欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

钢筋混凝土论文(合集7篇)

时间:2022-11-07 11:13:04
钢筋混凝土论文

钢筋混凝土论文第1篇

对于钢筋混凝土构件,材料的非线性与几何非线性同时存在,试验方法存在一定的局限性,导致对钢筋混凝土构件的内部受力状态和破坏机理的研究不够深入。混凝土是由水泥、水、砂和石子及各种掺合料硬化而成,是成分复杂、性能多样的建筑材料。长期以来,人们用线弹性理论来分析钢筋混凝土结构的应力或内力,而以极限状态的设计方法确定构件的承载能力。这种方法往往是基于大量的试验数据基础上的经验公式,虽然能够反映钢筋混凝土构件的非弹性性能[1],但是在使用上存在局限性,也缺乏系统的理论性。随着计算机的发展,有限元法在工程领域得到了越来越广泛的应用。随着计算机的普及和完善,运用数值模拟方法检验和代替部分试验,具有节约成本、方便等有点。

2钢筋混凝土梁的模拟分析

2.1模型建立

以钢筋混凝土梁为例进行模拟分析:梁长6米,高取为500mm,截面宽度去为300mm,在跨中施加集中荷载20kN,梁左端施加可动铰支座约束,右端施加固定铰支座约束。

2.2位移图

受力前的图形为图2中的边框线,梁在集中力荷载作用下的位移图为图2.2中的实体。在集中荷载的作用下,以梁跨中间的位置向下弯曲最为明显,越到两端位移越小,直至为零,这与假设的边界约束条件相一致。

2.3应力图

从图中可以看出,梁受力后跨中截面部分的应力最大[2]。随着荷载的逐步加大跨中部分的应力变成红色,表明此处为梁的受力薄弱环节,在结构设计和施工中此处都应该加强措施以保证梁构件的安全。

3结语

数值模拟方法以其自身强大的优势,在一定程度可以起到辅助和代替部分试验的重要作用。在今后的发展研究中,随着数值模拟理论的不断进步,它必将会为工程实践提供准确的理论依据。

参考文献:

[1]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.

[2]TianhuHe,MingzhiGuan.FiniteElementMethodtoaGeneralizedTwo-dimensionalThermo-elasticProblemwithThermalRelaxation,ProceedingsoftheThirdInternationalConferenceonMechanicalEngineeringandMechanics,Vol1,Beijing,P.R.China,Oct.21-23:278-283.

钢筋混凝土论文第2篇

论文摘要:现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。应从源头把关,注重各道工序管理,加大现场监督力度,发现问题及时补救处理,加强监督管理,防患于未然,以及加强质量检验等方面控制其质量。

现浇钢筋混凝土柱的质量控制,重在过程。当出现质量问题后,应查找原因,及时分析处理。现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。加强对现浇钢筋混凝土柱的质量控制,分源头把关、工序管理、质量保证体系、问题补救、监督管理、质量检验几方面控制。

一、从源头把关、控制质量

从源头把关控制质量非常重要。钢筋模板工程首先要控制钢筋进场,检查产品合格证、出厂试验报告,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499的规定取样作力学性能检验,其质量必须符合规定。钢筋表面不得有裂纹、油污等,平直无损伤。施工中柱受力筋采用机械连接,按《钢筋机械连接通用技术规程》JGJ107规定,全程跟踪取样、送试验室试验、见证试验结果,符合规定者才允许采用。

二、注重各道工序管理

控制质量要注重各个工序管理。从受力筋与箍筋的绑扎开始,要求:6肢箍,30根纵筋,对称配筋,箍筋间距100。采用梅花形绑扎,铅丝拧紧,保证钢筋的正确位置。加强质量问题原因分析,针对问题个别处理。如出现:混凝土浇筑过程中,执棒人员的操作技能不熟练,责任心不强,下料、执棒未严格按要求实施,局部出现漏振现象,以及混凝土浇筑时,一次下料厚度过厚,振动棒的插入间距过大等问题均需及时纠偏。

