欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

地球物理论文(合集7篇)

时间:2022-06-09 17:11:52
地球物理论文

地球物理论文第1篇

1国内外城市化进程发展状况

当前,城市的快速发展已成为全球的共同趋势。联合国的统计资料[1]表明,人口城市化的趋势在不断地加速发展。图1表示了这种发展趋势。从图1可以看出,1950年的世界人口约为25亿,其中仅有30%的人口生活在城市。到20世纪末,城市人口大幅度增加,已经达到世界人口的50%。根据图1所示数据,预计到2025年,城市人口将占据世界人口的60%。城市数量和城市人口的迅速增长对人居环境提出了严峻的挑战。表1给出了世界上人口在100万以上的城市数量的增长[1]。从1950-1995年期间,全世界拥有百万人口以上的城市数目由83个增加到325个,说明95年城市数量是50年的3.9倍,这种趋势在第三世界国家尤为明显,同一时期城市的数目增加了6.3倍。

表11950-1995年间人口在百万以上的城市数目

Table1Citynumbersofpopulationbeyondonemillionbetween1950to1995

年代195019951995:1950

第三世界城市数342136.3

发达国家城市数491122.3

全世界城市数833253.9

我国的城市化进程与世界同步,近年来呈现出高速发展的趋势。图2给出了我国城市数量增加的数据[2]。

2城市化促进自然科学新领域的产生与发展

我们首先以传统的地理学为例。近几十年来,尤其是第二次世界大战以后城市地理研究发展迅速,内容和影响都超过了传统地理学,成为人文地理学的一门重要分支学科。对城市进行地理学研究始于19世纪。第二次世界大战以后,许多国家的城市需要重建,世界范围内的城市化进程加速,这些都要求对城市进行全面的研究和规划,促使大批地理学家投入城市研究或城市规划工作。新兴的城市地理学的核心问题是研究区域的空间组织与城市内部的空间组织两种地域系统的关系。围绕这两种地域系统,具体的研究内容有:城市化研究、城市分类研究、城市体系研究、城市群和大城市集群区研究、城市综合地理研究等。城市地理学在城市化进程中逐渐形成了独特的研究方法:早期数量方法、系统分析方法、城市信息系统方法、空间抽样调查方法等。此外,地图是地理研究的传统工具。航空像片和卫星像片在城市地理研究中表现出重要作用,是研究城市时空变化关系的基础数据。

附图

图1全世界城市化城市人口百分比[1]

Fig.1Percentageofurbanpopulationamongthetotalpopulationinworldcities

附图

图2中国城市数目随时间的变化[2]

Fig.2NumberofcitiesinChina

以典型的工程科学——建筑学为例,随着城市化现象的迅速推进,建筑学向广度和深度发展。孤立地、狭隘地研究建筑现象已经说明不了问题,满足不了需要。客观实际已经按照系统工程的规律伸展了它固有的领域。城市及其区域已经逐步形成了一个开放的复杂的巨系统。城市化对建筑科学的影响,使得系统的思想进入到传统的建筑科学,进一步突出了新的建筑科学的关系——人与环境的关系[3]。钱学森考虑到中国传统的文化艺术和自然特色等种种因素,形象地提出了山水城市的理念,这一思想对建筑科学的发展,具有深远的意义。

以地球物理学为例,城市化问题使得传统地球物理学的研究方法、研究对象和研究内容面临新的机遇和挑战。20世纪初,地震波证实了地球铁核的存在,证明了2900km深度存在地核与地幔的边界。30年代,地球物理方法发现了地球内核的存在,在此基础上,科学家提出了地球内部分层模型。20世纪中期,各种地球物理勘探方法初步形成。40~50年代,地球物理学的主要研究对象是勘探固体矿产资源,60~70年代在此基础上增加了石油和天然气,80~90年代又增加了水资源。随着工业化进程的加快,环境问题也日益成为地球物理学的研究对象。总而言之,20世纪地球物理学的研究对象是以自然资源为主。20世纪末的全球性城市化发展趋势,使21世纪的地球物理学不可避免地要面对诸多的城市问题。80年代以来,由于地球科学各分支学科的日益成熟和全球环境问题的日益突出,人们认识到地球各圈层相互作用以及人类活动的重要性,地球科学的发展开始进入地球系统科学的新时代。城市地球物理学的发展在这样的时代背景下产生。城市地球物理学是一个全新的概念,是地球科学国际研究前沿的新兴学科。传统地球物理学的主要研究对象是自然现象,而城市地球物理学则主要研究自然现象与人类活动的相互作用。因此,在城市地球物理学研究中,除了自然科学问题之外,还应强调科学与社会的结合、各相关学科的综合及与各社会部门的协调。图3表示了城市地球物理学与环境科学和地理学之间的关系,这三者既有各自独特的研究领域,又有密切相关的交叉研究内容。

附图

图3城市地球物理学、环境科学、地理学之间的关系

Fig.3Relationshipamongurbangeophysics,environmentalsciencesandgeography

3城市地球物理研究的社会需求

(1)城市建设。科学家们预计21世纪的城市在向高空发展的同时,也将向地下索取空间,建设深层地下都市已经在科学家构想之中。20世纪平面式的城市功能在21世纪将从地下、地上两个方面重新进行立体配置。在一系列城市建设活动中,迫切需求地学界利用地球物理的观测和预测方法对城市地下空间的结构给出定量的描述,为城市规划积累基础数据。

(2)城市灾害。人类大规模的经济—工程活动对环境的影响,已经达到了与自然地质作用相提并论的程度,而且发展速度快、影响范围大。各种灾害无情地破坏着人类的居住空间,给人类的生存造成威胁。这些灾害发生在地学研究的领域,迫切需求地学界利用地球物理的观测和预测方法对各种起因的城市地质灾害和对环境的破坏进行详细的调查。

(3)城市地下污染。原生环境的缺陷以及由人为因素造成的地下环境污染,在地下水的作用下,对生态与工业构成极大的危害,迫切需求地学界利用地球物理的观测和预测方法调查地下水的分布,为制定防治规划提供基础数据。

4城市地球物理研究的主要科学问题及其研究方法

城市地球物理学作为一门新兴学科,其主要特点是学科的交叉性及其社会服务性,城市地球物理不仅与地学界的其他学科有广泛的交叉性,而且与地学界以外的诸如人文类、社科类学科也有不可缺少的交叉内容。城市地球物理研究的最终任务是服务于社会,科学研究的核心问题是人与自然的关系问题。具体解释为:

