欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

盾构施工总结(合集7篇)

时间:2022-11-19 17:35:09
盾构施工总结

盾构施工总结第1篇

我一直从事设备管理工作,随着公司城市轨道工程逐年增多,盾构设备管理逐渐成为设备管理的重中之重,我全程参与了盾构机从设计联络、工厂验收、分体发运、组装调试、试掘进、区间贯通、维修改造等一系列工作。在股份公司组织的盾构专业培训中,认真学习了盾构机各大系统、各种管路工作原理,努力钻研了盾构机维修保养、故障分析、贮存保养方面的专业技术知识。

在西安地铁四号线15标盾构区间掘进过程中,协助盾构工程队完成盾构机维护保养、辅助设备采购、施工设备管理等方面的工作,参与了盾构区间右线穿越白桦林居建筑群的前期准备工作,结合此次盾构掘进难点任务对盾构机管理作出如下总结。

一、 穿越前盾构机的准备工作

设备管理部门负责对盾构机及后配套设备进行全面检修保养,尤其针对下穿建筑物必须保证微扰动的施工要求加强了刀盘刀具的检修工作。为保证所有设备处于最佳工作状态,杜绝带病作业,为盾构机过建筑物做好准备,组织机组人员对驱动动力系统、电力控制系统进行全面检查,保证运转良好;同时检修注浆泵、泡沫泵、水泵、清通管路保持通畅;检修运输机组,保证电瓶车刹车系统正常工作;检查铰接密封、盾尾密封,保证各部位具有良好的密封性能;最后对土仓到螺旋输送机再到出土口闸门进行了检查与保养。

完成对盾构设备的维保检修后,机组人员将盾构姿态调整到最佳,避免在穿越过程中有较大纠偏行为,同时注重管片的选择,保持推进行程差不宜过大,保证盾尾间隙保持良好。

为避免穿越过程中出现设备故障停机,我协同设备人员列出设备易损件清单,提请采购计划提前备货,对密封圈、限位开关、保险丝等常用件做了购置储备。

二、 穿越阶段盾构机的操作控制

由于在下穿建筑物时地层下软上硬,下部为粉质粘土,上部为全断面沙层,加之在350m的小区线上转弯,在施工中盾构机垂直姿态不易保持,容易产生下沉的现象,难于控制。在掘进的过程中需要严格控制出土量,不能够出现超挖,以免地表出现沉降,导致楼体倾斜甚至是楼体坍塌等严重后果。

因此严格规定了机组人员交接班制度,规定换班的交接班内容必须包括当班时盾构机发生的故障、掘进时的参数变化、管片拼装点位的思路、电瓶车上的管片数量及类型、测量系统上的盾构机姿态数据、管片复测的数据。要求在每天的掘进任务结束后需要留出一个半小时至两小时时间进行设备维保、测量换站和管片复测工作,确认复测的数据和换站后的姿态。

掘进过程中机组人员发现出土时会出现很多的粘土块,并且在皮带上积压,导致皮带机压死出土不畅,严重影响掘进的连续性和稳定性。技术人员和设备管理人员及时与厂家沟通征询有效的解决办法,起初尝试添加泡沫剂和膨润土进行渣土改良,发现效果并未得到改善,甚至起到反作用,粘土遇水后本身较滑,粘土块在遇到泡沫剂和膨润土后滑动性增加,出来的粘土块在皮带上打滑,导致渣土在皮带上积压将皮带压死。在降低泡沫剂和膨润土的用量下,向土仓内加水发现出土有一定的改善,但效果也并不是十分理想。最后在调整渣土改良的同时对螺旋输送机出渣口进行修改,焊接钢板使渣土从螺旋输送机落下的同时可以顺着皮带的转向落到皮带上,出土效果虽然并不是很理想,但较之前有了很大的改善,基本可以满足掘进要求。

