欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

无线电论文(合集7篇)

时间:2022-03-13 16:47:24
无线电论文

无线电论文第1篇

本文提出的CCPT系统结构如图2所示。根据研究内容,需要对系统的各个部分进行必要假设:1)发射电源为正弦电压源,幅值US、频率f、内阻RS;2)无论直流负载还是交流负载,都用等效电阻RL来近似等效,本文暂不研究这一等效过程;3)不考虑电容的功率损耗;4)无源元件都是线性的,不考虑器件的非线性因素。L1和C1构成电源变换网络,将逆变器的电压型输出,变换为电流型输出(原理见下节分析),即通过电容耦合器的电流2I具有电流源特性,从而使耦合电流受耦合电容变化和负载变化的影响程度得以减小,确保能量传输的稳定性。L2为阻抗补偿电感,用于补偿耦合电容C2产生的较大容性电抗,并提高电源侧的功率因数。磁耦合式阻抗变换电路用于将电流型输入变换成电压型输出或电流型输出,取决于该网络的具体构造,见后面分析。

2电压源到电流源的变换

为了实现电流型耦合,需要将发射电源的电压型输出,变换为电流型输出。这一变换是通过网络N1来实现的。设R1=RL1+RS,根据含源支路的等效变换原理,图2中发射电源和网络N1可以用图3所示的诺顿电路来等效。

3阻抗变换电路的设计I-电压型输出

这一设计的目的是在负载电阻RL上得到确定的电压LU,即在规定的使用范围内,该电压较少受负载电阻RL的影响。对图2中的磁耦合器件,忽略线圈电阻并不影响对工作原理的分析。耦合电感的两种等效的电路模型如图4所示。图4(a)用耦合系数表示线圈的耦合情况,而图4(b)直接用折算到一次侧漏感表示线圈的耦合情况。二者在一定条件下可以相互等效。根据电路理论,从图4(a)到图4(b)的等效关系为可见,若k<1,便意味着存在漏感Lσ3。为方便起见,本文采用图4(a)的模型进行分析,即用小于1的耦合系数来表示漏感对电路的影响。二次侧的感应电压包括自感电压和互感电压,采用串联电容C4,如图5所示,并使C4和L4满足谐振条件:这样就可抵消自感电压,负载上就只剩下与一次侧电流I3成比例的互感电压。

4阻抗变换电路的设计II-电流型输出

这一设计的目的是在负载上得到有别于耦合电流2I的负载电流LI,即在规定的使用范围内,这一电流较少受负载电阻RL的影响。为此,可以在耦合电感的一次侧或二次侧并联补偿电容。本文不去研究在一次侧并联电容的情况。若在二次侧并联补偿电容,电路如图6(a)所示。根据电感的电压电流关系,就二次侧而言,可以等效成图6(b),图中菱形符号表示电流控制电流源。由此图可见,选择电容C4,使其与L4满足谐振条件,则负载电流为并联谐振条件为所以在紧耦合条件下,k≈1,Xi3≈0,而实部Ri3与负载电阻RL成正比。根据上述原理,为了在负载上得到确定的电流LI,磁耦合器件要尽量接近全耦合,并且负载电阻RL不宜太大。

5电源端等效阻抗分析

当网络N1近似电流型输出时,电源侧总负载的功率因数不一定为1,从而影响逆变电源的性能,导致换流困难和开关损耗增加。为分析电源侧的等效阻抗Zi1,将网络N2右边的电路用等效阻抗Zi2=Ri2+jXi3表示,如图7所示。

6仿真研究

电压型输出的仿真仿真条件:总耦合电容C2=3nF;正弦电压源幅值US=10V;频率f=200kHz;内阻忽略不计。被仿真的电路结构如图2所示。要求负载电压幅值UL=10V。分析负载电阻与耦合电容变化时,负载电压、电流,及耦合电容电压的变化情况。在标称值时,每个耦合电容电压选择为40V,以提高安全性。由此可确定耦合电流,I2=(2ωC2)×40≈0.3A。