(1)城市近地表结构与地质灾害的相互作用关系。天然与人为的地质灾害对城市构成极大的危害。这些灾害改变和破坏近地表地质结构,近地表地质结构从客观上阻止或促成地质灾害的发生。二者之间的相互作用关系是科学研究的问题之一。

(2)城市近地表结构与地下基础设施和地下建筑的相互作用关系。地下基础设施是城市的命脉,地下基础设施的科学规划以及地下建筑计划需要对近地表结构的观测与评价,大型地下建筑有可能改变城市地下应力场的平衡,二者之间的相互作用关系在未来城市发展中为地学研究提供了一个新的研究空间。

(3)城市近地表结构与地下环境污染的相互作用关系。地下环境污染破坏生态环境、危害人类健康,地下环境污染直接受控于地下水的分布,同时受控于近地表地质结构。对地下水的分布及其浸染走向的研究是防止和治理地下环境污染的重要依据。

城市地球物理学研究方法主要依靠观测技术、数据处理技术以及综合评价系统。观测是地球物理学研究得天独厚的手段,数字地震台阵、地球信息系统、INSAR计划、浅层地球物理观测在地学研究领域发挥了重要的作用。地球物理观测数据起到了透视地下的作用,是实现地下结构定量化与可视化研究的基本条件。针对城市问题的地球物理观测,需要在提高仪器动态范围的基础上获得高分辨率的数据,需要研究城市特定环境下的观测方式。认识浅层介质的复杂性以及地球物理数据的特殊性是研究城市各类问题数据处理方法的出发点。数据处理方法研究应该从基础研究出发,研究地震波场、电磁场、重力场分布规律以获得清晰的三维地下图像。保证足够的信息量是对城市问题做出准确评价与预测的基础,综合性研究在评价和预测中至关重要。地球物理学中各类方法的优化与组合以及与地学研究领域中其他学科的交叉,包括与非地学研究领域相关学科的交叉是开展城市地球物理评价与预测研究的主要方向。

5城市地球物理现阶段主要研究内容

(1)城市条件下地球物理观测方法研究。城市条件下的地球物理观测比常规野外条件下的观测表现出更多的复杂性。需要在已知的典型地下结构的条件下进行足够多的观测方法实验,针对“源”的问题,研究电磁波与弹性波的聚束发射,研究综合方法的同时观测技术以及时移观测技术,并根据已知条件进行数值模拟计算,对比观测数据与理论数据的差别,分别城市条件下观测噪声与干扰的特殊性,发现规律性,为实际的工业性调查提供指导性方案。

(2)城市介质地球物理正演算法研究。城市地下介质除受到地质构造运动外,更多地受到人为因素的改造,演变成为难以保存其原生地质痕迹的、极其复杂的地下介质。其地球物理响应与以往的地球物理观测必将表现出极大的差异。因此,必须以城市地下条件的特殊性为介质模型,研究地球物理正演计算方法,认识城市介质条件下观测数据的基本性质和形成规律。

(3)城市地球物理数据处理方法研究。城市地球物理需要采用非常规观测方式,其观测数据包含了大量意想不到的噪声。认识噪声的特征和有效地消除噪声,保护观测数据的分辨率是数据处理的关键问题。针对时移观测数据研究四维数据处理方法。在信号分析与数字处理方法研究中,需要充分吸收现代数字信号技术,开展适用于城市特定问题的处理方法研究,为综合评价提供准确数据。

(4)城市介质三维可视化研究。城市地下介质覆盖在水泥路面、绿地和建筑物之下。传统的钻井或探槽式观察方法在现代化城市中即落后又不适用。这项研究通过对观测数据的有效反演对城市地下介质实现三维空间可视化描述,提供三维精细成像结果。对典型问题开展有针对性的反演算法研究,为三维精细成像和可视化描述以及综合评价提供有效资料。

6城市地球物理研究需要社会关注

城市地球物理研究如何落实与如何发展是一个非常重要的问题。大专院校和研究机构应该进行必要的学科调整,实现资源共享和优势互补,应该积极参与城市地球物理研究相关工程项目,在学科之间进行经常流。工业、商业与企业部门应该面向用户,以市场为导向,为城市地球物理技术的研究提供场所和经济支撑,同时有必要参与各种研究活动,各学术团体应该相互配合,设立城市地球物理专业委员会,在学术刊物上开辟专栏广泛宣传城市地球物理研究的科研成果,各专业学会之间也应进行广泛交流。政府部门应该做出具体计划,以便各职能管理部门统筹安排,实现资源的合理分配与协调,要选择典型城市和典型项目作为依托,开展研究工作,在基础研究方面需要得到自然科学基金和国家相关部门的支持。

应该充分估计到地球物理各种方法在目前技术条件下的难点,要通过研究地球物理新方法、新技术提出新的认识、加强科技创新尤其是原始性创新。要集中精力利用地球物理数据编制城市地下三维结构的图像,当前城市地球物理研究的主题是“城市三维地图(3-DImagingofUrbanUnderground)”(注:国家自然科学基金委员会.中国内地—香港城市地球物理战略研讨会,香港大学.2001.)。

7城市地球物理研究的技术支撑条件

近20年来,地理信息系统技术的出现,乃至空间数据基础的建设和“数字地球”战略的提出,使得获取地球信息的手段达到了前所未有的高度,不仅使全球的制图和动态性制图成为可能,而且在环境监测、灾害预警预报、区域与城市规划等方面也发挥着极为重要的作用。21世纪将广泛采用高分辨率的观测系统(地面、海洋和空间对地观测)、高灵敏度和高准确度的分析测试系统(包括微粒、微量、纳米级和超微量)、不同条件下的实验模拟系统、建立在动力学及高性能计算基础上的数值模似以及数字化的地球信息系统,此外,现代化的观测技术与设施也将成为开展城市地球物理研究必要的支撑条件。

圈层相互作用研究是地球科学20世纪90年代以来的全新发展方向,方兴未艾。这些研究将导致交叉学科、综合学科的兴起与发展,形成整体性的地球系统科学。地球及其各圈层是一个整体。一些地球科学问题固然有区域性的一面,但这种区域性是寓于全球性之中的。在一定意义上,只有更好地了解全球才能更好地了解区域。同时,区域也是全球的窗口,区域性是通向全球性的大门。地球科学方面的“全球变化及其区域响应”研究计划,则为城市问题的研究提供了广泛的科学基础。

8结语

地球不仅在自然力作用下发生变化,而且人类活动作为地球上有关过程的一种作用力将进一步得到深入研究。21世纪将从人—地关系的角度审视环境的变化,为人类社会与自然环境的协调发展提供科学理论基础,使人居环境得到最大限度地改善,同时又要保持地球的“健康”演化。在新千年和新世纪来临之际,地学界应该重新考虑地学发展的方向和重点,使地学研究在人类社会发展中体现出自身的价值。在新世纪,地学在应用研究领域所面临的主要任务是合理地利用地球资源,帮助工业界解决难题,改善地球的可居住性。为此,作为地学领域主要学科之一的地球物理学应该做出应有的贡献。

收稿日期:2002-01-08;修回日期:2002-05-23.