三、加大现场监督力度

为保障防止质量保证体系运转,要求现场管理人员管理到位,加大监督力度。

在浇筑混凝土之前,对钢筋隐蔽工程验收,内容包括:(1)纵向受力筋的品种、规格、数量和位置;(2)钢筋的连接;(3)箍筋品种、规格、间距;(4)预埋件的规格、数量和位置。重视保护层厚度25±5。拆模后,由业主、监理、施工单位人员对外观质量和尺寸偏差进行检查,做记录,并根据具体情况,及时对缺陷进行处理。

四、发现问题及时补救处理

现浇柱外观质量缺陷有:露筋(柱内钢筋未被混凝土包裹而外露)、蜂窝(混凝土表面缺少水泥砂浆而形成石子外露)、孔洞(混凝土中孔穴深度和长度均超过保护层厚度)、夹渣(混凝土中夹有杂物且深度超过保护层厚度)、疏松(混凝土中局部不密实)、裂缝(缝隙从混凝土表面延伸至混凝土内部)、外形缺陷(缺棱掉角、棱角不直等)、外表缺陷(构件表面麻面、掉皮、起砂等)。尺寸允许偏差:轴线位置8;垂直度13,层高±13;截面尺寸+8,-5;表面平整度8;预埋件中心线位置10。发现轴柱混凝土浇筑后出现大面积孔洞、露筋现象,属严重缺陷出现了质量问题。针对此类问题应采取以下处理:先打掉出现问题,已浇筑的混凝土柱。同时编制具体施工处理方案措施,重新立模验收,合格后再进行混凝土浇筑。

五、加强监督管理、防患于未然

加强监督管理,主要作好以下工作:(1)做好混凝土浇筑安全技术交底工作,做好交底和混凝土浇筑过程中的施工记录。(2)重要特殊部位混凝土浇筑要编制针对性的施工方案,严格按方案施工。(3)加强混凝土浇筑过程控制:控制混凝土配合比,混凝土坍落度(混凝土坍落度以现场测试为准,根据现场需要可适当增大坍落度,但必须满足设计和规范要求);合理组织劳动力,严禁疲劳操作;混凝土浇筑高大柱子时,设门子洞。门子洞的留设要严格按要求做;配制混凝土时要注意石子合理级配。当柱混凝土浇筑出现质量问题,采用如下处理原则:本着既不改变结构受力状态,又不改变结构外形尺寸,以达到设计要求,满足使用功能为度。

六、加强质量检验

钢筋混凝土论文第3篇

论文摘要:现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。应从源头把关,注重各道工序管理,加大现场监督力度,发现问题及时补救处理,加强监督管理,防患于未然,以及加强质量检验等方面控制其质量。

现浇钢筋混凝土柱的质量控制,重在过程。当出现质量问题后,应查找原因,及时分析处理。现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。加强对现浇钢筋混凝土柱的质量控制,分源头把关、工序管理、质量保证体系、问题补救、监督管理、质量检验几方面控制。

一、从源头把关、控制质量

从源头把关控制质量非常重要。钢筋模板工程首先要控制钢筋进场,检查产品合格证、出厂试验报告,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499的规定取样作力学性能检验,其质量必须符合规定。钢筋表面不得有裂纹、油污等,平直无损伤。施工中柱受力筋采用机械连接,按《钢筋机械连接通用技术规程》JGJ107规定,全程跟踪取样、送试验室试验、见证试验结果,符合规定者才允许采用。

二、注重各道工序管理

控制质量要注重各个工序管理。从受力筋与箍筋的绑扎开始,要求:6肢箍,30根纵筋,对称配筋,箍筋间距100。采用梅花形绑扎,铅丝拧紧,保证钢筋的正确位置。加强质量问题原因分析,针对问题个别处理。如出现:混凝土浇筑过程中,执棒人员的操作技能不熟练,责任心不强,下料、执棒未严格按要求实施,局部出现漏振现象,以及混凝土浇筑时,一次下料厚度过厚,振动棒的插入间距过大等问题均需及时纠偏。

