欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

空调技术论文(合集7篇)

时间:2023-03-06 16:02:04
空调技术论文

空调技术论文第1篇

1.1冰蓄冷技术的发展应用

发展冰蓄冷技术的重要性和必要性:现代空调设备已成为人们生产与生活的迫切需要。空调用电量已占建筑物总耗电量的60%—70%。当前由于能源紧缺,电力紧张,空调事业的发展受到极大的影响。众所周知,冰蓄冷空调就利用非峰值电能,使制冷机在最佳节能状态下运行,将空调系统所需要的显热与潜热的形式部分或全部释放的冷量来满足空调系统冷负荷时,即用融冰释放的冷量来满足空调系统冷负荷的需要,用来储存冰的容器成为蓄冷设备,冰蓄冷空调技术可以对用电起到移峰填谷的作用,在且可增强系统的稳定性,并能大大提高经济效率。

1.2低温空气源热泵在城市供热和制冷上的应用

空气源热泵技术是基于逆卡若循环原理建立起来的一种节能、环保制热技术。空气源热泵系统通过自然能(空气蓄热)获取低温热源,经系统高效集热整合后成为高温热源,用来取(供)暖或供应热水,整个系统集热效率甚高。空气源热泵使用范围广,产品适用温度范围在-10-40°C,并且一年四季全天候使用,不受阴、雨、雪等恶劣天气和冬季夜晚的影响,都可以正常使用;热效率高:产品热效率全年平均在300%以上;热泵产品无任何燃烧排放物,制冷剂选用了环保制冷剂R417A,对臭氧层零污染,是较好的环保型产品。因此,低温空气源热泵特别在北方夏热冻冷的城市供热和制冷有着广泛的应用。

1.3中央空调冷凝热回收利用

如今,星级宾馆、酒店,都设有中央空调系统和24小时热水供应,多数情况下冷、热源分别设置,用冷水机组提供冷源,蒸汽或热水锅炉提供热源。众所周知,冷水机组在运行时要通过冷却水系统排出大量的冷凝热,在制冷工况下运行,冷凝热可达制冷量的1.15—1.3倍。利用高温水源热泵回收这部分冷凝热输出的65度的热水作为生活热水,会是一条变废为宝的节能途径。

2技术发展的负面效应及控制

当代的技术革命,正在形成新型的生产力、形成新型生产方式、形成新型的市场交换方式、形成新的产业结构和就业结构、形成新的财产占有方式和分层结构、形成新型的权力和组织管理结构,技术正面效应和负面效应是客观必然的。人类有了其他一切生物所不曾具有的思维、精神和语言,人类运用自己的聪明和才智创造了丰富的物质文明,人类也必须对技术的负面效应做出回应。

彻底消除科技的负面作用是不可能的,我们唯一能做的是在科学技术活动尽量规避和抑制其负作用。臭氧层的破坏和全球气候变化,是当前全球所面临的主要环境问题。

3结语

人类利用技术手段对自然的利用和改造,必然改变自然界原有的平衡,问题是人类应该正确认识其活动对自然的正反两方面的影响,提供适应自然规律的、有科学预见的、可调控的人类行为,使其所产生的后果,有利于人与自然关系的协调,使自然界更好地造福人类。马克思主义相信技术的力量,相信人类依靠科技能够战胜各种困难,摆脱困境。人类谋求发展的能力是无穷的。然而,科技的力量的发挥和发展是要在一定的生产方式中进行的,它要受到经济制度、社会制度的影响和约束。所以,当代科技发展必须遵循马克思所说的统一的“人的科学”的宗旨,才能真正克服技术发展的负面效应,也只有这样才能充分发挥科技发展的正面效应。制冷技术的发展和臭氧层保护就是近代史上技术进步和全球合作的一个十分典型的范例,其技术进步和控制技术进步后果的合作机制也将成为人类的财富,并将为解决其它重大问题提供宝贵的借鉴经验。

空调技术论文第2篇

关键词:制冷;供暖;环保;节能

0前言

我们知道,所有生物过程都受到温度的影响,低温抑制食品中酵、霉菌的繁殖,人体对温度也非常敏感。在现代社会,制冷空调技术已经几乎渗透到各个生产技术、科学研究领域,并在改善人类的生活质量方面发挥巨大作用。生活中,制冷广泛用于食品冷加工、冷贮藏、冷藏运输,舒适性空气调节,体育运动中制造人工冰场等;工业生产中,为生产环境提供必要恒温恒湿环境,对材料进行低温处理,利用低温进行零件间的过盈配合等;农牧业中,对农作物种子进行低温处理等;建筑工程中,利用制冷实现冻土开采土方;现代医学也离不开制冷,深低温冷冻骨髓和外周血干细胞、手术中的低温麻醉等;制冷技术还在尖端科学领域如微电技术、新型材料、宇宙开发、生物技术的研究和开发中起着举足轻重的作用。可以说,现代技术进步是伴随着制冷空调技术发展起来的。

技术是人类历史过程中发展着的劳动技能、技巧、经验和知识,它包括人类技术活动中的硬件和软件,是人类改造自然和创造人工自然的方法、手段的活动的总和。其中,制冷空调技术的发展对人类的影响尤为重要。

1制冷空调新技术的发展

1.1冰蓄冷技术的发展应用

发展冰蓄冷技术的重要性和必要性:现代空调设备已成为人们生产与生活的迫切需要。空调用电量已占建筑物总耗电量的60%—70%。当前由于能源紧缺,电力紧张,空调事业的发展受到极大的影响。众所周知,冰蓄冷空调就利用非峰值电能,使制冷机在最佳节能状态下运行,将空调系统所需要的显热与潜热的形式部分或全部释放的冷量来满足空调系统冷负荷时,即用融冰释放的冷量来满足空调系统冷负荷的需要,用来储存冰的容器成为蓄冷设备,冰蓄冷空调技术可以对用电起到移峰填谷的作用,在且可增强系统的稳定性,并能大大提高经济效率。