【参考文献】

[1]UnitedNations.WorldDemographicEstimatesandProjections(1950-2025)[M].NewYork:PressofUnitedNations,1990.

地球物理论文第2篇

关键词:地球物理;水文;地质工程;勘察方法

中图分类号:P336文献标识码: A

引 言

物探是地球物理勘探的简称,它是根据各种岩石之间的密度、磁性、电性、弹性、放射性等物理性质的差异,利用地球物理的原理,采用不同的物探仪器和物理方法,对工程区的地球物理场进行测量,以解决地质问题的一种物理勘探方法。 当地下单元含有地下水之后,它的含水量将与电导率、渗透率、地层孔隙度、矿化度等诸多因素相关。 此外放射异常、弹性波阻抗异常、磁异常等均可以运用在水文地质实际工作中去。 在实际中,水文地质工作可以采用很多种类的地球物理勘探方法。 本文将对其中几种主要方法进行介绍,如高密度电阻率法、激发极化法、CSAMT、瞬变电磁法和地面核磁共振法等。

1 高密度电阻率法

岩石电阻率是由多种因素共同决定的。 这些因素包括含水量及水的矿化度、孔隙度、颗粒结构、矿物成分等。 在同一层岩石中有没有含水,会在很大的限度上决定电阻率的数值。 运用电阻率物探方法进行水文地质勘查,其实就是通过测定含水层的电阻率在其空间的分布规律,探查和发现含水岩层的储水条件、空间展布,最终进行水文地质勘查,这种方法是一种间接找水的方法。高密度电法实际上是电剖面法和电测深法相结合的产物。其基本原理与普通电阻率法相同, 通过 A、B 电极向地下供电流,然后在 M、N 极间测量电位差,从而可求得该点(M、N 之间)的视电阻率值。 高密度电阻率法原理如图 1 所示。

图1 高密度电阻率法原理图

由于在观实际测中布置了高密度的观测点,所以高密度电阻率法是阵列思想应用于电阻率法的产物。 高密度电阻率法为地下水资源勘查提供了有效、快捷的工具。 它不但可以运用非含水地层和含水介质之间的电性差异,来直观的获取水循环条件、富水特性和含水层位置等方面的信息;还可以通过建立含盐量与电阻率之间的转换关系,从而实现含盐量的动态原位监测。 除此之外,因为含水介质导电特性和导水性之间非常相似,高密度电阻率法便为水文地质参数的校正、确定提供了一种有效的手段。

2 激发极化法

激发极化法(或激电法)就是以岩、矿石激发极化效应的差异为基础来解决地质问题的一类勘探方法。 当对地下地质体供入一直流脉冲 ΔV1,在供电电流不变的情况下,可观测到如下现象:地面上两个测量电极的地位差 ΔV(t)随时间增加而趋于饱和值。 在供电电流断开之后,会发现电极间电位差将快速的衰减,在衰减带一定的数值后,衰减的速度将开始变慢,经过一点时间后,其可衰减为零。 这种在放电和充电过程中会产生的附加电场现象,被称为激发极化效应。在实际地质应用方面,初期的激电法主要用于勘查硫化金

属矿床,后来发展到诸多领域,如氧化矿床、非金属矿床、工程地质问题等。 近年来,激电法找水效果十分显著,被誉为“找水新法”。 利用激电法确定地层的含水性,这种方法最好与高密度电阻率法相结合,这样就可以提高找水的成功率,降低地球物理解释的多解性。

3 (CSAMT)可控源音频大地电磁法

CSAMT 是在(AMT)音频大地电磁和(MT)大地电磁法的基础上发展起来的一种可控源频率测深方法。 可控源音频大地电磁法运用可控制的人工场源来测量从电偶极源到地下的电磁场分量,两个电极的电源距离在 1~2km,测量是在距离场源5~10km 之外的地方进行 。 CSAMT 方法的工作频率一般从10kHz~0.125Hz,因此,勘探深度一般可从地表到地下几千米 。由于该方法运用巨大的人工信号源,能够压制干扰,所以可以采集到高质量的数据。 CSAMT 方法的基本理论是基于电磁波传播理论和麦克斯韦方程组, 导出电场 Hy、ρs磁场与视电阻率的关系式为:

可控源音频大地电磁法的出现展示出了较好的应用前景,其作为激发极化法和普通电阻率法的补充,可以深层次的解决地质问题。 例如地热勘查和水文工程地质勘查、推覆体或火山岩下找煤、油气构造勘查等方面,都取得了良好的地质效果。 在地下水资源中,可控源音频大地电磁法适合寻找深部的基岩裂隙水。

4 (TEM)瞬变电磁法

TEM 是运用接地线或者不接地线源向地下发送一次场 ,在一次场的间歇期间,测量出电磁场随时间的变化,依据二次场的曲线衰弱特征判断出地下不同深度地质体的规模大小及电性特征等。 因为瞬变电磁法是观测纯二次场,消除了由一次场而产生的装置偶合噪音,其有着受旁侧地质体影响小、与探测地质体有最佳偶合、对低阻反映灵敏、探测深度深、横向分辨率高、体积效应小等优点。TEM 与其他测深方法进行比较,它具有探测深度大、工作效率高的优点。 近年来,该方法得到迅速发展,特别是对探测低阻覆盖层下的良导电地质体取得了显著的地质效果。 由于上述特点,针对水文地质问题,TEM 不仅仅可以确定水文地质构造类型和在冲积层地区估算基岩的埋深和地下水位;还可以在滨海含水层中查明绘制人为和自然发生的海水入侵分布图以及咸淡水界面、监测和圈定地下水污染通道。