7实验研究

7.1电压型输出实验

实验条件:实验用电路结构如图12所示。图中电阻除RL(外接)和RS(功率放大器输出电阻)外,均为用LCR表测得的对应元件的串联等效电阻。耦合电容为铜基圆形平板电容,如图13所示。直径155mm,厚度1.5mm。为增加电容量,在其表面生成环氧基纳米钛酸钡(BaTiO3/epoxyresin)复合电介质,介质厚度10μm,相对介电常数22。包括耦合电容在内的各元件参数值如表1所示。使用SG1005P数字合成带功率输出的信号发生器作为发射电源,正弦电压幅值10V,频率200kHz。元件参数采用HIOKI3532-50型LCR测试仪进行测试。示波器AgilentDSO5034A,电压探头AgilentN2863A,电流探头Agilent2011。1)实验1:使平板耦合电容通过介质自然接触,总电容C2=3nF,在负载电阻RL=100Ω条件下,耦合电容电压uC2及耦合电流i2、负载电压uL及电流iL的实验波形分别如图14(a)、(b)所示。负载为51Ω和151Ω的实验结果见表2。2)实验2:负载电阻保持为RL=100Ω,改变耦合电容接触面积,得到耦合电容变化时,负载电压、电流以及耦合电容电压的变化情况,见表2。由表2可知,当负载电阻和耦合电容在较大范围内变化时,电压型的输出电压相对变化小于1.52%。从表2的最后一行可见,当耦合电容变化时,能量的传输效率有所下降。这是因为耦合电容的变化破环了L2、C2和Zi3的谐振条件。为了维持近似不变的耦合电流,电源侧的输出电流和平均功率必然要RL1消耗。

7.2电流型输出实验

实验条件:将图12中的C4和等效的串联电阻RC4改为与负载并联,就是本实验的电路结构。参数为:电感L2≈222μH,RL2=2.21Ω;磁耦合器参数L3=52.354μH,RL3=0.713Ω,L3=28.315μH,RL4=0.406Ω,M=33.78μH;电容C4=22.36nF,RC4=0.568Ω。其他同7.1。1)实验3:在保持平板耦合总电容C2=3nF不变的情况下,负载电阻为RL=30Ω情况下的耦合电容电压uC2及电流i2、负载电压uL及电流iL的波形分别如图15(a)、(b)所示。负载为其他阻值时的实验结果见表3。2)实验4:在负载为RL=10Ω时,改变耦合电容值,实验结果见表3。由表3可知,当负载电阻和耦合电容在较大变化范围内变化时,电流型的输出电流相对变化小于4.61%。

8结论

无线电论文第2篇

论文摘要:早在七十年代,人们开始研究无线电通信技术。无线电通信技术有线电通信相比,具有不用架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等优点,备受市场的青睐。无线电通信技术为人们的生产和生活带来的影响无疑是巨大的,但它亦有不容忽视的缺点,譬如声音、文字、数据、图像和视频等传输的质量不甚稳定,由此造成的声音失真、文字模糊、数据滞后、图像和视频失真都亟须改进之处,还有信号容易受到干扰、容易被人截获造成通信内容保密性差[1],尤其在军事和经济领域,再一次说明无线电通信技术通信方法的拓新势在必行。本文就无线电的优缺点进行分析,探讨其通信技术所需拓新之处,并提出建议。

1无线电通信技术的发展历程

1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。

1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。

1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。

1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。

随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。

随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。

信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。

无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。

2无线电通信技术的特点

近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:

不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。

具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。

可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。

无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。

3无线电通信技术之通信方法的拓新

21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:

3.1采用了数字通信技术

提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。

3.2推广通信信息技术宽带化的发展

信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。

3.3推广个人信息化技术

个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。

3.4拓新接入网络的样式

技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。3.5过渡电路交换网络

关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。

3.6使用Bluetooth技术作为信号传感器

Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。

3.7推广软件无线电

软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。

3.8提高无线通信网络可持续性

无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。

结束语

回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。

参考文献

[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.

[2]《数字与模拟通信系统》LeonW.Couch,II电子工业出版社.

无线电论文第3篇

一、提取信号时域和频域的特征参数

一般来说,由于无线电信号自身的差异性,其自身的信号频率、相位以及幅度等关键性数据都有一定的不同,只要能够准确地提取到信号的关键信息,就能在调制解调器中将其解码,获取信号当中储存的信息,而无线电信号的特征参数是决定最终解码是否精确的关键性因素。本文主要关注了时域当中的信号特征参数情况,并且将这些数据作为神经网络数据的基础,进而建立起完善的数据库系统。在开展具体研究时,应当将不同的信号分成几个具体的波段,确保每个波段保持相同的长度,一般来说1024是最合适的长度,能够较为准确高效地提取出各种信号的幅度、频率和相位等关键性数据,便于实验的深入开展。一般来说,无线电特征量的计算建立在几个关键的数据之上,只要能掌握实信号、频谱等数据,就能通过下文所示的公式将其计算出来。仔细分析公式我们发现,无线电信号的特征量是建立在多种数据之上的。作为最关键的几个无线电数据之一,频谱一直能体现出无线电信号的主要特点。由于DFT喜好具有对称性,因此只需要将变量的范围控制在[0,π]之间,就能对完整的X(ejω)进行分析,简化整个实验的过程。