1.2低温空气源热泵在城市供热和制冷上的应用

空气源热泵技术是基于逆卡若循环原理建立起来的一种节能、环保制热技术。空气源热泵系统通过自然能(空气蓄热)获取低温热源,经系统高效集热整合后成为高温热源,用来取(供)暖或供应热水,整个系统集热效率甚高。空气源热泵使用范围广,产品适用温度范围在-10-40°C,并且一年四季全天候使用,不受阴、雨、雪等恶劣天气和冬季夜晚的影响,都可以正常使用;热效率高:产品热效率全年平均在300%以上;热泵产品无任何燃烧排放物,制冷剂选用了环保制冷剂R417A,对臭氧层零污染,是较好的环保型产品。因此,低温空气源热泵特别在北方夏热冻冷的城市供热和制冷有着广泛的应用。1.3中央空调冷凝热回收利用

如今,星级宾馆、酒店,都设有中央空调系统和24小时热水供应,多数情况下冷、热源分别设置,用冷水机组提供冷源,蒸汽或热水锅炉提供热源。众所周知,冷水机组在运行时要通过冷却水系统排出大量的冷凝热,在制冷工况下运行,冷凝热可达制冷量的1.15—1.3倍。利用高温水源热泵回收这部分冷凝热输出的65度的热水作为生活热水,会是一条变废为宝的节能途径。

2技术发展的负面效应及控制

当代的技术革命,正在形成新型的生产力、形成新型生产方式、形成新型的市场交换方式、形成新的产业结构和就业结构、形成新的财产占有方式和分层结构、形成新型的权力和组织管理结构,技术正面效应和负面效应是客观必然的。人类有了其他一切生物所不曾具有的思维、精神和语言,人类运用自己的聪明和才智创造了丰富的物质文明,人类也必须对技术的负面效应做出回应。

彻底消除科技的负面作用是不可能的,我们唯一能做的是在科学技术活动尽量规避和抑制其负作用。臭氧层的破坏和全球气候变化,是当前全球所面临的主要环境问题。

空调技术论文第3篇

我国是世界上最大的太阳能生产国、使用国和热利用国,中国太阳能产业已占世界市场的76%,但是,目前我国的太阳能开发和利用主要集中在太阳能热水器。 近日,在山东德州举行的2010世界太阳能空调发展论坛上,山东奇威特人工环境有限公司了全球首款直驱式太阳能中央空调。 据介绍,奇威特直驱式太阳能中央空调在集热、蓄热等关键技术领域取得了重大突破。该款太阳能空调在集热、蓄热获得了30多项国际技术专利,全球首创贮能材料220℃相变熔融盐,最高可达85%的光热冷综合转换率,比普通热水器的太阳能利用能力高出27倍。 太阳能技术“瞄上”空调 近年来,太阳能的利用取得了很大发展,特别是在提供生活热水、采暖和发电方面,有数据显示目前中国太阳能热水器的生产企业已超过5000家。这些应用在需求上与大自然的赐予并不完全一致:当天气越冷、人们越需要温暖的时候,太阳能量的提供往往不足。 太阳能制冷空调的应用则正好与太阳能的供给大体上保持一致性:当天气越热、太阳辐射越强的时候,空调的使用率越高,而这时正是利用太阳能空调最有利的时机。 “太阳能要量产,出路只有空调。”奇威特公司董事长李文透露,“太阳能空调是经过中美科学家及工程师3年的刻苦攻坚研制而成,具备世界领先技术的产品。太阳能空调可大量运用在低碳建筑中,且成本较低,三五年内即可收回新增投资,六七年内收回全部投资。” 中国科学院院士何祚庥表示:“我国的可持续能源发展规划明确规定,到2020年可持续能源在总能耗中的比重仅为15%,而太阳能的开发和利用符合我国产业结构调整和发展循环经济、绿色经济、低碳经济的宏观政策,所以说太阳能产业发展潜力巨大。” 太阳能将成为主要能源 相关统计数据显示,中国建筑能耗总量已占能源总消费量的27.45%,建筑节能迫在眉睫。目前建筑能耗中,采暖空调占65%,热水15%,电气14%,炊事6%。 “毫无疑问,建筑节能的重点在于空调节能和热水节能,关注建筑节能,首先应关注空调和热水器等冷、热设备的节能。太阳能空调在建筑中的应用就是一个很好的节能方法。”国家住房和城乡建设部政策研究中心副主任秦虹指出,“作为一个新产品,太阳能空调若能经受住市场考验,其市场前景广阔。” 从科学原理角度看,太阳能光伏发电技术将太阳能直接转换为电能,是最具有应用前景的太阳能利用方式之一,将逐步成为我国能源的绿色支柱,从补充能源成长为替代能源。 按照中国工程院院士张耀明的“数学公式”推算,1平方米光伏每年减排66公斤二氧化碳,光伏每度电减排660克二氧化碳(扣除制造过程消耗70克),1平方米的人造森林每年吸收二氧化碳0.649公斤。从减排角度看,安装1平方米太阳能光伏相当于造林100平方米。130平方米土地所建的屋顶安装3千瓦光伏屋顶等于3000平方米的森林,等于6个网球场大。 张耀明对中国太阳能发展非常乐观,他说:“全国2/3以上地区每年日照大于2000小时,陆地面积每年接受的太阳辐射相当于24000亿吨标准煤,约相当于数万个三峡工程发电量的总和。这些为我国太阳能的利用和发展提供了前提条件。预计太阳能发电到2030年将在世界电力的供应中达到10%以上,可再生能源在总能源结构中占到30%;2050年太阳能发电将占到50%以上,到本世纪末太阳能将成为主要能源。” 中国要成为太阳能技术研发强国 “当今世界,谁掌握了标准的制定权,谁就在一定程度上掌握了技术和经济竞争的主动权。中国在太阳能空调产业上走到了前列,也希望能成