5 (SNMR)地面核磁共振法

地面核磁共振(SNMR)是近年发展起来的找水方法也是目前世界上唯一的直接找水的地球物理新方法。 通过运用了不同物质原子核弛豫的性质,从而产生了 SNMR 效应。SNMR 效应利用地面核磁共振找到水仪器,研究并观测在地层中水质子产生的核磁共振信号的变化的规律,进而探测地下水的时空赋存和存在性的特征。

地面核磁共振法找水的原理决定了可以找多少水,尤其是淡水。 在 SNMR 方法的探测范围之内,只要有自由水存在,就可以感应到核磁共振信号响应,反之就没有响应。 另外地面核磁共振方法受到地质因素的影响比较小,这样就可以用来区别电磁测深法的电阻率和间接找水法的电阻率的异常地质。 当前, 地面核磁共振法不足之处在于不能用来探测埋藏深度在150m 以下的地下水,并且易受电磁噪声的干扰。

6 结 语

从发展的角度看,从高密度电阻率法、激发极化法到可控源音频大地电磁法(CSAMT)、瞬变电磁法(TEM),再到地面核磁共振法,地球物理勘探方法总体上在不断进步。 尽管如此,在复杂的地质背景下,没有一种方法是万能的,只有根据不同的地质条件和工作要求,针对性地采取某种方法或几种方法的组合,才能提高成果的解译程度,更加精确地完成地球物理勘探工作。 多种方法的结合使用已经开始普遍用于地下水的勘探研究,也取得好的结果。 随着勘探难度的加大,还有更多的问题需要探索和研究。 相信随着人们认识程度的提高,物探在地下水勘察中的作用会越来越明显, 水资源勘察也将进入一个新阶段。

参考文献:

[1] 韦卫明. 高密度电法在工程勘察应用中的体会[J]. 煤炭技术,2011(2).

[2] 徐顺强,刘文超 ,李清林 ,陈治国 ,王石 ,秦建增 ,何永波. 复杂条件下三维高密度电阻率 CT 在工程勘察中的应用[J]. CT 理论与应用研究,2011(1).

地球物理论文第3篇

1小波理论

是根据傅立叶理论分析逐渐发展起来的一个新的理论分支,适用于信号中差分方程数值解、数据压缩、子波算法、成像的处理,以提高数据的分辨率和信噪比。

2神经网络理论

仿人脑思维的模拟计算。是通过样本资料的分析研究、学习,从而获得重要的参考数据,对未经处理的资料进行判断的理论。

3几何分形

主要是对自然界中不规则、不稳定和较常见现象的进行研究,揭示自然界中不同尺度的物体和现象之间存在的相似性,以及整体和局部的相似性。由此,可以通过局部信息对整体信息进行预测。

4混沌理论

主要应用于描述非线性系统,它与几何分形理论联系很密切,他们都是分层次的基干尺度,揭示不同尺度之间存在的相似性、标度律、差异性等。

二地球物理勘探技术的普遍应用

1能源物理勘探

主要是对石油、天然气地区进行综合能源勘探。前期普查依赖于地震勘探。详查过程中,要运用大地电磁、高精度磁力、高精度重力等一些测探技术,对油气地区进行区块评价和构造研究,找出油气储藏构造,从而解决油气勘探中的疑难问题。

2固体矿产物理勘探

尤其是金属矿产勘探,主要使用电法和磁法。电法主要是根据矿体与围岩的电性差异为基础,研究人工稳定的电流场在地下传导的分布规律。磁法勘探主要是根据矿体或其赋存构造与围岩的磁性差异,在地表或一定高空中测量磁场强度变化的规律。

3工程物理勘探

工程建设迅速发展,工程物理勘探需求也日益增长,主要应用在建筑、公路、铁路、管道、水利等工程的检测,运用浅层地震、探地雷达、电法等探测方法对工程进行物理勘探。

4对环境保护、灾害防治的物理勘探

地球物理勘探可以从电、热、光等物理变化进行监测,从而认识环境变化的过程,为环境保护提供背景资料。自然灾害的突然发生严重危害人们的生命安全和经济损失,地球物理监测技术的应用对自然灾害起到了有效的预测、防治的作用。

三地球物理勘探技术

发展的趋势综合物理、数学、计算机等科学的应用,探测技术越来越成熟,地球物理勘探技术发展的趋势主要表现可以分为以下几个方面。

1应用计算机和数据采集技术

使得物理勘探技术向着自动化、数字化、轻便化和多功能化发展。目前在核电站、水电站、矿山等一些重大工程建设上,需要查明较大的危害,关键性的地质构造等。同时,世界很多发达国家面临着浅层矿资源枯竭的问题,工作人员已经向沼泽、海洋、沙漠的方向进行资源勘探。对于这些工作开展就需应用新技术、新仪器,使难以到达的地区得以勘探实施。

2总线技术进一步发展

逐步形成积木式、模块化、插卡式的球物理勘探仪器关键技术,这些技术的运用可以实现多功能和多参数的自动测量,使物理探测仪器系统模块式的组成结构更加紧凑,也代表新一代技术的发展方向。

3应用功能较强的应用

型软件和集成化的计算机辅助测试技术,使测试技术和测量仪器的发展更上一层。使物探仪器具有更强的功能性,可以更方便地满足勘探的各种需要。

4高速单版数字信息处理器

地球物理论文第4篇

1 区域地质特征

工作区处于芦芽山与云中山之间过渡的静乐盆地之西南缘,大地构造位置上位于燕山期吕梁太行断块内宁武静乐块坳的西南部;

区域内主要出露地层有:中太古界界河口群、上太古界吕梁超群、下元古界嵐河群和野鸡山群、古生界寒武系、奥陶系、新生界第三系、第四系。主要褶皱构造有:西马坊复式向斜、野鸡山复式向斜。断裂构造主要有NE至SW向马坊乱石宝塔大断裂,出露长1214km,为一大型逆掩断层。此外在区内一系列复式向斜之核部及两冀均发育有大小不等的北东向的逆断层。