二、RBF网络用于信号的分类

作为近些年来才出现的一种全新的网络构造模型,神经网络在储存数据工作中往往有较强的优势。在神经网络当中,信息以分布的形式进行储存与分类,能够保证较高的容错性,也是神经网络不容易出现问题的原因之一。本文研究工作所选取的RBF网络更是如此,经过深度优化的RBF系统自动化程度较高,能自主解决很多无线电接收与解码的问题,是十分高效的无线数据接收系统。

(一)RBF网络的结构。如图1所示,RBF网络的结构并不十分复杂,仅仅通过一个简单的双层网络结构就实现了无线电数据的相关操作。在网络输入端接收到网络信号之后,系统对外部刺激产生相应的反应,然后由输出端对隐含层节点得到的数据进行线性求和。这种工作与计算的方法也能通过公式来体现。图1RBF网络的结构

(二)RBF网络的学习算法所谓的RBF网络学习算法,是通过RBF网络的用特殊功能来实现相应功能的核心算法之一。在RBF网络当中有两个关键的层面,其一为隐含层,其二为输出层,两个层次都有一定的学习能力。隐含层的学习功能的完成相对来说较为简单,只需要自主学习就能得到较好的学习效果。而隐含层的学习就相对来说要困难一些,一般采用的都是聚类学习办法,由于不同的学习对象之间有一定的差别,因此需要按照不同的距离函数来对RBF网络学习进行分类,以确保效果。具体的计算方法如下所示。⑴首先开启聚类中心,罗列出各项Wj;⑵开启神经网络,开始整个循环过程;⑶以子为基础,将所有的i值整合到θj当中;⑷通过式来计算所有样本的平均值。

三、应用小波方法提取信号的瞬时频率和瞬时相位

为了研究小波对整个无线电信号识别工作的帮助,本文的研究团队引入了小波分析法。该方法建立在传统时频分析的基础上,通过小波的灵活改变来变化无线电中小波的时频,引发波形与波长的改变,进而使无线电接收设备能及时并且迅速地发现特定频率的无线电波。上述描述的小波分析法可以用下文所示的计算公式进行准确计算:由于小波计算独特的特性,在无线电检测的时候可以用到其变焦距的特点,对突变中的无线电信号进行检测,确保准确地捕捉到信号,并得知其瞬时频率与相位大小。随着尺度因子的改变,小波的变化逐渐趋于一定的函数,随着中心带宽的不断变化,这个函数可以直接体现出无线电的变化演变情况,是十分高效的无线电接受分析系统,往往能够胜任整个频段的无线电信号接收工作。在一些特殊情况下,由于信号不断地发生变化,在频段进入特定通带的时候,假如此时频率大小正好与滤波器的中心频率相等,就极其容易在该频率的周围产生一个波长的最大值,假如绘制在平面图上,就直接显示成了脊线曲线。要想准确提取出脊线上的频率值,可以采取一定的手段来实现。⑴小波发生变动时,确定一个不变的时移因子b;⑵套用公式来计算a的值;⑶分析计算出来的a值大小,选取适当的来变化小波的细节;⑷上一步操作结束之后,比较最后得到的小波系数,选取最大的来作为本次计算的最终结果。为了便于观察,研究人员将得到的所有a值绘制到一张表上,并连接起来构成小波随频率变化的图线,进而能够简单快捷地进行观察与研究。在脊线上只需要对相应点的数据进行求导,就能得到该点无线电信号的瞬时频率,是十分便捷的求算方法。同理也能快速计算得到脊线上相应点的瞬时相位,极大地提升了无线电传输数据的处理速度。