三、加大现场监督力度

为保障防止质量保证体系运转,要求现场管理人员管理到位,加大监督力度。

在浇筑混凝土之前,对钢筋隐蔽工程验收,内容包括:(1)纵向受力筋的品种、规格、数量和位置;(2)钢筋的连接;(3)箍筋品种、规格、间距;(4)预埋件的规格、数量和位置。重视保护层厚度25±5。拆模后,由业主、监理、施工单位人员对外观质量和尺寸偏差进行检查,做记录,并根据具体情况,及时对缺陷进行处理

四、发现问题及时补救处理

现浇柱外观质量缺陷有:露筋(柱内钢筋未被混凝土包裹而外露)、蜂窝(混凝土表面缺少水泥砂浆而形成石子外露)、孔洞(混凝土中孔穴深度和长度均超过保护层厚度)、夹渣(混凝土中夹有杂物且深度超过保护层厚度)、疏松(混凝土中局部不密实)、裂缝(缝隙从混凝土表面延伸至混凝土内部)、外形缺陷(缺棱掉角、棱角不直等)、外表缺陷(构件表面麻面、掉皮、起砂等)。尺寸允许偏差:轴线位置8;垂直度13,层高±13;截面尺寸+8,-5;表面平整度8;预埋件中心线位置10。发现轴柱混凝土浇筑后出现大面积孔洞、露筋现象,属严重缺陷出现了质量问题。针对此类问题应采取以下处理:先打掉出现问题,已浇筑的混凝土柱。同时编制具体施工处理方案措施,重新立模验收,合格后再进行混凝土浇筑。

五、加强监督管理、防患于未然

加强监督管理,主要作好以下工作:(1)做好混凝土浇筑安全技术交底工作,做好交底和混凝土浇筑过程中的施工记录。(2)重要特殊部位混凝土浇筑要编制针对性的施工方案,严格按方案施工。(3)加强混凝土浇筑过程控制:控制混凝土配合比,混凝土坍落度(混凝土坍落度以现场测试为准,根据现场需要可适当增大坍落度,但必须满足设计和规范要求);合理组织劳动力,严禁疲劳操作;混凝土浇筑高大柱子时,设门子洞。门子洞的留设要严格按要求做;配制混凝土时要注意石子合理级配。

当柱混凝土浇筑出现质量问题,采用如下处理原则:本着既不改变结构受力状态,又不改变结构外形尺寸,以达到设计要求,满足使用功能为度。

六、加强质量检验

钢筋混凝土论文第4篇

这类结构在水利工程设计中是难于避免的,有时,它在某些水工混凝土工程结构中处于制约设计的重要地位。从逻辑概念讲,只要允许素混凝土结构的存在,必定会有少筋混凝土结构的应用范围,因为它毕竟是素混凝土和适筋混凝土结构之间的中介产物。

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

ρmin′=0.4%()=0.1056%

钢筋混凝土论文第5篇

这类结构在水利工程设计中是难于避免的,有时,它在某些水工混凝土工程结构中处于制约设计的重要地位。从逻辑概念讲,只要允许素混凝土结构的存在,必定会有少筋混凝土结构的应用范围,因为它毕竟是素混凝土和适筋混凝土结构之间的中介产物。

