备独到优势,成为物联网主流的接入方式之一。但也面临空间环境对无线信号传输的影响、同频信号之间的相互干扰问题,以及如何应对无线接入的开放性。无线信道的使用方式,决定了信息易被窃听,甚至被假冒、篡改。在物理层和链路层,采取相应的安全措施。

3对物联网信息安全的解决思路

海量终端节点的异构性、多态性,数据传输方式的差异化、立体化,高端应用的多样化、复杂化,涉及感知、存储、传输、处理和应用的每一个细节。完善物联网信息安全,需要从不同层次出发,综合运用多种安全技术。

3.1安全标准

技术意义上的标准就是一种以文件形式的统一协定。如本文前言所述,物联网本身缺乏统一标准,在一定程度上也影响了物联网安全的标准化进程,但是从另一方面,也更加证明了制定统一安全标准的必要性,使其能更加有效地服务于物联网建设。标准化工作的推进,需要有国家法律法规的支持、行业企业的率先垂范,并注重网络用户安全意识的培养。

3.2防护体系

物联网安全防护应考虑数据产生到信息应用的每个阶段,从分层、分级等不同维度,设计安全防护体系。

3.3技术手段与应对方法

不同层次、不同级别采取的安全措施不尽相同,彼此互为补充,形成整合性的安全方案。结合层次特点、级别要求,对关键安全技术做简要说明。

1)各类RFID装置、传感设备、定位系统等,为“物体”标识自身存在、感知外界提供基础保证,也是海量数据产生的源头。无线传感网络的脆弱性、受限的存储能力、频段干扰、RFID标签与阅读器之间的安全与隐私保护,通过采取PKI公钥体系、IDS系统、PUF等技术进行安全保障。

2)IETF小组在设计IPv6时强化了网络层的安全性,要求IPv6实现中必须支持IPSec,使得在IP层上对数据包进行高强度的安全处理,提供数据源地址验证、无连接数据完整性、数据机密性、抗重播和有限业务流加密等安全服务。移动网络通信中使用的UMTS网络基于双向认证,提供对接入链路信令数据的完整性保护,并且密钥的长度增加到128bit。

3)未来的云计算服务将为用户提供“按需服务”,实现个性化的存储计算及应用资源的合理分配,并利用虚拟化实例间的逻辑隔离实现不同用户之间的数据安全。基于云计算的数据中心建设,为数据挖掘等数据的智能处理提供了高效、可靠的物质基础。

4)物联网提供多样化的集成应用,对业务的控制和管理比较突出。建立强大而统一的安全管理平台是实现业务有效管理的一个思路。基于上述安全模型和技术手段,用户、管理者可以从不同层次来开发或使用不同的安全措施。例如针对接入终端的差异性,采取基于身份标识的终端认证。终端认证机制为用户提供物联网终端与网络之间均双向认证。根据设备类型特点,设计终端设备与接入网网关之间的接口协议,并在此基础上根据不同的需求来设计共享密钥或随机密钥。一个直接的例子,是在应用日渐广泛的智能停车系统中,设计车锁与钥匙之间的安全通信。车锁与钥匙可以作为两个对等终端,配备存储器件、无线接口、密码SoC等功能模块,双方通过射频进行通信。密码SoC的安全性将直接影响到产品的功能和质量。

4结语

物联网安全论文第4篇

关键词:马歇尔试验模型;计算机;物联网络;安全控制

1基于马歇尔试验模型的计算机网络安全控制设计

1.1计算机物联网络安全控制总体架构

马歇尔试验主要是确定沥青混合料最佳油石比的试验,目的是进行沥青路面施工质量检验。马歇尔试验模型便是测试某一方案设计的可行性方法。计算机物联网络安全控制方法是指保护计算机网络方法中储存、传输和处理的信息免于未经授权的泄露、修改以及由于各种原因造成的信息无法使用,维护计算机物联网络正常运行的方法,即通常所说的信息的保密性、完整性、真实性和可用性[1]。基于马歇尔试验模型的计算机物联网络安全控制方法主要由三部分组成:计算机主机访问控制、入侵检测、安全审计与监控。其中计算机主机访问控制主要是限定主体是否有权访问计算机物联网络,确保网络资源在合法用户范围内使用。入侵检测主要是检测计算机物联网络中存在的违犯网络安全控制的行为和被攻击的迹象。安全审计与监控是对计算机物联网络进行实时有效的审计与监控,及时评估计算机物联网络的安全性,提高计算机物联网络运行的可靠性、数据资源的可利用性[2]。