四、结束语

无线电论文第4篇

PBS表示主基站(PrimaryBaseStation),通过光缆可以将各类监测数据、感知数据、计量数据等业务数据传输到变电站内的各种应用系统子站,也可以根据需要将数据通过电力骨干网络(SDH等)传输到省电力公司内的系统主站,CBS表示认知基站(CognitiveBaseStation),通过光缆与主基站连接进行信息交互,通过无线方式与次用户通信,PU表示主用户即授权用户(PrimaryUser),SU表示次用户即认知用户(SecondaryUser),这里的用户在实际应用场景中泛指各种无线通信终端,本文为与认知无线电的各种概念保存一致,也称为用户,各类业务数据通过授权用户或次用户将数据传输到基站,SB表示频谱经纪人(SpectrumBroker),通过光缆或者网线形式与认知基站进行信息交互。认知基站负责认知用户的控制和管理,主要包括对认知用户的感知结果进行融合、空闲信道资源分配、接入及切换管理。频谱使用区域分授权频段区域和非授权频段区域,在授权频段区域,认知基站与主基站进行信息交互,降低感知目标频段的盲目性,认知用户根据认知基站的交互信息,感知授权用户的授权频段的空闲情况并利用。在非授权频段区域,认知用户感知非授权频段的使用情况并进行竞争利用,能够及时规避干扰频段,使用动态分配的频谱资源,在该区域中频谱经纪人充当协调者角色,负责不同认知网络之间的频谱资源协调管理。为提高频谱感知效率,缩短系统接入时间,提升频谱切换性能,本文设计两张用于认知基站内维护的信息表,一张是可用频率资源列表,一张是交互信息列表。“频带范围”表示认知用户可以使用的频段的范围,“频带历史使用信息”表示该段空闲频段的历史使用情况,包括数据传输平均占用时长和空闲率,由此可以计算频段的大致可用时长;“频带带宽”表示可用的频带宽度;“干扰水平”表示历史干扰水平和当前干扰水平,干扰水平是指空闲频谱所遭受的干扰程度和强度,包括无线环境下的路径损耗等干扰和电力设施运行时的电磁干扰,以功率形式量化,结合相关系数,可以计算信道最大容量;“可用状态”表示频率资源的利用方式,包括共享式和独享式,共享式是指认知用户与授权用户共享频率资源,但不会对授权用户造成干扰,或者是由多个认知用户之间进行共享使用空闲授权频率资源或空闲非授权频率资源,独享式是指空闲频率资源无其他用户使用,由单个认知用户单独享用。综合以上信息,认知基站能够根据认知用户的需求情况快速找到匹配资源进行分配,提高了分配效率、缩短了分配时间,根据业务特性,有选择地选取特定频谱实现与业务需求的匹配。

2频率分配方法

本文假设频谱感知由物理层来完成,而且能够获得准确的感知结果,MAC层在获取感知结果的基础上主要负责频谱资源的动态管理。其中频谱分配和频谱干扰规避是频谱资源管理的重要部分,也是电力行业应用下需要解决的重要问题。在分配阶段,提出基于迫切性和公平性的频谱资源分配方法,不仅考虑认知用户的接入的迫切程度,同时也需考虑用户接入的公平性。迫切性和公平性是影响资源分配的重要参考内容,影响迫切性主要参数包括:业务优先级、等待时间,影响公平性主要参数包括:用户不良信用记录、用户接入成功率,其中,业务优先级是指业务的重要程度,等待时间是指用户数据的有效期,超过一定时间,数据的传输就无意义,在电力行业下,这一参数尤其重要,用户不良信用记录是指用户分配到频率资源但没有利用的信用记录,接入成功率是指用户请求分配且获得分配的概率,为公平起见,接入成功率越低的用户分配的可能性就越大。

3频率切换方法

由于认知用户使用授权用户暂时未使用的授权频段,一旦授权用户出现,认知用户需要立即采取相应措施以免对授权用户的使用造成干扰,或者当认知用户使用的非授权频段的频谱环境恶化,也需采取措施来防止业务受到重大影响,另外,电力系统中复杂的电磁干扰进一步加剧了无线环境的复杂度,带来了更大的干扰,影响频谱资源的使用,在此条件下,除共享频率之外,频率切换也是有效解决措施之一,设计合理的目标频段切换机制对切换性能有着十分重要的影响。本文在此基础上提出一种基于加权的多参量目标频段切换算法,认知基站根据认知用户的业务特性和需求进行计算选取目标切换频段并分配,这样就有利于进一步降低认知用户的复杂度,综合考虑多种选择因素,弥补单一属性选择的不足。

4结束语

无线电论文第5篇

无线通信是在有线通信网络的基础上加入无线接入点(Access Point)等设备而实现,作为有线局域网的延伸,无线网络可以有效地解决有线通信不易实现的网络连通问题[6-9]。变电站内采用无线通信技术突出的优点:

①便捷性

在变电站内一般只需安装多个无线接入点AP,即可在站内覆盖无线网络通信,从而省去了大量穿墙、埋沟布线的工作量,减少了二次电缆的数量。

②灵活性

站内各类采集设备可以不受布线的限制,安装在任何有无线网络覆盖的区域,尤其移动设备可以通过无线网络与控制中心通信,提高了数据传输的灵活度。

③经济性

无线传输无须架设大量电缆,当站内通信规模增加时无线网络扩展性好,通信故障时维护简便,因此建立和维护无线网络的投资都较少。目前,应用较成熟的无线网络技术主要包括:

1)蓝牙技术。蓝牙技术是全球通用的无线技术,在2.4GHz波段工作,采用跳频展频技术,数据速率为1Mbit/s,传输距离10m。因此,它是一种以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接的短程无线电技术。蓝牙技术的主要优点是成本低、功耗低,主要用于语音传输。其标准统一、知识产权共享的优势是非常明显的,变电站内许多设备间采用无线方式通信在不久的将来就可以实现。