三、 盾构机控制措施总结

随着西安地铁盾构下穿建筑物施工任务的完成,在盾构机掘进过程中我参与分析解决了很多设备管理问题,在发现问题解决问题的过程中学习总结出很多专业技术经验。

首先,在复杂土质施工过程中,必须严格控制盾构掘进参数如土压力、掘进速度、同步注浆压力、同步注浆量、二次注浆压力等,将盾构掘进过程中引起的隆起或沉降值控制在规范允许的数值范围内。在稳定盾构机姿态的同时需尽量降低各组油缸的压力差来使管片受力均匀,防止管片出现破损、错台等。同时在掘进时应保持掘进速度保持稳定以避免土仓压力出现较大的波动。盾构机操作人员结合技术部门实时监测的地质数据,必须严密监视各项仪表数据,并及时发现设备异常现象及时处置,控制盾构机的姿态偏差,保持盾构机的微扰动。

其次,严格控制减少停机时间,在每环推进时为使各项工序能够顺利完成,要尽量控制每环的作业时间,既要缩短与下一环的时间间隔,保持施工的连续性,确保盾构机连续掘进,机组人员在有限的停机时间内快速实施设备的日常保养和巡检,避免因停机时间过长而引起地表沉降。

盾构施工总结第2篇

自2019年9月底由郑州南四环高架项目调入深圳地铁12号线赤湾停车场出入线盾构区间工作,赤湾停车场出入线盾构区间为深圳地铁12号线施工难度最大标段之一,也处在整条线的关键工期线路上。该区间左线里程YDK1+578.548~YDK1+554.75,上跨2号线跨越长度约23.8m,净距为1.84m;右线里ZDK1+568.104~ZDK1+539.104,上跨2号线跨越长度约29m,净距为1.94m,最小转弯半径280m。在施工过程中,面对施工现场和地质条件复杂、工期紧张、施工难度大等诸多不利因素创造了土压平衡盾构机在岩石硬度超过170MPa的全断面地层中取得多次单日掘进9环的掘进成果。

出入线盾构施工是劳务分包为主,现场主要有,主管人员,各分管人员、盾构司机、工程师、盾构机修维保人员,生产班组人员,地面调度、盾构施工管片防水粘贴、龙门吊操作、盾构管片运输与拼装及盾构文明施工等。其中有穿插各级管理人员,交叉施工等。劳务分包队伍人员工作经历和经验丰富,熟练的盾构司机操作手和维保人员。相对而言人员投入少,管理成本小。当然了在实际施工生产中也会有一些缺点,管理人员对下层作业人员缺乏约束力,表现为最下层劳务作业人员只服从直接雇佣人的指挥而不全部服从管理人员的直接管理,施工的制度、措施以及新工艺、新标准难以第一时间贯彻和实施。管理人员无法畅通的获得施工的信息和核心技术,企业的长久发展不利。分包成本高,使项目部效益压缩。利与弊是把双刃剑,都是对我们年轻技术管理人员的一次提升。

伴随着区间双线盾构贯通,迎来的喜悦和满满自豪感。通过对两次两台盾构机,装机,调试,推进,拆卸,吊装,让我对盾构机致力于地铁隧道生产管理有了更加全面细致的认识,让很多东西熟记于脑海。对于硬岩掘进都有新认识,了解及积累了相关经验。通过十几次换刀过程的经历,让我对不论是常压换刀还是带压换刀过程中都有了相关经验和积累。对于盾构机来说,盾构施工过程中盾构机维保以“养修并重,预防为主”为主要原则,设备在使用过程中既要注重平时的保养维护,又要及时维修处理,这样才能保证盾构施工的顺利进行。盾构机及相关配套设备的日常保养分为日检、周检、月检等,具体内容根据保养计划,由从事维护人员按时进行保养,负责人负责督促检查。设备保养计划实施前必须做好准备工作,如保养的内容、所需工具、配件、人员等,按照“清洁、紧固、润滑、调整、防腐”的方式进行,保养完成后如实填写保养记录。机械设备出现故障时,作为盾构主司机使用者会及时通知当班维保人员,同维保人员一起做好设备的维修工作;故障难以排除时,由现场负责人组织进行设备维修工作。其实最主要的是熟悉贯通各个工序和有计划生产是提高进度和产能的必须点。