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

ρmin′=0.4%()=0.1056%

钢筋混凝土论文第6篇

目前钢筋混凝土排架结构在设计分析方面仍面临很多挑战,为能解决这些可能遇到的问题,很多学者对钢筋混凝土排架结构设计上做了研究。在唐山大地震中,大多数以钢筋混凝土排架结构为主的工业厂房结构柱破坏,造成很大的损失和伤亡,此后,我国学者钢筋混凝土排架结构开始进行深入的分析与研究。研究的内容如下:地震局工程力学研究所对排架结构进行了有机玻璃模型的具体分析;李树祯等采用弹塑动力时程分析方法对横向单棍的排架结构进行分析,认为钢筋混凝土排架结构用普通的设计方法可满足抗震的基本要求,但从概率角度出发,其可靠度相对较低,地震作用下部分构件可能超过强度而严重破坏,“强柱弱梁”整体厂房还做不到;西安建筑科技大学共同对变柱变梁异型平面节点、钢筋混凝土框排架结构柱和带直交梁空间节点进行了大量的试验研究,研究结果表明:提出了长柱、短柱、普通混凝土柱以及异型节点承载力在高强混凝土上的计算公式,为改善节点区的配筋及高强混凝土在工程中应用提供了理论依据;目前弹性扭转效应的研究已趋于成熟,各国的规范对结构的弹性扭转效应都有各自的计算方法。对于结构进入塑性扭转,由于塑性扭转效应涉及到对整体结构的空间弹塑性分析的问题,其在这一领域问题较为明显,为钢筋混凝土排架等结构工程领域研究的热点问题。从总体上讲,在钢筋混凝土排架结构设计及理论方面,通过理论研究分析取得了许多有益的结论。但目前排架结构的研究重点仍处于对平面和弹性阶段的研究和分析,目的是能将空间计算问题尽量简化为平面的简单问题计算。由于钢筋混凝土排架结构的自身复杂性、专业性和特殊性,当前仍然有很多问题有待解决,如:塑性扭转效应和非线性分析问题;当前抗震性能的试验在钢筋混凝土排架整体结构领域进行较少,在排架结构的设计中,抗震设防的理论有待进一步完善;在排架结构处于塑性区后,其抗震能力发生变化,这一现象在结构扭转效应表现突出;此外,对排架与框架相互结合剪力墙结构的研究涉及较少,对框排架的工作性能及受力特点有待进一步的更多的研究和分析;钢筋混凝土框排架结构中框架与排架的协同工作受力情况较为模糊。

2我国目前规范对钢筋混凝土排架设计的不足

在钢筋混凝土排架结构的抗震设计方面,GB50191—2012构筑抗震设计规范和GB50011—2010建筑抗震设计规范指导规范不同地域、不同排架结构的抗震设计。本文结合《构筑抗震设计规范》的具体条文,阐述了目前规范中钢筋混凝土排架结构中设计的不足和缺陷。有关排架结构上部屋架结构计算的规定有:

1)《构筑抗震设计规范》6.2.19条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应该考虑屋架下弦的拉压效应对结构的影响并核算屋架承载力;

2)《构筑抗震设计规范》6.2.22条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应验算变形产生的附加内力。上述两点叙述,规范使用“应”字,因此应考虑建立合适的屋架和支撑的杆系模型,否则无法得出上述内力值。在钢结构排架设计方面,钢排架结构施工进度快,造价低,但以后要经常维护保养。框架结构施工复杂,造价高,后期维护工作量低。在工程建设中,钢架也就是在排架柱方向通过设置联系梁或桁架的方式使排架柱方向形成可以抵抗纵向力下变形的钢框架(局部开间或连续开间),具体做法可采用实腹联系梁或格构桁架———根据可设置高度选用,采用门式柱间支撑,可以留出工艺空间,还能对柱平面外予以加强。但我国处于高度使用水泥的情况,环境污染日益严重,从节能减排方面讲,钢排架结构应作为首选,但规范未给具体说明。

3结语

钢筋混凝土论文第7篇

关键词:钢筋混凝土框架节点抗震性能核芯区

1问题的提出

近年来,随着抗震理论的深入发展,在钢筋混凝土框架结构的延性设计上,“强剪弱弯,弱梁强柱,更强节点”已经成为工程界的共识。这种“能力设计”的思路确保钢筋混凝土结构在地震作用下,依次在梁端和柱端出现塑性铰,通过塑性耗能机构避免在较强的地震作用下结构产生严重损伤和在更强地震作用下发生危及生命安全的局部或整体失效。而钢筋混凝土框架节点在结构达到预计的最不利非弹性反应之前不应出现剪切失效,并具有一定的耗能能力。

钢筋混凝土框架结构的延性是反映结构在荷载作用下,进入非线性状态后在承载力没有显著降低情况下的变形能力。对于延性大的结构,其产生的塑性变形也大,但永久变形太大,结构可能在重力作用下引起坍塌,也可能使结构的损坏部位不可修复。因此,在钢筋混凝土框架结构的设计上,必须综合考虑一定程度的承载能力和一定范围的延性。