2)GPRS技术。GPRS是通用无线分组业务的简称,是在GSM网络基础上发展起来的,作为2G向3G移动网络过渡的技术。GPRS理论带宽可达171.2kbit/s,实际应用带宽约30~40kbit/s。在电力系统中主要用于传输负控、远抄等实时性要求不高、数据量交换较小的场合。

3)3G技术。3G指第代移动通信技术,它能够处理图像、音乐、视频等多媒体数据国际确定的3个无线接口标准分别为WCDMA,CDMA2000,TDS-CDMA,其网络理论下行速度可达2.8Mbit/s,上行速度可达384kbit/s。在国内使用3G网络必须租用中国电信或联通的3G宽带,由于在基站范围内所有用户分享带宽,因此使用3G网络的实际带宽会有所减少。

4)4G技术。4G指第4代移动通信技术,包括TD-LTE和FDD-LTE 2种制式4G技术数据传输速率理论可达100Mbit/s,能够快速传输数据、高质量的图像、音频、视频;具有良好的保密性和兼容性,可以在2G网络、3G网络、有线宽带网络、无线局域网间实现无缝漫游。与3G网络类似,使用4G需要向运营商租用网络,而4G通信系统正在建设中,各类相关技术仍需完善。

5)WLAN技术。无线局域网(WLAN)作为有线局域网的补充和扩展,是应用无线通信技术将网络设备互联起来,构成相互通信和资源共享的网络体系。无线局域网的技术标准较多,其中,美国国际电子电机学会制定的IEEE 802.11系列标准技术较成熟,应用较广泛。IEEE 802.11常用标准的主要技术参数。上海地区110kV及以下变、配电站内安装了大量GIS设备、铠装式中置开关柜以及测控、保护、通信屏柜,金属架构以及电磁干扰对无线网络的信号强度和稳定性提出了很高要求;同时,站内智能移动设备测取的大量红外监测数据、温度监测数据、视频数据、音频数据等通过无线网络传输将占用大量网络带宽。通过5种网络技术的对比,结合变电站无线通信的需求,可以得出以下结论:蓝牙传输速率低、距离短,仅适合传送语音数据;GPRS带宽小,不适用于站内大量数据通信;3G网络技术成熟,但是实际带宽无法承受站内所有的信息量交互,并且需要租用网络,其运行安全与可靠性受控于租借方,运行成本也偏高;4G网络传输速率高,但同样存在向运营商租用网络的问题,并且该技术还有待进一步发展。采用WLAN技术在封闭区域内构建无线网络,通讯距离可达80~120m,适合变电站内及楼层间使用,且其工作频段是无需任何运营执照的免费频段,运行费用低廉。在速率方面,选用IEEE802.11g/n标准,速率可达54Mbit/s以上,远大于720P视频流所需的4Mbit/s码流,可以保证视频、音频、监测数据实时传输。因此,从技术特点分析得出,变电站内采用WLAN技术组建无线网络是可行的。

2变电站远程巡检系统网络架构设计变电站的监测数据必须充分利用无线网络和现有的有线网络

在终端层、基站层和主站层间无缝传输。变电站远程巡检系统的分层式架构如图1所示。变电站内终端层主要由无线测温传感器、无线红外测温仪、可见光摄像机等传感设备组成。终端设备采集变电站信息后,将信息通过站内无线通信网络传送至基站层。基站层设置管理服务器、巡检系统服务器及存储服务器,其中管理服务器对所有前端传感设备集中管理,实现所有前端设备的配置及网络连接;巡检系统接收各类终端层上传数据,实现系统的巡检、监控、预警功能;存储服务器负责存储数据,授权用户可通过网络查询历史数据,回放视频、音频。各变电站与集控站、调度中心通过有线局域网络连接,调度员及运行人员在主站层通过Web方式浏览变电站实时信息,并调取历史数据,实现变电站远程巡检与监控。

3无线局域网的安全问题与对策研究无线局域网组网灵活

维护便利,尤其适合可移动设备接入,但是,由于无线网络是通过无线电波在空间中传送数据,只要处于电波覆盖范围内,就有可能受到非法用户的恶意攻击,例如拦截网内未加密数据、窃听无线接口、破解网络密钥、攻击网络弱点控制篡改通信数据等,因此,无线局域网比有线网络面临着更严峻的安全威胁[10-11]。变电站内无线网络主要用于传输电气设备监测数据、视频数据、音频数据,同时,主站系统可以通过无线网对各类传感器、摄像机下发控制指令,如果站内无线网络遭遇恶意入侵,将造成变电站信息外流,监控行为严重紊乱。