本区内出露的岩浆岩主要为吕梁期的辉绿岩。

2 矿区地质

2.1 地层

矿区内全部被第四系黄土层覆盖。地层主要有:上太古界吕梁群袁家村组;古生界寒武系、奥陶系;新生界第三系和第四系。上太古界吕梁群袁家村组主要岩性为灰色绢云母千枚岩,阳起片岩,含阳起铁质石英千枚岩,磁铁石英或假象赤铁石英岩、方解绿泥千枚岩等。古生界寒武系、奥陶系,主要岩性为白云质灰岩、白云岩、鲕粒灰岩、砂岩及页岩等。奥陶系顶部豹皮状灰岩,中部泥质白云岩,底部中厚层灰岩。新生界第三系、第四系:主要岩性为黄土,红色粘土、砂砾石层及冲、洪积物。覆盖全矿区,据钻孔资料该套地层厚度40180m。呈角度不整合覆于下部各基岩之上。

2.2 矿区构造

目前区内未发现较大的、对矿体有破坏作用的断裂构造,仅见有小股辉绿岩脉穿插。但矿区东西两侧有北东向大断裂构造,可能会存在对矿层有影响的次级断裂构造。区内没有发现岩浆岩体。

3 矿床地质

3.1 矿带特征

北村铁矿床系隐伏矿床,铁矿体赋存于上太古界吕梁群袁家村组含铁岩段,该岩段由磁铁石英岩,白云母石英片岩,绿泥千枚岩,绿泥片岩所组成。矿带内矿石主要为条带状磁铁石英岩,次为假象赤铁石英岩。

3.2 矿体特征

由于该孔未揭穿矿层底板,推测厚度还有所增大,从异常宽度推测,含矿带内可能存在多层矿体。矿体走向30,倾向120左右,倾角65-75,局部近于直立。矿石中主要矿石矿物为磁铁矿、赤铁矿、假象赤铁矿,脉石矿物为石英。本区铁矿类型为条带状含碳酸铁磁铁矿贫矿石。

4 磁异常特征

4.1 平面异常特征

本次磁测在工作区范围内圈定磁异常一处。异常形态规则,近似等轴状,从平面形态上看具有三度磁异常特征。零等值线基本呈东西向将测区分为南北两部分,正异常分布在测区中部和南部,北部均为强度不大的负异常。正异常分布区NW-SE向稍长,长度为1500m左右,NE-SW向略短,长1300 m左右。长轴两侧异常对称,异常中心位于32线92号点附近,异常最大值为1209nT。

4.2 剖面异常特征

本次磁测在工作区内共布设精测剖面10条,Ⅰ号剖面方位49,长1800m,北端进入到了负异常区。异常最大值位于剖面上89号点处,极大值为1254 nT,极大值两侧异常近乎对称。在剖面北端出现强度很小的负异常,极大值为-82 nT。Ⅱ号剖面方位49,长1500m,剖面分布在整个正异常区。异常最大值位于剖面上75号点处,极大值为1147 nT,极大值两侧异常几乎完全对称。Ⅲ号剖面布设在0号地质剖面上,沿椭圆状异常的长轴方向布设,剖面方位115,长1200 m。

根据区域和矿区地质特征,结合以往钻孔资料,本区矿体为沉积变质型铁矿,呈多层状分布特征,因此推断引起该磁异常的矿体是由多个互层状矿体叠加而成。

5 结论

①通过高精度磁测面积性工作,在工作区内圈定磁异常1处。

地球物理论文第5篇

关键词:资源环境科学;文献计量学;发展态势;

作者简介:王雪梅(1976-),女,重庆永川人,副研究员,主要从事科学计量学、GIS与文献计量学集成研究.

资源与环境科学以人类生存和发展所依赖的地球系统特别是地球表层系统的特征和变化规律为主要研究对象,研究内容涉及地球科学及其分支学科,以及生命科学、化学、工程与材料科学、信息科学及管理科学的诸多分支学科领域。经济快速发展对资源环境科学提出了巨大需求,中国科学院围绕我国经济社会发展的重大问题及其相关的资源环境与地球科学问题,在资源环境和地球科学领域取得了一系列研究成果[1~3]。利用WebofKnowledge平台SCI-E数据库,对2009—2014年中国科学院SCI论文及地球科学与资源环境科学领域论文产出进行统计,并与全球及中国论文产出相比较,了解中国科学院在地球科学与资源环境科学领域的研究产出及其发展状况。

1数据来源与分析方法

从WebofScience的251个学科分类中遴选出与地球科学、环境/生态学相关的学科,根据学科分类在ScienceCitationIndexExpanded(SCI-E)数据库检索资源环境科学领域的相关论文,应用美国汤森路透公司的ThomsonDataAnalyzer文本挖掘软件进行数据分析和制图,对全球和中国的资源环境科学领域产出进行统计分析。

地球科学(Geosicence)领域包括:能源与燃料(Energy&Fuels)、地质工程(Engineering,Geological)、石油工程(Engineering,Petroleum)、地球化学与地球物理学(Geochemistry&Geophysics)、地理学(Geography)、地质学(Geology)、地球科学多学科(Geosciences,Multidisciplinary)、湖泊学(Limnology)、气象与大气科学(Meteorology&AtmosphericSciences)、矿物学(Mineralogy)、矿产与矿物加工(Mining&MineralProcessing)、海洋学(Oceanography)、古生物学(Paleontology)、遥感(RemoteSensing)、水资源(WaterResources);环境/生态学(Environment/Ecology)领域包括:土壤科学(SoilScience)、生态学(Ecology)、海洋工程(Engineering,Marine)、环境科学(EnvironmentalSciences)。

2015年2~3月在SCI-E数据库对全球、中国、中国科学院的SCI论文产出进行检索和统计,中国科学院检索范围包括署名中有“中国科学院”的论文,包括中国科学院各研究所及中国科学院大学(中国科学院研究生院),不包括未署名“中国科学院”的中国科技大学论文。

2中国科学院论文产出总体态势

2009—2014年期间,SCI-E共收录论文955.6万篇,其中署名中国的论文有113万篇,署名中国科学院的论文有15万篇。图1反映了全球、中国、中国科学院2009—2014年年度论文产出量变化。全球、中国、中国科学院的SCI论文分别以年均2%,14%和10%的速度增长。2014年与2009年相比,全球SCI论文增长近11%,中国增长约为93%,而中国科学院增长了62%,由图2可见中国SCI论文增长速度远高于全球论文增长速度。