1.2计算机主机访问控制

计算机主机访问控制是保证网络安全的第一关卡,是限定主体是否以及能否有权访问计算机物联网络,对计算机物联网络允许执行什么样的操作,进而有效防止破坏计算机物联网络安全运行的行为,确保计算机物联网络中的信息在合法用户范围内的使用。未授权的访问包括非法用户进行计算机物联网络方法,合法用户对网络方法资源的非法使用以及没有授权的情况下使用、泄露、篡改、销毁信息等[3]。计算机主机访问控制规定了访问主体对网络客体访问的权限,而且可以通过身份及身份权限识别,对提出的网络资源访问请求加以控制。

1.3入侵检测

入侵检测主要是从计算机物联网络内部和各种网络资源中主动收集信息,从采集到的信息中分析潜存的网络入侵或者网络安全攻击,是一种主动的计算机物联网络安全防护技术[4]。当入侵检测技术发现入侵后,能够及时采取相应的措施,例如切断网络连接、阻断、追踪、反击以及报警等。与此同时,还能够记录网络安全受攻击的过程,为计算机物联网络安全的恢复和追击入侵来源提供有效的数据信息。入侵检测的具体实现首先是收集包括计算机物联网络系统、数据以及用户活动的状态和行为在内的相关信息。然后通过模型匹配、统计分析以及完整性分析对收集到的数据进行检测。当检测到某种不匹配的模型时,便会发出警告并传输到网络控制台。接着分析过滤掉的信息,从中分析判断出潜存的攻击。最后根据入侵检测的情况随时调整或者终止网络运行,以便实现计算机物联网络的安全隔离[5]。

1.4安全审计与监控

计算机物联网络安全审计是记录和追踪网络方法状态的变化,例如用户的活动、对网络资源使用情况的监控、记录对网络资源使用以及处理的过程。安全审计能够监控和捕捉各种网络安全事件,实现对安全事件的识别、定位以及做出相应地反应。监控则是对计算机物联网络的运行状态和用户行为进行实时监视,对出现的破坏网络安全的违规行为或者非法行为采取必要的控制措施[6]。通过安全审计与监控,计算机物联网络相关的管理人员能及时发现被监控计算机物联网络可能的网络资源泄露问题,以及一些正在破坏网络安全的特殊行为,自动采取控制措施阻止这些行为的发生。

2实验结果与分析

上述采用提出的基于马歇尔试验模型的计算机物联网络安全控制方法有效保证了对计算机物物联网络的安全运行,充分地证明了基于马歇尔试验模型的计算机物联网络安全控制方法的可行性,但是其有效性还有待进一步研究。因此,采用对比实验对提出的计算机物联网络安全控制方法的有效性进行实验。

2.1实验数据准备

实验数据的准备主要包括计算机物联网络运行环境,模拟提出的计算机物联网络安全控制方法对计算机安全运行的保障。根据模拟不同复杂的实验环境,分析传统的计算机物联网络安全控制方法与机遇马歇尔试验模型的计算机物联网络安全控制方法的有效性。模拟计算机物联网络运行环境的指令具体如下:Calc:Interfacevlancliconfgsqlsereverifaccess-groupvlan_aclininterfacevlancompmgmentifaccess-groupvlan_aclininterfacevlanlusrmgr.mscipaccess-groupvlan_aclinExitLogoff

2.2实验数据分析

以上述执行指令模拟计算机物联网络运行环境,对提出的计算机物联网络安全控制方法进行实验。对传统的计算机物联网络安全控制方法与传统的安全控制方法在测试后的效果进行对比,实验数据如下:从上表中可以看出,提出的计算机物联网络安全控制系统在测试后其效果还是比较明显的,由于病毒攻击造成的网络崩溃相比传统的安全控制方法次数大大降低,其对网络安全性和稳定性的改善还是显而易见的。

物联网安全论文第5篇

1.1系统架构现有“消防安全户籍化管理系统”由云端系统和应用服务构成,是一个典型的基于WEB方式的应用软件系统。“基于物联网技术的消防安全户籍化管理系统”增加了物联网终端系统,形成由智能感知物联网终端系统、云端系统和应用服务的系统架构。

1.2工作原理在社会单位消防设施(或人员)建立“一物(人)一码”RFID标签,在云端系统数据库中“一数一源”(即一个消防设备对应一个数据源)的关联。物联网终端系统通过传感器组、烟感温感实时采集消防设施的运行状态和报警信息、巡检人员通过手持移动终端读取消防设施的RFID数据完成每日巡查、视频摄像头实时采集消防值班室人员的在岗视频,上述信息或数据接入物联网终端系统,物联网终端系统的3G/4G无线传输模块将数据发送到“消防安全户籍化管理系统”数据库中,为系统提供了消防设施运行状态情况、每日防火巡检记录、消防控制室值班记录等信息;消防监管部门的通过客户端电脑或移动APP可实时查询监督各社会单位的消防安全的动态现状,监督社会单位落实消防安全责任,加强自身消防安全管理。