1)物理隔离

电力系统内制定了非常严格的网络安全分区机制[10],站内无线网络必须符合国家、行业的有关安全防护的法规、标准、规定,与电力信息内网完全隔离。

2)设置MAC地址白名单

任何网络中的无线传感器或无线摄像头都拥有一块无线网卡,将终端网卡的合法MAC地址输入到AP的白名单中,其它不在白名单的终端一律被拒绝访问无线AP。

3)隐藏SSID

SSID(Service Set Identifier)服务标识符主要用于区别不同的网络,只有通过身份验证的用户才可以进入相应的网络,防止未被授权的用户进入。SSID通常由AP广播出来,出于安全考虑,可隐藏SSID,此时需要手工设置SSID才能进入网络,此技术可阻止无关的无线网卡搜索到站内无线网络,提高了网络安全性。

4)采用先进的加密技术

WEP是IEEE 802.11的加密标准之一,主要在身份认证和数据传输时对信息进行加密。WEP使用RC4和CRC-32校验,生成40位的密钥。由于该密钥属于静态非交换式,各终端用户共享相同的密钥,因此很容易被破解。WPA采用暂时密钥完整协议(TKIP),使用RC4和MIChael校验,可生成128位的动态密钥。WPA包含了认证、加密和数据完整性3个部分,整体安全性大幅提升。WPA2的校验算法采用了公认非常安全的CCMP讯息认证码以及先进的AES加密算法。WPA和WPA2比WEP具备更强大的加密安全保证和标准,它们通过指定的时间量对数据传输中的安全密钥进行更改,有效地防止了非法入侵者暴力破解密钥,破坏和窃取数据。综合利用上述技术,多管齐下,将有效提升变电站无线网络的安全性,保证变电站远程巡检系统的可靠通信。

4工程实践该项目在上海地区某35kV变电站内搭建了无线通信测试平台

通过传输视频数据,验证无线通信技术在户内变电站的应用效果。测试系统安装在面积为735m2(35m×21m)的35/10kV开关室内,由网络交换机、5dBi增益全向天线、笔记本电脑、720P高清网络摄像机、服务器各一台组成。摄像机采集开关室内设备的视频信息,通过其自带的多媒体格式编解码模块生成MPEG格式视频流,视频流数据通过网络模块传送至接收端,再通过无线局域网传送至服务器。在测试过程中,尽管IEEE 802.11g标准理论速率可达54Mbit/s,传输距离达50~100m,但是由于开关室内安装了大量铠装式金属柜,传输效果都大打折扣,为此,必须使用AP增加信号强度。在接入端使用5dBi增益全向天线后,经测试平均吞吐量达10.52Mbit/s,满足监控点4Mbit/s的带宽要求;同时,无论摄像机处于开关室内任何角落,视频画面清晰流畅,控制数据也没有明显延时。在安全性方面,由于变电站本体建筑物的隔离屏蔽作用,使得站外无法监测到站内的无线网络信号;802.11g使用2.4GHz频段,不会对电力系统中使用的7.5GHz数字微波频段产生干扰;采用可靠的认证和加密技术,更有效避免了无线网络遭遇入侵。通过传输视频数据,充分验证了无线通信技术应用于户内型变电站的可行性,能够满足远程巡视系统对大量监控数据、音频视频信息的需求。

5结语

无线电论文第6篇

1传输效率自寻优控制方法分析

在无线电能传输系统中,当工作频率在谐振点附近时,传输效率较高,随着工作频率偏离谐振点,传输效率会下降[8]。由于接收线圈两端的感应电压决定了接收模块的驱动能力,为了方便对传输效率进行测量,简单以接收线圈两端的电压与发送线圈两端电压之比衡量系统的传输效率。在频率较低时,增加频率可以提高传输效率,而当频率高于某一值时,继续增加频率则传输效率反而会降低,即存在一个频率点可以使传输效率取得最大值。实验显示,可以用高斯函数近似模拟传输效率随传输频率变化的趋势,如图1所示。发送设备自动调整工作频率到发送模块谐振点与接收模块谐振点之间的某一值,从而使传输效率达到最优。综上所述,以频率为变量对传输效率最大值的寻优过程就是寻找效率随频率变化曲线的最大值。模糊控制器是一种不需要了解被控对象的精确数学模型的控制器,它根据一套控制规则推理出控制决策。模糊控制的实质是用人的经验知识进行控制的一种控制方式[9-11],它是一种非线性控制,对参数的变化不敏感,具有很好的鲁棒性[12]。在无线电能传输系统中,工作频率由频率发生器决定,系统中采用单片机模拟输出PWM波形来作为频率发生器[13-15]。因此,可以直接在单片机中编程实现模糊控制器。利用实时采集到的数据计算出传输效率及传输效率变化率(传输效率变化量除以频率变化量)作为模糊控制器的输入,利用模糊控制规则推理出控制决策,调整工作频率,使系统始终工作在传输效率较高的频率点处。控制器设计思路如下:在系统开始工作时,由于无法计算传输效率变化率,任意设定1个较小的初始频率调整量,此后,则根据当前传输效率及传输效率变化率确定下一步频率调整量。不同频率处传输效率及传输效率变化率的曲线图如图2所示。当传输效率较低而传输效率变化率较大时,频率调整量取一个比较大的值,频率是增加还是减小则取决于传输效率变化率的符号。当传输效率变化率为正是,说明频率处于谐振点左边,频率调整量为正;当传输效率变化率为负时,则说明频率处于谐振点右边,频率调整量应该为负。而当传输效率较高或者传输效率变化率很小时,频率变化量应该取较小的值,其正负同样取决于传输效率变化率的正负。