钢筋混凝土框架节点的受力机理指通过合理的计算假定模式,描述由梁、板、柱传来的内力(M、N、V、T)在框架节点核芯区的传递和由此产生的各种破坏型式。目前比较流行的有三种理论:斜压杆机理、剪摩擦机理、桁架机理。这三种框架节点的受力机理,应用于各种不同的破坏型式和设计规范中。新西兰的框架节点设计以斜压杆和桁架机理共同作用为依据,美国则以梁剪机理和斜压杆机理为主。而我国《建筑抗震设计规范》(GB50011—2001)中用于抗震框架节点设计的主要计算公式是用来确定节点水平箍筋用量的“框架节点核芯区抗震受剪承载力计算公式”,并未全面考虑到影响钢筋混凝土框架节点抗震性能的各种因素,值得进一步探讨研究。

2影响钢筋混凝土框架节点抗震性能的因素

2.1材料强度

混凝土强度直接影响框架节点抗剪承载力,对于承受一定荷载的框架节点,混凝土强度越高,则梁、柱的截面尺寸越小,框架节点核芯区混凝土的承剪截面也相应减小,在一定配箍率下,对其抗震性能反而不利。

我国《混凝土结构设计规范》(GB50010—2002)提倡使用HRB400级钢筋,钢筋强度虽然大于HRB335级钢筋,在相同的设计条件下,用钢量相对减少,但是钢筋表面与周边的混凝土粘结锚固能力下降,在框架节点的高粘结应力区,钢筋和混凝土的共同作用相对较差,钢筋易滑移。

2.2节点型式

对于一榀平面框架,按框架节点所在位置,节点主要有四种基本型式:顶层边柱节点(型)、顶层中柱节点(型)、中间层边柱节点(┣型)和中间层中柱节点(╋型)。对于型节点,梁、柱的纵筋均需在框架节点核芯区内锚固,节点核芯区受力较复杂,易产生破坏。对于型节点,梁的纵筋可直通锚固,水平荷载作用下,柱抗弯承载力弱于梁,柱端易产生塑性铰。对于┣型节点,柱抗弯承载力较大,“强柱弱梁”比较容易满足,但梁筋的锚固相对薄弱,梁筋易发生粘结滑移,角柱节点受力最为不利。对于╋型节点,强震作用下,框架节点两侧梁端可能均达到屈服,框架节点核芯区受到很大的剪力,容易发生核芯区剪切破坏。

2.3轴压比

试验研究表明,在一定范围内轴向压力可提高框架节点核芯区混凝土的抗剪承载力。由于柱轴向压力的作用,在框架节点核芯区混凝土开裂以前,柱截面受压区面积加大,斜压杆作用加强。当混凝土出现裂缝时,混凝土块体间产生咬合力。随着轴压比的增大,抗剪承载力相应增大,但当轴压比超过某一临界值时,框架节点受压区混凝土产生微裂缝,使混凝土压碎,抗剪承载力反而下降。

2.4剪压比

为了防止框架节点核芯区出现斜拉破坏或斜压破坏,必须控制剪压比,即限制配箍率,避免框架节点核芯区混凝土的破坏先于箍筋的屈服。

2.5水平箍筋

在框架节点内配置水平封闭箍筋,一方面对框架节点核芯区混凝土产生有利约束,增强传递轴向荷载的能力,另一方面承担部分水平剪力,提高框架节点的抗剪承载力。试验表明,配箍适当的框架节点核芯区出现贯通裂缝后,混凝土承担的剪力继续增加,箍筋全部屈服,混凝土与箍筋同时充分发挥作用,使节点核芯区受剪承载力在破坏时达到最大。对于配箍较高的节点,当节点核芯区产生贯通斜裂缝时,混凝土抗剪承载力达极值,但箍筋应力还很低,混凝土破坏先于箍筋屈服,使得节点核芯区的抗剪承载力达不到预期的最大值,箍筋不能充分发挥作用。

2.6竖向箍筋

在水复荷载作用下,框架节点核芯混凝土出现交叉斜裂缝后,剪力的传递由斜压杆作用过渡到水平箍筋承担水平分力、柱纵向钢筋承担竖向分力以及平行于斜裂缝的混凝土骨料咬合力所构成的桁架抗剪机制,设置竖向箍筋可承担框架节点剪力的竖向分量,减少混凝土的负担,从而提高框架节点的抗剪承载力,但施工不便。