空调技术论文第4篇

关键词:变容量技术数码涡旋多联机节能

0前言

2004年9月16日,期待已久的空调能耗新标准终于公布,并于2005年3月1日实施。未来的空调产品能否达标,新标准为其划出一条底线——最佳能耗比2.6,即能耗比低于2.6的空调产品将不再允许在市面销售。空调系统的节能已经刻不容缓,而变容量技术一直以来都是空调节能的热点。本文将介绍一种新的变容量技术—数码涡旋技术及其应用。

自2002年数码涡旋压缩机开始供应中国市场以来,数码涡旋技术目前已经在家用中央空调系统、商用多联机系统、风管机系统、冷水机组、机房空调系统及北方地区热泵系统中得到广泛应用,其技术优点相当明显。

1数码涡旋压缩机变容量控制原理

艾默生环境优化技术事业部研发生产的数码涡旋压缩机利用“轴向柔性”技术,“轴向柔性”允许涡旋盘在轴向可以移动非常小的距离,确保涡旋盘始终以最佳的力进行工作。使得两个涡旋盘在任何运行环境下紧密结合在一起,保证涡旋压缩机有很高的能效比。数码涡旋的控制循环周期包括一段“负载期”和一段“卸载期”。负载期间,涡旋盘如图1(a)所示,压缩机像常规涡旋压缩机一样工作,传递全部容量,压缩机输出为100%。卸载期间,由于压缩机的柔性设计,使两个涡旋盘在轴向有一个微量分离(如图1(b)所示),因此不再有制冷剂通过压缩机,压缩机输出为0。这样,由负载期和卸载期的时间平均便确定了压缩机的总输出平均容量。

数码涡旋压缩机一个工作“周期时间”包括“负载状态”时间和“卸载状态”时间,这两个时间的不同组合决定压缩机的容量调节。通过改变这两个时间,就可调节压缩机的输出容量(10%~100%)。

所谓“周期时间”包括“负载状态”时间和“卸载状态”时间。这两个时间阶段的组合决定压缩机的容量调节。例如:在20s周期时间内,若负载状态时间为10s,卸载状态时间为10s,压缩机调节量为(10s×100%+10s×0%)/20=50%。若在相同的周期时间内负载状态时间为15s而卸载状态时间为5s,则压缩机调实量为75%,容量为负载状态和卸载状态时间平均的总和。通过改变负载状态时间和卸载状态时间,压缩机就可以实现任意大小的容量(10%~100%)。周期时间的概念如图2所示。

图2周期时间的概念

2数码涡旋技术的优点

2.1容量范围广、温控精确、调温快

数码涡旋压缩机的运行范围可以从10%到100%,并且在这一范围内的输出是连续的和无级的,与变频技术的分级输出容量相比是一大改进。提供无级的容量输出的同时保证了房问温度的控制精度可以大大提高(±0.5℃)。由于数码涡旋系统可通过改变负载和卸载周期时间迅速将容量从100%降到10%(反之亦然0,所以它能比别的系统快得多地对系统需求地变化作出反应。

2.2优良的季节能效比

数码涡旋压缩机的性能经过JIS和ARI的标准的评价,证明具有非常出色的SEER。大范围的容量调节可以提高压缩机的季节能效比。

2.3良好的回油控制

数码涡旋是唯一不需要油分离器或回油循环的系统。有两个因素使回油容易。第一,油只在负载周期内离开压缩机。所以,在低容量情况下,离开压缩机的油极少。第二,由于压缩机在负载周期内满负荷运行,负载周期内的气体速度足以使油回至压缩机。试验显示压缩机在最差的条件下,即100m配管长度,30m垂直落差且室内机、室外机位置可互换(有正常的回油弯),负荷最低时都可以使油回到压缩机。

2.4卓越的除湿性能

除湿性的好坏也是保证用户舒适性的一个关键,尤其是在低负荷运行时。数码涡旋压缩机提供了非常好的除湿性,因为它与变频系统相比具有较低的吸气压力。在任一百分比容量调节,负载状态时压缩机全负荷运行,全负荷运行将导致较低的平均吸气压力,得到较低的显热比。

2.5电磁干扰非常小,无电磁污染问题

数码涡旋系统产生非常小的电磁干扰,因为涡旋盘的负载和卸载只是一个简单的机械操作。这一独特的性能不仅使数码涡旋系统不需要昂贵的电磁抑制电子装置,也增加其可靠性和简易性。

2.6无需制冷剂旁通

大多数现行技术选用热气旁通和液体旁通装置。因压缩机不能达到极低的容量。所以需要这些旁通管保护装置。数码涡旋系统能使容量低至10%,所以无需这些旁通管,因而节省了开支并使系统简化。

3数码涡旋技术在多联机中的应用及节能措施

据一项在上海及周边地区的调查分析,多联机、风管机、冷热水机组、单元式机组分别占到此类市场的70%、13%、12%、5%。2004年上海市场多联机市场容量在10亿元左右。可以很明显地看出,多联机已经明显占据主导地位。

目前,国际上单冷媒多联系统主要有变频多联系统和变容多联系统。变频多联系统起步较早,而变容多联系统是最新发展起来的高新技术,能够很好地解决容量调节等问题,成为了单冷媒多联系统的发展方向。

在室内机和室外机的外形方面,数码变容多联机和变频多联机没有太大的不同,但在容量调节方面,两者有本质的区别。变频多联机通过改变压缩机的频率来调节,而数码变容多联机则通过数码变容压缩机容量的改变来调节。数码变容多联机能够满足人们对空调任意调节、精确控制的要求,具有节能、舒适、噪声低、使用灵活等一系列优点。