1.3系统工作平台由图2所示,“基于物联网技术的消防安全户籍化管理系统”工作平台由数据采集层、监控层、通讯层和应用层构成。数据采集层:由烟感、温感、压力传感器组、摄像头、RFID等传感知设备组成。监控层:由采集感知设备信号进行逻辑运算和判断嵌入式设备组成。通讯层:按符合国家消防通讯标准的数据通讯协议组成应用层:由基于WEB的“物联网消防安全户籍化管理系统”应用系统组成。

2系统提供的服务

2.1消防设施故障隐患提醒服务消防物联网监控系统实时监测社会单位消防设施的运行情况,当消防设施出现运行异常或发生故障时,实时将异常和故障发送到“户籍化管理系统”中,“户籍化管理系统”将即时向消防责任人或消防监管人员发送消防设施故障提醒短信。

2.2每日防火巡查在线监管服务消防巡检人员利用智能终端按规定的路线进行每日防火巡检,怎能终端实时将防火巡检信息发送到“户籍化管理系统”中。若“户籍化管理系统”每天未接收到智能终端上传的数据,将向消防责任人或消防监管人员发送巡查报警短信。

2.3消防值班人员实时查岗服务由网络摄像机、红外人体探测器实时采集消防值班人员在岗信息,当红外人体探测器探测到消防值班无人值守时,网络摄像机将实时抓拍图片和无人值守信息发送到“户籍化管理系统”中,“户籍化管理系统”主动拨打消防值班室电话,同时向消防责任人或消防监管人员发送无人值守报警短信。

2.4“三色预警”动态监管服务物联网监控系统、智能终端、视频摄像头等感知设备将社会消防设施运行状态情况、每日防火巡检记录、消防控制室值班记录等消防日常监管信息发送到“户籍化管理系统”中,系统将对按社会单位对数据进行分析和判断,最终对社会单位的消防安全工作做出“好(绿色)、一般(黄色)、差(红色)”的三色预警服务。

3结束语

物联网安全论文第6篇

物联网有三个特点:首先,它可以使用RFID技术,传感器和随时随地获取信息的对象,如QR码;第二,可靠的交付,集成,实时信息通过各种通信网络和互联网对象的准确表达;三是智能化处理,对大量的行政控制、智能对象的云计算,模糊计算技术模式识别与智能化、数据和信息分析利用和处理。使用智能建筑网络技术的传统保障系统具有以下优点。智能建筑被配有智能化设备,广泛应用于数字通信技术、控制技术、计算机网络技术、电视技术、光纤技术,传感器技术和数据库技术,如高科技构成类型的智能系统,智能建筑行业在我们的范围内是较晚,然而,技术发展非常迅速,未来的建设阶段的发展趋势将推动发展的智能化。

1.1布线优势

传统的安全系统建筑布线可以使用电话线路,公交线路,总线能力,集成度高。为家庭可以共享总线,而不是使用相同的总线的系列。没有额外的布线的电话线,电话线,但是带宽很窄,拥塞信号容易产生,而不适用于图形的传输。信号,绿色信号传输性能的图像不错,但是安全系统更多子系统,每个子系统使用行,布线的复杂性,包括增加建造和修理的难度。另外,旧楼,上述变换存在于多种接线工作量等问题。

1.2远程监控的实现

传统的安全系统将专注于各种安全检测器信号到管理中心,如安全管理中心的建筑物或地方行政中心。设备或由责任智能管理中心的工作人员来监视这些信号和联动处理。这种结构限制在安全范围内建设或执行,不能满足远程监控应用,如智能家居远程监控。为智能家庭,家庭可以共享总线,而不是使用相同的总线的系列。

1.3传感器的智能化

目前,智能建筑,如访问控制,视频监控安全系统。随着火灾报警系统是独立的单个传感器和就业功能的,没有智慧,例如,非法入侵检测红外探测器,红外信号,只要显示器,是否真的非法入侵,将产生报警信号时,仅具有这样一来,可以对应联动系统之间产生的报警。

1.4网络可靠性优势

在传统的布线,如果一个总线发生故障,则该总线上的所有监控设备将瘫痪。无线传感器网络中的每个节点可以协调它们的行动以实现自动网络的分布式算法。由于该中心节点,具有很强的鲁棒性和可生存性的消除。没有额外的布线的电话线,电话线,但是带宽很窄,拥塞信号容易产生,而不适用于图形的传输。使用转发节点,形成一个多-路由跃点而是网络比通过无线传感器网络路由设备通信中的每个节点。绿色信号传输性能的图像不错,但是安全系统有更多子系统,每个子系统使用性,布线的复杂性,包括增加建造和修理的难度。如路由器。因此,即使一个节点发生故障时,其他节点仍然可以依赖于彼此进行通信,这增加了网络的可靠性。