2.7柱纵向钢筋

柱纵向钢筋通常按抗弯要求设置,沿柱截面的高度方向,按构造规定也相应配置一定数量的纵向钢筋。这些纵筋与水平箍筋联合对框架节点核芯区混凝土形成双向约束。因此,合理布置柱纵向钢筋对提高框架节点抗剪承载力有一定贡献,但增加柱纵向钢筋不像增加水平箍筋那样能显著地提高框架节点的抗剪承载力。

2.8直交梁

国内外的实际震害与试验研究表明,垂直于框架平面与节点相交的直交梁对框架节点核芯区混凝土具有约束作用,从而提高框架节点的抗剪承载力。但是,如果斜向地震的双轴效应使两个方向梁的纵筋都屈服,则降低了直交梁对节点的约束作用。对于仅一侧有直交梁的框架节点,抗剪性能并未改善框架节点的抗剪承载力。

2.9楼板

框架节点四周的楼板对节点核芯区具有约束作用,与梁轴平行的楼板钢筋与梁上部受力钢筋协同工作。如果考虑楼板作为梁翼缘在受弯过程中发挥的作用,则应相应地提高节点的剪力计算值。

2.10预应力作用

对钢筋混凝土框架节点施加预应力,可使框架节点核芯区混凝土增加约束,处于双向受力状态,从而提高框架节点的抗剪承载力。但通过框架节点核芯区的无粘结预应力筋,削弱核芯区混凝土的面积,降低框架节点的抗剪承载力。因此,对于无粘结预应力混凝土框架节点,可将预应力作用对框架节点的抗剪承载力的提高作为结构的安全度储备。

2.11偏心影响

在高层建筑设计中,为了使建筑立面产生与外墙或柱面齐平的效果或产生凹凸错落的效果,经常要求梁、柱中心线错开,甚至要求梁侧面与柱侧面重合,出现大量的大偏心框架节点,这时框架节点受到附加扭矩之类的次内力作用,剪力在节点内的传递比较复杂。通过实际震害和试验研究可以发现,与无偏心框架节点相比,偏心框架节点抗剪承载力明显下降。

2.12异形柱节点

T型柱框架节点的抗剪承载力较低,框架节点在梁一屈服后马上进入通裂状态。当梁宽大于柱腹板宽度时,处于柱腹板外的梁纵筋在节点处锚固较差。

2.13反复荷载

在反复荷载作用下,材料强度和构件强度降低,粘结锚固性能退化,剪切变形加大。由于框架节点内剪应力方向交替变化,核芯区斜向裂缝的张开与闭合交替产生,导致框架节点核芯区抗剪承载力和剪切刚度降低。框架节点两侧的梁纵向钢筋可能产生一侧受拉达到屈服,另一侧受压达到屈服,产生很高的粘结应力,使钢筋滑移,发生粘结破坏。随着梁端变形的逐步增加,框架节点核芯区抗剪承载力相应逐渐衰减。

2.14斜向地震的双轴效应

当地震作用方向与建筑物主轴方向不一致时,可能使两个方向的梁都达到屈服,这时作用于节点对角斜面上的水平剪力约为其中一个方向的2倍,然而斜裂缝遇到的箍筋与一个方向受剪时遇到的箍筋数目仍然相同。如果这些水平箍筋与柱截面各边平行,则钢筋的斜向分力仅仅是单向受剪时可抵抗剪力的1/2。对于双向对称的框架,双向受剪所需要的剪力钢筋约为单向受剪所需剪力钢筋的2倍。因此,斜向地震作用下,框架节点的强度和刚度迅速降低,梁筋较早出现粘结滑移破坏。

3建议

通过以上对影响钢筋混凝土框架节点抗震性能的各种因素的讨论,在钢筋混凝土框架节点的设计上,综合“概念设计”和“构造措施”,确保结构设计安全经济。

参考文献

[1]唐九如,钢筋混凝土框架节点抗震,东南大学出版社,1989.