数码多联中央空调集一拖多技术、智能控制技术、多重健康技术等多种高新技术于一身。在节能技术方面主要采用的数码变容涡旋压缩机技术、双压缩机技术、制冷剂直接输送技术、制冷剂的智能分配技术、风机调速技术等。

3.1数码涡旋压缩机技术

数码涡旋压缩机实现容量调节的内部结构及过程前面已经作了详细的介绍,这里不再说明。数码涡旋压缩机可以在10%和100%的范围内,输出任意大小的容量(无级输出)。

3.2双压缩机技术

对容量稍大的机组采用两个压缩机(一个数码变容涡旋压缩机,一个定容涡旋压缩机)。采用两台压缩机并联,有以下优点:(1)有效的容量控制,小于数码涡旋压缩机的容量时,只需启动数码涡旋压缩机,大于数码涡旋压缩机的容量时,启动定容涡旋压缩机和数码涡旋压缩机;(2)提高可靠性,较单台大压缩机停开次数减少;(3)启动负荷降低,单台压缩机的启动时间可以分别用时间延迟方法分开;(4)备用性,如果一台压缩机损坏,还有部分容量;(5)置换费用减少,如果一台压缩机损坏,可花较少的费用去更换压缩机。

直接输送制冷剂技术

系统直接以制冷剂作为传热介质。传送的热量几乎是水的10倍、空气的20倍,而且不需庞大的风管和水管系统,减少了输送耗能及冷媒输送中能量损失。表1是几种传热介质性能比较表。

种类利用热输送冷量kJ/kg输送100kW冷量时耗能

水显热20.1(t=5℃)4.05

空气显热10.1(t=10℃)6.38

制冷剂潜热2062.16

表1是几种传热介质性能比较表

由表1可知,同样输送100kW的冷量。以制冷剂作为输送介质,所需的输送系统耗能仅为室内风机所耗的2.16kW分别是以水和空气作为传热介质所需能耗的52.7%和33%由于采用制冷剂直接蒸发制冷,没有传统中央空调系统先把冷量传递结水,

再由冷水传给室内空气这一中间过程,减少了一个能量传递环节,从热量传递的网络图上看就是减少了一项传热热阻,当然也就减少了能量的损耗。

3.4制冷剂的智能分配技术

数码变容量压缩机加电子膨胀阀组成的制冷系统,可实现大范围内流量的调节,以适应整体负荷的变化。通过电子膨胀阀的制冷剂流量由以下两个因素决定:(1)蒸发器进口和出口的温差;(2)室内温度和空调设定温度的温差。室内电子膨胀阀是一个反馈元件。在使用电子膨胀阀进行流量调节时,一般有以下两种方法:一是控制蒸发器出口的真实过热度,用一只压力传感器和一只温度传感器置于出口处,分别检测蒸发器出口处的压力p2和温度t2,p2为蒸发压力pe,换算pe对应的制冷剂饱和温度即蒸发温度te,再计算温差t=t2-te,将其作为控制参数,见图4(a);另一种情况是用两只温度传感器分别检测制冷剂在蒸发器进口和出口的温度t1和t2,计算温差t=t1-t2,并以其为控制参数,见图4(b)。t的数值决定了电子膨胀阀的开度,即控制过热度,通过电子膨胀阀的调节使蒸发器始终保持最佳状态。

图4电子膨胀阀控制过热

电子膨胀阀按理想方式分配各个房间的制冷剂流速,由模糊控制将舒适度调整至最佳,通过图5空调系统得到蒸发器进口和出口温差,再加上室温和设定温度的温差,计算出过热量和室温状态,然后启动阀门来控制制冷剂流量。通过对电子膨胀阀开度的控制可以实现制冷剂在各室内机蒸发器的智能分配。

图5电子膨胀阀对制冷剂流量的控制

3.5风机调速技术

数码多联机组可以实现能量10%~100%范围内的无级变换,随着室内负荷的降低,室外冷凝器的能力变得很大,为实现节能和系统的合理匹配,室外换热器的风机采用调速技术。

4节能效果分析

4.1能效比

数码多联机组由于采用了数码涡旋压缩机等新技术措施,系统具有很高的部分负荷能效比.三星某数码多联机组能效比的测试结果见图6,从图不同机组的能效比比较可以看出,在整个运行过程中三星DVM空调系统的能效比都要高于传统的整体空调系统。

4.2运行费用

数码多联机组具有高能效比和高季节能效比,系统运行时可以大幅度节约能源和运行能源费用。从表2可以看出,与冷水机组相比,数码多联机组可以节约费用21%,与整体系统相比,数码多联机组可以节约费用48%。表2的比较进一步说明了数码多联机组具有优良的节能潜力。

项目三星DVM系统冷水机组整体系统

能耗,kW44.2×0.8数码涡旋压缩机43×1.052.5×1.0

月能耗,kWh129061569519162

年能耗(一年运行6个月),kWh7743694170114972

一年费用,US¥557567808277

三年费用,US¥107262034024833

五年费用,US¥278773390041389

费用比较100%121%148%

表2运行费用比较

*热负荷:104.67kW

*总面积:750㎡

*运行时间:夏季和冬季各运行三个月

5结论

(1)数码多联机具有节能、舒适等一系列优点,是中央空调的一个很有潜力的发展方向。

(2)容量调节系统在市场上的需求正呈现出快速增长的势头,数码涡旋是这一领域内一个很好的选择。数码涡旋系统提供了独特的优点,低负荷时更好的除湿性能,宽容量调节范围,长连管也能保证正常回油,使用简单,系统元件少,没有电磁干扰问题,因此,谷轮数码涡旋技术能设计出可靠、节能、简单的空调系统。

(3)数码多联机采用了数码变容涡旋压缩机技术、双压缩机技术、制冷剂直接输送技术、制冷剂的智能分配技术、风机调速技术等多项节能技术,具有高能效比、节能的特点。与水系统比较,可节约运行费用20%与传统整体系统比较,可节约运行费用48%。

参考文献:

【1】吴业正,韩宝琦.制冷原理与设备[M].西安:西安交通大学出版社,1997.