图3统计了中国SCI论文占全球百分比和中国科学院SCI论文占中国百分比,表明中国论文占全球的份额持续上升,而中国科学院论文占中国的份额则逐步有所下降,但中国科学院资源环境类研究所发表的SCI论文数量占中国科学院的份额稳中有升。从图2也可见,中国科学院资源环境类研究所2014年与2009年相比,SCI论文增长了约92%,与中国SCI论文的增速很接近,高于中国科学院整体的论文增长速度。

将2009—2014年环境/生态学和地球科学领域各年论文按照被引频次高低统计TOP1%,TOP10%,TOP20%和TOP50%论文的数量,以及中国和中国科学院相应级次TOP论文的数量,并统计中国占全球的比例和中国科学院占中国的比例(图4)。

根据论文全部著者统计的结果表明,中国在全球资源环境科学研究领域各级次TOP论文中的比例基本为15%~20%,中国地球科学领域TOP论文数占全球的比例高于环境生态学领域,并且地球科学领域TOP1%的高水平论文比例很高。中国科学院在中国资源环境科学研究领域各级次TOP论文中的比例为26%~32%,中国科学院环境/生态学领域TOP论文数占中国的比例高于地球科学领域。

3资源环境科学领域的重点研究方向

基于SCI学科分类,分别对2009—2014年全球SCI论文最多的20个学科领域的论文数占全球SCI论文总数的比例、中国SCI论文最多的20个学科领域的论文数占中国SCI论文总数的比例,以及中国科学院SCI论文最多的20个学科领域的论文数进行统计。结果显示,全球各学科领域中,生物学与生物化学发文最多,发文最多的20个学科领域主要侧重于医学和生命科学等,相比之下,中国产出偏重于材料科学以及化学、物理等相关学科领域,中国科学院在环境科学方面论文产出数量比例较高。

资源环境科学领域论文产出占全球自然科学领域论文产出的8%左右,中国该领域论文产出占中国SCI论文比例接近10%,中国科学院该领域论文产出占中国科学院SCI论文比例约为20%(图5)。

2009—2014年,中国SCI论文占全球比例约为12%,而资源环境科学领域中国SCI论文占全球份额超过14%。其中,环境科学是全球、中国和中国科学院资源环境科学领域论文产出的最主要的领域。此外,中国在能源与燃料、遥感、地质学等方面论文产出占全球比例相对较高,而在生态学、古生物学等方面所占比例较低。中国科学院关于古生物学方面的SCI论文在中国资源环境领域论文中的比例最高,达到54%;此外,在土壤科学、地理学、湖泊学、生态学、气象与大气科学等方面的论文占中国的比例也较高,但在石油工程、海洋工程等方面所占比例较低,不足10%(图6)。

图7中,气泡的大小表征资源环境各子领域占全球资源环境科学领域论文产出份额的大小,即点越大,该子领域论文数在全球资源环境领域中的比例越高;X轴表示资源环境子领域中国占全球论文的百分比,值越高表明该子领域中国占全球的比例越高;Y轴表示资源环境子领域中国科学院占中国论文的百分比,值越高表明该子领域中国科学院占中国的比例越高。气泡大的那些子领域(如环境科学等)是全球资源环境科学研究比较多的热点方向;右下角的那些子领域(如能源与燃料等)是中国资源环境科学相对比较有优势的研究方向;左上角那些子领域(如古生物学等)是中国科学院资源环境科学相对比较有优势的研究方向。

中国科学院资源环境类研究所2009—2014年发表的SCI论文主要涉及的学科领域包括:环境科学、生态学、地质学、工程学、气象与大气科学、农学、地球化学与地球物理学、化学、水资源、科学与技术、海洋与淡水生物学、地理学、植物学、海洋学等。

4主要研究机构的科学贡献

中国科学院几乎所有的研究机构都在SCI资源环境科学领域期刊发表过论文,2009—2014年根据全部著者统计超过100篇的研究所有50多个,在资源环境科学领域发表SCI论文较多的前10个研究所见表1,这些较多的研究所都属于中国科学院资源环境类研究机构。

2009—2014年中国科学院27个资源环境类研究所以第一著者发表的SCI论文共有22032篇,其中,生态环境研究中心、地质与地球物理研究所、海洋研究所、地理科学与资源研究所、大气物理研究所、广州地球化学研究所、南海海洋研究所、寒区旱区环境与工程研究所等较多,第一著者的SCI论文数都在1000篇以上(表2)。

中国科学院资源环境类研究所论文的篇均被引次数为6.03次/篇,表2中的“表现不俗的论文篇数”统计的是这些研究所高于基准值的论文篇数,即当前总被引次数除以从年至2014年的累积年得到的年均被引6次及以上的论文[4]。生态环境研究中心、地质与地球物理研究所、广州地球化学研究所的表现不俗论文都在150~200篇。

中国科学院资源环境类研究所被引频次位于前10%的论文篇数,即研究所2009—2014年被引16次及以上的论文篇数,也是生态环境研究中心、地质与地球物理研究所、广州地球化学研究所最多,都在260篇以上。

参考中国科学院文献情报中心科学前沿分析中心设计科学贡献指数[5],定义:

式中:Ci为中国科学院资源环境类第i个研究所科学贡献指数,P10%i为第i个研究所被引前10%论文数量,Citedi为第i个研究所论文被引总频次,n为中国科学院资源环境类研究所的数量。结果显示,生态环境研究中心、地质与地球物理研究所、广州地球化学研究所、海洋研究所、大气物理研究所、地理科学与资源研究所的科学贡献指数较高,都在0.1以上。

5结论与建议

通过以上分析可以看出:

(1)2009—2014年,中国科学院SCI论文增长了62%,高于全球11%的增长率,低于中国93%的增长率,但中国科学院资源环境类研究所的SCI论文增长了约92%,与中国论文增速相接近。

(2)中国在全球资源环境科学研究领域各级次TOP论文中的比例基本为15%~20%,中国科学院在中国资源环境科学研究领域各级次TOP论文中的比例为26%~32%,中国科学院环境/生态学领域TOP论文数占中国的比例高于地球科学领域。

(3)中国SCI论文占全球比例约为12%,在资源环境科学领域中国SCI论文占全球份额超过14%。中国科学院关于古生物学、土壤科学、地理学、湖泊学、生态学、气象与大气科学等方面的SCI论文在中国资源环境领域论文中的比例较高。