2物联网技术的优势与亟待解决的问题

无线传感器网络技术,可以有效地解决这些问题。无线传感器网络为基础的安全系统布线建筑物本身没有任何限制,需要使用各种无线传感器设计,施工,维修和改造提供了极大的方便,同时也节省了大量的布线材料,布局在人们无法达到的或危险的地区,这是一个明显的优势。为智能家庭,家庭可以共享总线,而不是使用相同的总线的系列,它是一个独特的优势。在RFID(无线射频识别)设备,身份和位置传感器设置传感器。RFID技术与由读取器发射的电子标签和阅读器,无线电波的主要成分扫描范围内的RFID标签,它可在电子标签信息被封装被读出,并且该信息被发送到信息管理系统,以验证这些信息的所有者的身份对应。作为一个单独的安全网络,建立一个桥梁几乎无处不在的互联网终端,通过物联网技术,安全管理人员或租客,可以在任何地方,电脑或手机主动监控建筑空间,当发生异常时,报警信号可发送及时向主管或住户本人。在每个技术的终端是一个智能传感器节点,信息收集,数据处理和通信能力的三个方面。它不仅具有传感器本身的功能,可以使各种数据智能处理和组织在一起形成一个系统的智能联动;安全子系统。如果一个节点由一个确定的信号节点数据处理模块本身检测的红外线检测器的警报信号,以确定它是否满足特征的红外信号的非法侵入,通过视频监控摄像机现场报警图像采样模块,进一步证实了非法入侵的图像特征的依从性,最终决定是否报警。这可以有效地减少或防止误报的发生。由于中心节点,具有很强的鲁棒性,可以消除生存能力。在使用转发节点,以形成多条路由的网络,而不是通过在无线传感器网络中的通信路由选择设备的每个节点。即使个别路由器节点失败,其他节点仍然可以保持依赖,从而提高网络的可靠性而互相沟通。

3基于物联网技术的智能建筑的系统结构

物联网安全论文第7篇

利用云变换得到的仅是相关的原子概念,因未能关注原子云模型间存在的相应关系,由此也导致了两个云之间易发生一些真空地带,或模型间的距离过近,所以需要对原子概念采取概念提升,以便能获得较粗粒度的概念,以避免所提取的定性概念无法可靠地对原始数据进行准确的描述。文中选择距离最近的两个正态云概念,然后将其合并成更高层次的正态云概念,最终达到概念个数能满足指定个数的目的。研究中为了产生不合理的合并,引入了距离阈值,从而生成了一种新定性概念提升算法,即MAQC算法,具体情况如下所示:输入。用CLOUDS来表示云变换生成的原子概念集合,利用σ来表示距离阈值。

2实验分析

2.1概念提取安全事件的获取可为系统提供数据支撑,也是确保物联网安全属性概念提取的基本前提。为了对上述提取方法的有效性进行验证,本文进行了相关实验。实验数据选择DARPA的入侵检测数据集来实施试验网络的训练,对于安全事件及日志信息的采集方面,综合运用了多种方法,如文件方式、Syslog及SNMPTrap等。此外,还综合应用了系统运行日志及数据库等,在Matlab程序设计实现方面则选择了数据的概念划分算法。在概念提取方面选择了属性CPU利用率作为案例,其中涵盖了系统运行48过程中产生的2880条数据。图1为CPU利用率频率分布情况,从图中可看出,大多数时间系统的CPU利用率相对较低,但当CPU利用率达到60%以上时,随着CPU利用率的逐渐升高,数据分布也表现出了越来越稀疏的状态,数据分布情况和系统实际运行情况之间保持一致。借助EAQC算法对系统中CPU利用率情况采取概念提取的方式进行评估,为尽可能简化计算,研究中假定梯形云的左右半云熵及超熵相同,借助云变换算法所得到的对应数字特征情况如表1所示。

2.2概念合并根据MAQC算法,对上述9个不确定性概念实施了合并,假设σ=2.5,则再通过两次合并后,就可获得5个不确定性概念,而这几个概念所对应数字特征的具体情况如表2所示。可以看出,在最终得到的5个定性概念能够相对准确地表现出CPU利用率的具体分布情况。同时,这些合并后的概念云中涵盖了原子概念云的取值区间,即使在进行概念提升后的云模型概念集合无法完全客观表现出原始数据的具体分布情况,但这些合并后的云模型概念集合相对更符合人的思维,因此可被接受并加以有效应用。其中属性值借助逆向云发生器的作用,就能有效判断其对概念的隶属度,只需根据极大判别法便可得到属性值所属的概念,在此基础上完成对物联网安全要素数值型数据的有效软化分。

3结束语