【2】廖全平,李红旗.涡旋变频压缩机.流体机械,2002,30(2):35一37.

【3】张智力,吴喜平.VRV空调系统节能因素分析.能源技术,2002年23(2):59一61.

空调技术论文第5篇

VAV空调系统的控制机理并不是很复杂,末端送风装置是实现变风量功能的关键,而选择何种控制系统并与末端送风装置进行有机结合是整个VAV空调系统最重要的环节之一。VAV空调系统并非是简单地在定风量系统上加装可调变速风机及末端装置,它还包括由多个控制回路所组成的控制系统,要保证VAV空调系统运行随着空调负荷变化而进行相应改变就必须依靠自动控制系统。变风量控制系统的主要作用是:自动调节系统送风量以适应房间空调负荷变化;通过相对独立的控制单元分别实现对不同房间、不同功能区域的不同温度参数要求;能够根据负荷变化自动调节送风主机的运行频率以降低空调系统运行能耗,实现节能目的。目前在过程控制领域中应用最为广泛的控制器是常规PID(比例,积分,微分)控制器,简单、稳定性好、可靠性高等特点使其对于线性定常的控制是非常有效的,一般都能够得到比较满意的控制效果,至今在全世界的过程控制中有84%的控制器仍是PID控制器,VAV系统末端装置也大多采用PID)控制器。PID控制以其巧妙的构思和良好的控制效果一度成为应用最广泛,实现最简单的控制策略。

PID控制理论内涵给人们留下了较大的研究空间,关于PID参数自整定的方法也相继问世,但随着控制理论及应用范围的不断发展,控制对象也日趋复杂,有些系统的过程模型难以建立,并且具有高度的非线性、时变性;比如VAV变风量空调系统的时变控制,因此传统的PID控制策略就显露了它的不足。虽然研究人员试图通过简化控制算法或采取优化集合控制等来解决这一不足,但效果并不很理想。基于PID控制所存在的问题,相关研究人员根据变风量空调系统的特点结合控制技术在不断改进PID控制算法的基础上积极寻找其它更为高级的控制方式,通过实践,逐步将最优控制、自适应控制、模糊控制及神经网络控制等智能化控制手段应用于VAV空调系统的控制实践。随着控制技术、空调技术的发展以及将二者相结合运用于建筑系统的发展趋势来看,VAV空调系统控制技术从最初的定静压控制到变静压控制再到后来直接数字控制、总风量控制再到智能化控制已经取得了很大的发展,其中清华大学有关学者提出的总风量控制法具有一定影响,该方法不采用静压送风量,而是根据压力无关型VAV空调系统末端装置的设定风量来确定系统送风总量并据此计算出送风风机的转速,从而对送风量进行控制。他们通过对总风量控制法与定静压控制法、变静压控制法的节能效果比较,认为虽然总风量控制法的节能效果虽不如变静压控制法,但因其没有压力控制环节,所以运行稳定性很好。另外,还有学者通过分析变VAV空调系统的局部控制,利用其送风末端装置风阀的开度作为各空调区域相关负荷的指示信号,提出送风静压优化控制方法。

2、变风量空调(VAV)控制系统模型

VAV空调系统主要应用于大中型建筑物,它是全空气空调系统与控制技术相结合并不断发展的产物。与常规的全空气空调系统相比,VAV空调系统最主要的特点就是在每个空调房间的送风管处设置一个VAV空调系统末端装置(VAVBox),该末端装置的主要功能部件是一个风量调节阀门或末端调速风机。在总风量控制下的VAV系统中,当室内温空器实时监测到实际温度超出设定温度时,通过A/D转换将温差信号由各分支馈线传输给末端装置控制器,并同时将信号传输给VAV系统主控制器。通过对信号的比较处理,改变送风主机运行频率,改变送风量。而末端装置通过调整阀门开度或风机转速来控制进入房间的送风量,进而实现对各个房间的温度控制。末端装置的风量调节是通过其自身的控制系统来实现的,最简单的控制方式就是根据比较房间内实际温度值与设定温度值之间的差值来调节末端装置的风阀开度。但这种控制也存在一些问题:当某个房间达到设定温度而相应末端装置风阀开度保持稳定时,由于其它房间末端装置响应相应空调状况而做出调整时就会影响整个VAV空调系统送风压力,进而改变已调整稳定的房间末端装置,而空调负荷的热惰性又致使末端装置不会立刻进行调整性动作,等房间空调负荷交得较大并出现温度波动时,末端装置才采取动作,而动作的结果又反过来影响其它房间末端装置的控制效果。这样一种以动态响应为主连续参量、多环节的控制方式来保证环境温度与设定温度相一致是很困难的,其中任何一个环节年问题都会导致运行出现故障或是令系统功能大打折扣。比如,在送风管道上选择检测点的位置如何,能否准确代表系统送风状况,是否失真,再比如送风管道异常漏风时,还有,假如信号抗电磁干扰能力差等都会导致系统送风紊乱,送风主机运行频率异常,原有送风平衡被破坏,甚至无法进行系统运行调整等等问题。