2模糊控制器的设计

传输效率自寻优的过程实质上是一个通过不断改变工作频率进行尝试从而逐渐逼近极值点的过程。要尽快逼近到极值点附近就需要选取合适的频率调整量。在本文的设计中频率调整量由模糊控制器推理得出,因此,传输效率自寻优的实现关键是设计合适的模糊控制器。本文设计了1个双输入单输出模糊控制器,其中,两个输入变量分别为传输效率η(f)及传输效率变化率dη(f)/df。通过测量发送线圈两端电压u(1)与接收线圈两端电压u(2)可求得传输效率,即η(f)=u(2)u(1)×100,(2)作为输入变量1;将当前传输效率减去前一次测得的传输效率求得传输效率改变量,然后除以频率调整量得到传输效率对频率的变化率dη(f)/df,作为输入变量2。输出变量为频率调整量的决定因子U,由映射df=g(U),(3)决定下一步的频率调整量df。模糊控制器将输入变量1和输入变量2进行模糊化后根据控制规则推理出下一次的频率调整量df,以当前频率加上求得的频率调整量作为下一步的工作频率。模糊控制器结构示意图如图3所示。输入变量1,即η(f)采用6个语言值,分别为5(很大)、4(大)、3(一般大)、2(小)、1(很小)、0(零);输入变量2,即dη(f)/df采用5个语言值,分别为-2(负大)、-1(负小)、0(零)、1(正小),2(正大);输出变量U采用11个语言值,分别为5(正很大)、4(正大)、3(正一般大)、2(正小)、1(正很小)、0(零)、-1(负很小)、-2(负小)、-3(负一般大)、-4(负大)、-5(负很大)。输入变量及输出变量均采用三角形隶属度函数。各变量隶属度函数的图形分别用图4、图5和图6表示。分析频率调整因子U与输入变量1(传输效率)和输入变量2(传输效率变化率)之间的关系,可得到模糊控制器的规则表如表1所示。系统采用Mamdani模糊模型,在模糊推理过程中,“与”运算采用最小值运算,“或”运算采用最大值运算,模糊蕴含采用最小值运算,综合规则采用最大值运算,解模糊化采用中心法。

3仿真结果使用

Matlab对所设计的无线电能传输自寻优算法进行仿真验证。实验室所研究的无线电能传输系统在接收端靠近发送端时的理论谐振频率为530kHz。在实际工作过程中,由于元器件参数变化及测量误差,谐振频率会偏离理论谐振频率,因此,在实际系统运行时,可将初始传输频率设置为理论谐振频率,随后按文中控制方法进行传输效率自寻优。在做仿真验证时,将初始频率设置为530kHz,假设由于参数的改变,谐振频率变为600kHz,且理想最佳传输效率为80%,用高斯函数η=80×exp-f-600000()200000[]2,(4)模拟实际系统的传输效率随工作频率的变化曲线。经试验,当df与U的映射关系取df=sign(U)×10×10|U|时控制效果较好。系统在工作时有两种调整方式,第一种方式是持续调整,始终保持效率最优;第二种方式是连续5次调整量df均小于某一固定值时结束调整,系统传输频率不再改变。对应第一种工作方式,观察100个调整周期,其仿真结果如图7所示。对应第二种方式,设定结束条件为连续5次|U|<2,即频率调整量df≤100,仿真结果如图8所示。由图7、图8可以看出,经过4个调整周期后,传输效率就很接近理想传输效率,此后,传输效率均能一直保持在最优传输效率附近。