地球物理论文第6篇

【论文摘要】应用地球物理是矿业类高校的一门重要必修课程。随着煤炭系统对物探技术的需求与日俱增,对应用地球物理课程内容的讲授提出了更高的要求。为了使学生的培养更加适应现代化技术快速发展的需要,本文通过分析目前应用地球物理课程中存在的问题,提出了一些课程教学内容改进的方法和建议,对于矿业类高校的应用地球物理课程内容具有一定的参考价值。 

引言

《应用地球物理》课程是河南理工大学资源环境学院地质科学与工程系和地球信息科学与技术系以及水文与水资源工程系的必修课。该课程是一门以地球为研究对象的应用物理学,它利用物理学的力学、电学、磁学、热学等方面的原理与方法,通过观测和研究地球内部各部分的物理条件、物理性质和物理状态,从时间和空间两方面找出它们之间的联系和规律,从而达到认识地球,借以实现地质勘查和找矿目标,减少地质灾害[1]。

对于河南理工大学等以煤炭资源为主要主导的矿业类高校来说,本科毕业的学生大部分进入到煤炭系统工作,如何合理地设置应用地球物理课程内容对于学生以后所从事工作具有重要的指导意义。

1 应用地球物理课程现状

应用地球物理课程主要讲授内容包括以下三个部分:一是应用地球物理方法的物质基础及地球物理场的基本概念;二是应用地球物理分析的正演方法;三是应用地球物理的各类勘探方法和应用,包括重力勘探、磁法勘探、电法勘探、地震勘探、地球物理测井和放射性勘探等。其中,第一、二部分是应用地球物理学的基础,第三部分是课程讲授的重点。

由于应用地球物理课程内容庞杂、知识面广、理论公式繁琐、内容抽象,学生在学习过程中普遍反映难度偏大,抓不住重点,难以理解地球物理概念。这已经不适应当前高速发展的矿产资源开发对人才的要求。一个完整、合理的应用地球物理课程,应该同时具有理论性和实践性。既能传授学生相应的学科科学理论体系,又要顾及生产单位对人才的要求,要具有一定的实用性,使得学生工作后能尽快融入到工作环境中,并能把课本上的理论知识应用到实际中去,能够解决生产单位面临的实际问题。

目前,我校应用地球物理课程主要面临如下的实际问题:

(1) 课程内容相对陈旧。21世纪以来,应用地球物理学科发展迅猛,各种新技术、新方法层出不穷。例如物探数据处理技术早已融合了现代信号处理的思想、概念和方法。而课堂上讲授的仍是传统数据处理内容,且部分技术方法已经被生产单位所抛弃,学生在学校所接受的知识过于陈旧,不能满足快速发展社会的需要。

(2) 基础课程开设偏少,导致应用地球物理概念理解困难。应用地球物理具有广泛的理论体系,涉及到数学、物理、电子、信号等领域。如果学生之前没有学过这些基础课程,在听课时,对应用地球物理课本中出现的理论公式难以段时间内消化,造成学习的困难。

(3) 计算机技术对于应用地球物理来说具有举足轻重的地位,尤其是现代地球物理处理技术,更是离不开计算机。例如目前绝大多数地球物理处理软件都是基于unix或linux平台,而学生普遍缺乏该系统的理论学习,与生产单位发展需求脱节。

(4) 实验课对于学生提高应用地球物理的感性认识作用明显,尤其是对实践性很强的应用地球物理课来说,需要大量的实际操作才能深入理解。而目前实验教学大多属于观察、验证性类型,缺少实际地区的实际数据采集、处理和解释的训练,导致学生动手能力差。

2 教学内容改革探讨

针对以上教学过程中出现的问题,结合多年应用地球物理教学经验,提出以下几个课程教学内容改革的想法。

(1) 作为以煤炭为主导的矿业类高校,本科毕业的学生大多进入到煤炭系统工作。因此,在教学过程中,因充分考虑煤矿企业对物探技术的需求。如增强地震勘探在解决煤田构造方面的内容,以及电法勘探对煤矿富水区和采空区的探测内容,使得学生在学校所学到的知识能够跟上现代社会发展的步伐。

(2) 由于课时有限,而应用地球物理覆盖的物探专业知识领域广泛,因此在授课过程中,应有所取舍对。对于应用面较窄的放射性勘探、地热勘探等可作为课余了解内容,而探测效果明显的地震勘探、电法勘探和重力勘探等需要详细讲解。

(3) 课程内容应该与时俱进,保持行业先进性。在保留传统基本理论的基础上,增加应用地球物理新技术、新方法的讲解。将现代信号处理、计算机处理的信息传授给学生,扩大学生的知识面,增强学生就业竞争力。

(4) 重视应用地球物理数值正演模拟。地球物理正演模拟是反演的基础,通过正演模拟可以使得学生更好的理解地球物理场的变化特征,避免空洞的公式推导,提高学生学习的兴趣,使学生更容易掌握地球物理的概念。同时,还能增强学生计算机编程能力,让学生自己上机进行运算模拟,提高对正演模型的理解。

(5) 重视实验课的作用。地球物理实践性很强,应通过实验课程加强学生的动手能力和创新能力,能够使学生把书本上的理论知识和实际应用相结合。通过野外数据实际采集,提高学生对地球物理的理解,提高物探行业的感性认识。为了让学生更好地了解物探仪器设备,河南省生物遗迹与成矿过程重点实验室(河南理工大学)购置了国际先进的aries三维地震仪、v8电法勘探仪,为学生认识物探仪器提供了有利的条件。实践证明,充分利用好实验课培养学生的动手能力,对于提高学生对地球物理概念的理解作用明显。

3 结语

应用地球物理课程对于资源勘查、地质等本科专业是一门非常重要的基础课程,是煤矿企业的一项重要的技术手段。作为培养人才的矿业类高等院校,应注重学科发展的动向,保持与实际生产密切结合,避免理论与实践脱节,为培养新世纪人才不断努力。

应用地球物理是实践性很强的一门课,在课程学习过程中,实践教学对学生认知地球物理是一个不可缺少的重要环节。通过实践教学,使得学生把课本上说学到的理论知识和实践应用相结合,培养学生的实际操作能力。

参考文献:

[1] 赖旭龙,金振民,国外地质类专业课程体系研究[m].武汉:中国地质大学出版社,2002

[2] 张平松,刘盛东.地球物理勘探课程设计性综合性实验实施与思考[j].中国地质教育,2005(4):97-99

地球物理论文第7篇

【论文摘要】应用地球物理是矿业类高校的一门重要必修课程。随着煤炭系统对物探技术的需求与日俱增,对应用地球物理课程内容的讲授提出了更高的要求。为了使学生的培养更加适应现代化技术快速发展的需要,本文通过分析目前应用地球物理课程中存在的问题,提出了一些课程教学内容改进的方法和建议,对于矿业类高校的应用地球物理课程内容具有一定的参考价值。

引言

《应用地球物理》课程是河南理工大学资源环境学院地质科学与工程系和地球信息科学与技术系以及水文与水资源工程系的必修课。该课程是一门以地球为研究对象的应用物理学,它利用物理学的力学、电学、磁学、热学等方面的原理与方法,通过观测和研究地球内部各部分的物理条件、物理性质和物理状态,从时间和空间两方面找出它们之间的联系和规律,从而达到认识地球,借以实现地质勘查和找矿目标,减少地质灾害[1]。

对于河南理工大学等以煤炭资源为主要主导的矿业类高校来说,本科毕业的学生大部分进入到煤炭系统工作,如何合理地设置应用地球物理课程内容对于学生以后所从事工作具有重要的指导意义。

1 应用地球物理课程现状

应用地球物理课程主要讲授内容包括以下三个部分:一是应用地球物理方法的物质基础及地球物理场的基本概念;二是应用地球物理分析的正演方法;三是应用地球物理的各类勘探方法和应用,包括重力勘探、磁法勘探、电法勘探、地震勘探、地球物理测井和放射性勘探等。其中,第一、二部分是应用地球物理学的基础,第三部分是课程讲授的重点。

由于应用地球物理课程内容庞杂、知识面广、理论公式繁琐、内容抽象,学生在学习过程中普遍反映难度偏大,抓不住重点,难以理解地球物理概念。这已经不适应当前高速发展的矿产资源开发对人才的要求。一个完整、合理的应用地球物理课程,应该同时具有理论性和实践性。既能传授学生相应的学科科学理论体系,又要顾及生产单位对人才的要求,要具有一定的实用性,使得学生工作后能尽快融入到工作环境中,并能把课本上的理论知识应用到实际中去,能够解决生产单位面临的实际问题。

目前,我校应用地球物理课程主要面临如下的实际问题:

(1) 课程内容相对陈旧。21世纪以来,应用地球物理学科发展迅猛,各种新技术、新方法层出不穷。例如物探数据处理技术早已融合了现代信号处理的思想、概念和方法。而课堂上讲授的仍是传统数据处理内容,且部分技术方法已经被生产单位所抛弃,学生在学校所接受的知识过于陈旧,不能满足快速发展社会的需要。

(2) 基础课程开设偏少,导致应用地球物理概念理解困难。应用地球物理具有广泛的理论体系,涉及到数学、物理、电子、信号等领域。如果学生之前没有学过这些基础课程,在听课时,对应用地球物理课本中出现的理论公式难以段时间内消化,造成学习的困难。

(3) 计算机技术对于应用地球物理来说具有举足轻重的地位,尤其是现代地球物理处理技术,更是离不开计算机。例如目前绝大多数地球物理处理软件都是基于unix或linux平台,而学生普遍缺乏该系统的理论学习,与生产单位发展需求脱节。

(4) 实验课对于学生提高应用地球物理的感性认识作用明显,尤其是对实践性很强的应用地球物理课来说,需要大量的实际操作才能深入理解。而目前实验教学大多属于观察、验证性类型,缺少实际地区的实际数据采集、处理和解释的训练,导致学生动手能力差。

2 教学内容改革探讨

针对以上教学过程中出现的问题,结合多年应用地球物理教学经验,提出以下几个课程教学内容改革的想法。

(1) 作为以煤炭为主导的矿业类高校,本科毕业的学生大多进入到煤炭系统工作。因此,在教学过程中,因充分考虑煤矿企业对物探技术的需求。如增强地震勘探在解决煤田构造方面的内容,以及电法勘探对煤矿富水区和采空区的探测内容,使得学生在学校所学到的知识能够跟上现代社会发展的步伐。

(2) 由于课时有限,而应用地球物理覆盖的物探专业知识领域广泛,因此在授课过程中,应有所取舍对。对于应用面较窄的放射性勘探、地热勘探等可作为课余了解内容,而探测效果明显的地震勘探、电法勘探和重力勘探等需要详细讲解。

(3) 课程内容应该与时俱进,保持行业先进性。在保留传统基本理论的基础上,增加应用地球物理新技术、新方法的讲解。将现代信号处理、计算机处理的信息传授给学生,扩大学生的知识面,增强学生就业竞争力。

(4) 重视应用地球物理数值正演模拟。地球物理正演模拟是反演的基础,通过正演模拟可以使得学生更好的理解地球物理场的变化特征,避免空洞的公式推导,提高学生学习的兴趣,使学生更容易掌握地球物理的概念。同时,还能增强学生计算机编程能力,让学生自己上机进行运算模拟,提高对正演模型的理解。

(5) 重视实验课的作用。地球物理实践性很强,应通过实验课程加强学生的动手能力和创新能力,能够使学生把书本上的理论知识和实际应用相结合。通过野外数据实际采集,提高学生对地球物理的理解,提高物探行业的感性认识。为了让学生更好地了解物探仪器设备,河南省生物遗迹与成矿过程重点实验室(河南理工大学)购置了国际先进的aries三维地震仪、v8电法勘探仪,为学生认识物探仪器提供了有利的条件。实践证明,充分利用好实验课培养学生的动手能力,对于提高学生对地球物理概念的理解作用明显。

3 结语

应用地球物理课程对于资源勘查、地质等本科专业是一门非常重要的基础课程,是煤矿企业的一项重要的技术手段。作为培养人才的矿业类高等院校,应注重学科发展的动向,保持与实际生产密切结合,避免理论与实践脱节,为培养新世纪人才不断努力。

应用地球物理是实践性很强的一门课,在课程学习过程中,实践教学对学生认知地球物理是一个不可缺少的重要环节。通过实践教学,使得学生把课本上说学到的理论知识和实践应用相结合,培养学生的实际操作能力。

参考文献:

[1] 赖旭龙,金振民,国外地质类专业课程体系研究[m].武汉:中国地质大学出版社,2002

[2] 张平松,刘盛东.地球物理勘探课程设计性综合性实验实施与思考[j].中国地质教育,2005(4):97-99