空调技术论文第6篇

(一)成立以百诚集团人力资源总监和应用工程学院领导、百诚机电人事经理和应用工程学院专职教师组建强大的班级导师团队。

班级导师团队总结分析了第一期”百诚未莱精英”订单班学员的优点和弱项,结合企业对员工的能力要求,制定以企业文化、商务礼仪、赢在责任等关注学生人文进步的课程和空调工程实践专业技能课程为主要教学内容的教学计划,旨在提高学生加强空调工程实践应用能力的同时,着力提高学生的素质能力。

(二)严格学员选拔工作

1.选拔工作严把综合素质关

组班前对申请进入订单班的学生进行面试,对学生思想品格、学习态度、工作责任心、工作积极性、抗挫折能力等方面进行综合评价,确保了进入第一期”百诚未莱精英”订单班学生的质量。

2.选拔工作协调好各类素质学员比例

为方便毕业生就业顺利开展,按照企业就业岗位要求,分别对适合空调设计、空调家装销售、空调工装销售、空调施工工程管理等四个岗位的学员比例按实际岗位需求量作了调整。

(三)明确教学目标

为解决教学的目的性问题,经过对学生各方面特性的缜密分析,结合用人部门的需求,形成了以下二个方面的教学目标:树立对百诚公司的归属感和主人翁责任感;提高学生综合素质,提高工作效率和服务水平,树立百诚公司企业良好形象,增强企业盈利能力。

二、加强班级工作过程管理

(一)认真做好学生分析工作

学生分析主要是将学生以前学习结果、工作能力与期望值或应实现的目标进行比较,以确定学生需要接受何种培训,目前最需要的培训课程是什么,并在培训课程内容设计时有针对性地采取相应措施。

(二)学生管理学生为主,充分发挥学生的积极性

班级导师团队管理班级工作时,充分利用一些学员是学生干部的有利条件,结合学生自荐、互荐、导师团队推荐等形式组建班委,让这些有管理经验和管理能力的学生协助管理班级,形成以“百锤千炼、诚志图强、精于现在、赢在未来”的班呼,并形成12条班训。这些措施使学员思想稳定、学习风气良好、班级工作有条不紊,积极性进一步提高。

(三)加强学生的思想品德培养和行为教育

结合学院校园文化和百诚企业文化开展的思想品德培养教育,认真开展以“诚信”、“自强”和“创业”等内容为主题的教育活动,努力促使学生完成角色转换—、从“模糊人”变为“清醒人”;二、从“被动人”变为“主动人”;三、从“消极人”变为“积极人”;四、从“封闭人”变为“开放人”。

(四)采取班主任跟班学习、跟班辅导的管理方式。

”百诚未莱精英”班级管理的一个鲜明特点是:双班主任制,聘请有专业技术特长的老师和企业负责人担任班主任,班主任跟班学习,跟班辅导,跟班出操。这种管理班级方式有利于贴近学生,了解学生学习情况,另外,对班主任自身的业务提高也非常有帮助,能够对学生遇到的专业问题起到很好的指导作用。

(五)采取阶段考核、全程淘汰制。

订单班学生的考核采用工作任务业绩考核机制,根据他们的表现和取得的实际工作业绩进行考核评分。在适度考虑个人发展潜力的基础上,淘汰不符合订单班和公司要求的学生,这样一来,一是对学生形成学习压力,督促学生认真学习,二是确保输送到企业的员工都是优秀的符合百诚要求的学生。我们通过阶段考核,总共淘汰掉6名达不到要求的学生。

三、教学原则的保证

为了保证教学开发的方向不偏离预定的目标,制定了以下基本教学原则,并以此为指导。具体包括以下几个方面:

(一)理论联系实际,学以致用原则

订单班教学应当有明确的针对性,从即将从事的实际工作的技能需要出发,与岗位特点紧密结合,与学生的知识结构、能力结构、思想状况、家庭背景紧密结合,目的在于通过培训让学生掌握必要的技能以完成规定的工作,最终为提高企业的经济效益服务。

(二)知识技能培训与企业文化培训兼顾的原则

订单班培训的内容,除了专业知识、专业技能的培训内容外,还包括理想、信念、价值观、道德观等方面的培训内容。而后者又与企业目标、企业文化、企业制度、企业优良传统等结合起来,使员工在各方面都能够符合企业的要求。

(三)共性培养与尊重个体提高相结合的原则

共性培养就是有计划、有步骤地对所有学生进行培训,这是提高全体学生素质的必经之路。为了提高教学的效果,注重个体培养,即对技术功底扎实、思想品德端正、业务能力强的学生,有计划地进行培训与开发,通过他们的示范带头作用,鞭策、鼓励、带动其他同学的学习与进步,同时培养局部优秀人才。

(四)培训效果的反馈

培训效果的反馈与强化是订单班教学中不可缺少的重要环节。在本订单班教学过程中采用的信息反馈渠道包括经常性开展个别谈心、集体班会、学院其他老师的佐证、百诚集团各部门的信息反馈、工作业绩、课程考核等,基本形成了立体全方位的信息反馈体系。

四、PDCA质量管理循环在“百诚未莱精英”订单班中的尝试性运用

PDCA循环理论主要包含计划、执行、检查、行动(或处置)四个阶段。把持续改进和创新的理念贯穿于订单班教学质量管理的全过程,使教学质量控制活动始终按照PDCA管理循环不停地运转,并在周期与周期之间实现连续不断性和循环上升性,推动教学管理的不断发展和教学质量的持续提升。根据PDCA质量管理循环的特点,构建自上而下循环反复、全过程、持续改进、具有敏感性的教学质量运行机制。

五、总结分析

应用工程学院第一期”百诚未莱精英”订单班总体工作顺利完成,得到学生、学校和企业的认同,实现了学生、学校和企业的“三赢”。当然,在一些具体的工作方面也存在着一些问题需要在今后的工作中去进一步加强,主要有:①需要加强自己专职师资的培养,有计划选送老师到企业实地培训学习,使学院的专职教师能够承担相当部分的课程,使“百诚未莱精英订单班”的教学方式具有一定的可推广性和复制性;②学校亟需建立订单班教学的长效管理机制。