4结语

无线电论文第7篇

本专题想要设计一套注重安全性的电梯管理系统,借助ZigBee技术,让管理人员能够随时监控电梯故障所在,以随时进行安全管理。ZigBee具有许多优点,包括可以实现多跳路由和资料发送的网格协定、安全规格和针对应用层互通性的整套参数设置,ZigBee针对微控器应用开发人员提供了管理网络以及连接其他节点的更高抽象层次。因此,基于ZigBee的无线通讯协定被广泛应用作为无线网络传感器(WSN)系统的通讯标准,而这在电梯安全管控中,更是得到了十分广泛的应用。另外,由于微软针对.NET技术的发表,使基于因特网的网络应用得到蓬勃的发展,利用技术,网页程序的设计从单纯的信息传递与浏览,也扩展到电梯安全运行监控中应用。

2基于ZigBee技术的电梯安全监控系统设计的规划

2.1系统的硬件规划

在硬件规划方面,文章以ZigBee无线微控器与电梯的管理做结合,依此建构低成本的电梯信息管理与监控系统,通过无线模块,管理者可以有效取得电梯运行的信息,其中实体的硬件架构规划上,无线控制器采用TI的ZigBee-CC2430模块。CC2430微控器,它是由TI公司收购无线单片机公司CHIPCON后推出的ZigBee无线单晶片,而CC2430也是一个真正符合IEEE802.15.4标准的晶片系统,ZigBee-CC2430除了包括RF收发器外,还内建加强型8051MCU、32/64/128KB的Flash、8KB的RAM以及ADC、DMA等。CC2430可工作在2.4GHz频段,2.4G频段为所谓的ISM频段,为专门提供给工业、科学与医学使用的免费频段,此外,CC2430采用低电压(2.0~3.6V)供电,且功耗很低(接收数据时为27mA,发送数据时为25mA),最大传送速率为250kbps。本系统通过无线模块CC2430的结合,可减少电路元件的使用,对于开发低功耗的无线相关产品有很大的帮助。系统的Master端与Client端之间使用2.4GHz无线通讯模块ZigBee-CC2430作为彼此连线的传输界面,Master端的无线微控器模块一方面以无线通讯的方式接收来自Client端的信息;另一方面则通过RS-232与电脑串列通讯埠连接,再经由程序的设计,PC端便可取得输出入的信息。至于Client端则以无线传输的方式周期性发送电梯运行信息给Master端。对于用户端而言,主要是要通过浏览器,经因特网取得电梯信息或进行电梯系统的管理(系统管理者)。

2.2系统软件设计规划

首先,用户端(可以是驾驶人员,也可以是系统管理者)可以使用任何可上网的装置(如智能型手机、PDA或电脑)连上服务器,电梯乘客可以通过网页查看目前电梯是否安全运行,而管理者则可经用户端浏览页面里的验证身份(帐号密码)登入至服务器管理者页面监控目前电梯状况、设定、查看资料等。因此,软件设计分成三个部分:无线通讯部分、伺服端的PC监控系统及伺服端的网络浏览程序。

以下针对各部分的软件设计的功能与内容分别加以说明:一是在无线通讯设计方面。Master无线模块的主要功能为收集各个Client端(电梯运行端)的电梯运行信息,由于每个Client端的无线模块均设定了唯一的ID,因此,Master端的无线模块可以将具备ID的Client端信息送至PC加以处理。至于Client端无线模块的功能则是周期性的将电梯运行的即时电梯运行状态送至Master端。Master端也可以看成是一个无线的服务器,它能与多个Client端连线。Master端在启动后会进入待机状态,若Client端发送信息时,便会将所收到的数值传回PC端作监控。二是在服务器端监控设计方面。PC端的功能为电梯的资料汇整处理与监控,无论是电梯是否安全运行,都通过PC端进行监控,并将所取得的信息存入资料库中。此外,监控端还设计了其他实用功能。各功能简单说明如下:(1)趋势图:该功能让管理者查询到在一日、一周、一年所进出的电梯运行状况。(2)安全隐患明细表:该功能可以让管理者查询电梯安全隐患出现的时间与对应的原因。(3)故障查询:该功能是让管理者得知是否存在故障。三是在伺服端的网页浏览程序设计方面。该部分设计是要使管理者通过浏览页面呈现目前电梯的即时状况,网页的基本信息包括:Master端CC2430目前连线PC端状况、电梯安全状况、乘客数量显示。使用者通过服务器上的网页浏览程序直接读取资料库的内容,以呈现电梯的即时状况,其中呈现的页面以每秒扫描的方式进行资料的更新。浏览程序设计也结合AJAX控制项,该控制项的主要功能为在扫描更新电梯信息时,不会产生因刷新整个网页画面造成的闪烁情况,提供较舒适的网页阅读环境。另一方面,为区分网页提供的功能,另增设身份验证登入,除一般用户可获得电梯信息外,管理者则可直接在网页上进行日期方式读取资料库档案及搜寻范围等。

3结束语