六、结语

空调技术论文第7篇

关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器

0引言

近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。

目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。

1喷雾冷却技术研究成果

自Maclaine-cross和Banks建立间接蒸发冷却计算模型以来,国内外专家学者以此为基础对喷雾间接蒸发冷却技术进行了大量的研究。杨强生等人基于Merkel方程,实验研究了喷雾空气冷却器的传热传质过程,通过回归的方法得到容积散质系数的关联式[1]。梅国晖等人研究了高温表面喷雾冷却传热系数、气水雾化喷嘴最佳气水比和喷射方向对喷雾冷却换热的影响,研究表明,喷雾冷却过程存在最佳气水比,但最佳气水比不是固定不变的,它随着水压的增加而减小;在低水流密度下,喷射角90°处喷雾传热系数最大,其他喷射角度的传热系数大致以喷射角90°处对称,在高水流密度下,随喷射角度增加而显著增加[2-4]。刘振华通过数值计算方法讨论了液滴与空气速度比和喷雾条件之间的相互关系,认为在自由射流情况下,速度比的变化使流体形成在喷嘴附近的非稳定区和下游的稳定区,在均一流情况下则不存在非稳定区,在稳定区内速度比与模型类别、喷雾距离和初始速度无关;在喷雾距离大于0.5m后,可认为速度比进入稳定区,其大小取决于液滴直径和空气冲击速度,空气冲击速度越大,速度比越接近1,液滴直径越小;液滴直径小于100μm,可认为速度比等于1,对工程计算没有影响[5]。JunghoKim详尽研究了喷雾冷却的传热机理和目前喷雾冷却模型的优缺点,研究了物体表面形状、喷雾倾斜角度和重力对喷雾冷却的影响[6]。最近,美国国家航空航天局的EricA.Silk等人研究了3种强化表面的喷雾冷却效果和喷射倾斜角度(喷射轴向与物体表面法向夹角)对喷雾冷却的影响,在喷雾温度为20.5℃时,分析了冷却水管采用3种不同肋片表面对冷却效果的影响,研究表明,相对于平表面而言,直肋片表面热流密度最大,且喷射倾斜角度为30°时,热流密度可提高75%[7]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

从表1可以看出,当冷却水量从75m3/h增加到700m3/h时,在没有考虑普通冷却塔配套设施能耗和运行费用的基础上,喷雾冷却塔与相应规格的机械通风冷却塔相比,综合节能效率在30%~50%之间,喷雾冷却效益显著。

喷雾冷却器设置在地铁排风通道内,水雾与冷却器表面的换热量最终必须由通道内排风带走,因此,空气的温湿度决定了冷却器的换热效果,而通道内空气的温湿度与室外空气温湿度差别很大,因此,实现相同排热量所需冷却器的体积相对会大一些,相应设备功率会增大,这样,不可避免地要增加部分能耗和初投资及运行费用。

由于冷却塔设置在地铁排风通道内,必然会造成通道的排风断面减小,排风阻力增大,由局部阻力计算公式可知,局部阻力与通道的局部阻力系数和速度的二次幂的乘积成正比,当通道排风断面减小一半时,则局部阻力将为原来的4倍,因此,要实现相同排风量,排风机的功率可能会增大。

2.2费用比较

假定某地铁制冷站冷却塔选用横流式冷却塔,型号为DBHZ2—600,9.6万元/台,设计进、出口水温分别为37℃/32℃,湿球温度为28℃,占地面积43m2,高度为3.61m,风机功率为12kW,风量为351m3/h,A声级噪声为56.6dB;循环水泵选用1台轴流泵,流量为400m3/h,功率为7.5kW,凝结水泵选用1台轴流泵,流量为750m3/h,功率为3kW,水泵费用为0.75万元;循环水泵运行费用为5.58万元/a,凝结水泵运行费用为2.23万元/a(电费为0.85元/(kWh),水费为2.8元/t,水、电价来自于重庆市自来水公司和重庆市电力公司;冷却塔和水泵信息来自阿里巴巴网2007-3-15报价)。

冷却塔的运行费用包括水泵的运行费用和补给水的费用,要维持冷却系统正常运转,需定期补给循环水,年补给水量ΔL为[9]

式中Q为冷却水的循环量,t/h;K为系数,取0.14;h为冷却塔全年运行时间,h;m为冷却倍率,取60。

假定系统全天运行24h,一年按365d计算,求得年补给水量应为66225.6t,年补水费为18.54万元,冷却塔风机年运行费用为8.94万元,则冷却塔年运行费用为35.29万元。假设采用喷雾冷却的设备费用与采用机械通风冷却塔的设备费用相同,但由于喷雾所需水量为机械通风的补水量的5%,因此,在不考虑冷却塔运行费用的基础上,仅系统补水水费一项就可节约17万元左右。

2.3耗水量比较

如上所述,假定某地铁制冷站采用机械通风冷却塔时需要冷却水量为600m3/h,配套冷却塔进、出口水温为37℃/32℃。假定喷雾温度为34℃,含湿量为34.94g/kg,蒸发率为0.6~0.8,那么喷雾速率1.8~2.4kg/s就可实现冷却水降温,全年所需水量为1763~2645t。若采用机械通风冷却塔,如上述计算可知,年补水量为66225.6t,同样,采用喷淋水冷却时,按相关规范,最小喷淋水量为100kg/(m3·h),远远大于喷雾冷却所需水量[10],因此,单从耗水量而言,冷却方式宜采取喷雾冷却。

3喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器

3.1喷雾间接蒸发冷却器

喷雾冷却塔与普通机械通风冷却塔不同之处在于喷雾装置的应用,喷雾装置是一种射流元件,是喷雾冷却塔的核心部件,它取代了传统冷却塔的填料和风机,通过喷嘴产生的内旋流作用,有效地保证了低压状态的雾化度,利用低压液流通过旋流雾化喷头形成雾化,喷雾流的反作用力推动它作反向旋转,产生由下部吹向雾流的风力,雾化水滴与进塔空气在雾化状态条件下进行换热,达到预期的降温效果[8]。

喷雾冷却塔结构简单,质量轻,噪声低,耐腐蚀,不易堵塞,使用寿命长,除了省却风机、填料,降低成本费用外,还降低了塔体的自重,减少由填料阻塞引起的冷却塔维修,冷却效果稳定,但是由于它和普通开式冷却塔一样与外界空气直接接触,不能保证冷却水水质,而且冷却效果易受空气参数影响。

封闭式冷却塔由于冷却水在处理过程中不与外界空气接触,冷却水质不会受到外界的污染,但地铁空调系统中如果采用喷淋水来冷却封闭式冷却塔内的冷却水,不仅冷却效果劣于普通开式冷却塔,冷却塔的体积非常大,而且由于存在大量的飘逸损失,喷淋水用水量大,与将冷却塔设置在地面相比得不偿失,因此,综合喷雾冷却塔和封闭式冷却塔的优点,本文提出了一种新型的封闭式喷雾冷却器。

喷雾间接蒸发冷却器利用气水雾化喷嘴将经过处理的少量水雾化,喷到冷却器表面,形成一层均匀水膜,通过水膜蒸发实现冷却器内部冷却水降温。它既能保证冷却水不受污染,又能达到冷却效果,而且由于喷雾所用的水经过适当的处理,不会堵塞喷雾装置,能缓解冷却盘表面结垢问题。喷雾间接蒸发冷却器研究的核心问题是雾化效果和水膜的完整性、均匀性和厚度。

3.2喷雾间接蒸发冷却冷凝器

蒸发式冷凝器是目前制冷系统中常用的一种间接蒸发冷却设备,主要特点是耗水量少,节电和结构紧凑,占地面积小,热效率高。一般水冷式冷凝器每kg冷却水能带走4~6kJ的热量,而蒸发式冷凝器每kg水蒸发能带走约580kJ的热量,所以蒸发式冷凝器的理论耗水量只有一般水冷式冷凝器的1%。考虑冷却水的飞溅以及蒸发、溢水等损失,实际耗水量约为一般水冷式冷凝器循环水量的5%~10%。

由于喷雾冷却能在冷却器表面形成相对完整均匀的水膜,冷却效率更高,所需水量少,目前喷雾冷却多用于高温物体表面的冷却降温,因此,研发一种耗水量少的新型喷雾间接蒸发冷却冷凝器,可以解决地铁空调系统设置冷却塔的问题。

该方案的最大优势在于不用设置冷却塔,节省冷却塔及配套设施的初投资和运行产生的环境问题,采用喷雾冷却的方法,由于所需的水量很少,喷雾水源问题就很容易解决,可以对喷雾所用的水进行软化处理,防止堵塞喷雾装置和缓解冷凝器表面结垢。

喷雾间接蒸发冷却冷凝器实质上是本文所述喷雾间接蒸发冷却器的一个改进方案,要开发它,除了要解决闭式喷雾冷却器的雾化效果,水膜均匀性、完整性和厚度等问题以外,还必须与厂商协商设置冷凝器与冷水机组设备接口,对管道进行保温,研究冷凝器与机组距离对系统其他设备性能的影响,确定机组性能随二者间距变化的曲线,这其中涉及系统压力损失、制冷剂压力与机组压力匹配等问题。

4结论

本文的两种方案可实现地铁空调系统冷却塔不设在城市地面上的设想,能节省目前冷却水系统中部分辅助设备的初投资和运行费用,机组制冷量越大,节水效益越明显,特别是在缺水地区,该项技术的效益更为明显,但是,还有以下问题需要解决:

1)保证喷雾压力的相对稳定,维持运行压力在适当范围内,使冷却效果不受流量变动等的影响。

2)研发一套喷雾装置,使换热器表面水膜完整、均匀,且厚度很小,通过该装置实现间歇喷雾冷却,建立喷雾评价指标体系。

3)研发换热效率高、空气侧阻力小的新型换热器。

4)建立喷雾间接蒸发冷却器性能评价指标体系。

5)喷雾水软化处理,缓解冷却器表面结垢。

6)解决喷雾冷却冷凝器与机组的集成问题及建立相应的评价指标体系。

参考文献:

[1]杨强生,铙钦阳,范云良.喷雾强化空气冷却器的实验研究[J].上海交通大学学报,1999,33(3):313-317

[2]梅国晖,武荣阳,孟红记,等.气水雾化喷嘴最佳气水比的确定[J].钢铁钒钛,2004,25(2):49-51

[3]梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报:自然科学版,2004,25(4):374-377

[4]梅国晖,武荣阳,孟红记,等.高温表面喷雾冷却传热系数的理论分析[J].冶金能源,2004,23(6):18-22

[5]刘振华.微细喷雾时喷雾气流中液滴和空气速度比的研究[J].上海交通大学学报,1996,30(3):97-102

[6]KimJungho.Spraycoolingheattransfer:thestateoftheart[J].InternationalJournalofHeatandFluidFlow,2007,28(4),753-767

[7]SilkEA,KimJungho,KigerK.Spraycoolingofenhancedsurfaces:impactofstructuredsurfacegeometr

yandsprayaxisinclination[J].InternationalJournalofHeatandMassTransfer,2006,49(25):4910-4920

[8]胡国林,李丽萍.一种新型喷雾通风冷却塔[J].给水排水,2001,27(4):90-91