盾构施工总结第3篇

关键词:全断面砂层,盾构机,脱困,沉降 ,螺旋输送机

Abstract: along with the development of the society, the change of more and more crowded, the subway as a new type of traffic tools, high speed, time must, low energy consumption, covers an area of province, etc. At present our country building subway are Beijing, Shanghai, guangzhou, hangzhou, shenyang, chengdu, xian and other cities. Shield law because of its construction speed is quick, mechanization degree is high, and the advantages of security is widely applied to the subway tunnel construction. This paper TJSG xian metro line 2 at 4 standard the administrative center to the north station 】 shield interval shield construction machine in the whole section, coarse sand layer in the tunneling problems and solving methods are explained, the hope for similar project construction to provide certain experience.

Keywords: whole section of sand layer, shield construction machine, difficulty relief, settlement, screw conveyor

中图分类号:U455.43文献标识码:A 文章编号:

1工程概况

西安地铁二号线TJSG-4标位于西安市北郊运动公园内,包括【行政中心站~运动公园站】、【运动公园站~北苑站】、【北苑站~北客站】三个盾构区间(见图1),单线全长3公里,隧道拱顶埋深为10~15米,工程造价2.8亿元。本工程由西安市地下铁道有限责任公司建设,中铁一局集团有限公司施工,广州轨道交通建设监理有限公司监理。

2工程地质及水文情况

2.1地质情况

根据本工程地质勘查报告揭露的地质情况,区间隧道钻孔深度内地层为:地表一般分布有厚度不等的全新统人工填土;其下为全新统的冲积黄土状土、粉质粘土、粉细沙、中砂、粗砂,局部为砾砂或圆砾;上更新统冲积的粉质粘土,中、粗砂层局部为粉细沙、砾砂。

2.2水文情况

本工程地质勘查资料揭露显示隧道所处范围地下主要为潜水层,其主要补给来自大气降水渗入,地下水位埋深10.30~12.30m的。地下水的径流方向由南向北,地下水最大流速为13.68m/d,平均流速为12.00m/d。

3 全断面中、粗砂层盾构脱困技术

盾构在硬岩中掘进时,由于围岩过硬会出现盾构机卡壳现象。而本工程盾构在穿越北绕城高速公路全断面中、粗砂层(左线里程:ZDK1+666~ZDK1+629;环号:103~128, YDK1+661~ZDK1+624;环号:107~131)的过程中也出现了盾构机被卡住的现象,盾构机推力超过3000t,掘进速度仅为个位数。

分析造成该现象的原因主要有:

(1)围岩硬度高。根据本工程高速公路路基两侧地质勘查孔揭露的地质情况显示,该段隧道断面所处地层为〈2-5〉中砂及〈2-6〉粗砂全断面砂层,其N值为20~40。由于该段上覆高速公路路基,且动荷载(每日车流量约3万辆)长期作用,使该段地层密实性加强,其N值远大于40。

(2)盾构机姿态差。因进入该段前盾构机姿态超限,盾构机姿态趋势大,未能及时纠正,进入该段后,因地层关系盾构机推力增大(四组千斤顶推力均满负荷推进),不具备调整盾构机姿态的条件,使得盾构机姿态越来越差,从而增大了围岩对盾构机阻力。

(3)盾构机外置注浆管。本工程采用Φ6140日本小松软土盾构机,该型盾构机采用外置式同步注浆管,从而增大了盾尾直径,在较硬围岩中掘进时,易出现卡盾尾的情况。

在盾构施工过程中为使盾构机脱困主要采取了以下措施:

(1)增大盾构机推力。联系盾构机生产厂家,在管片不被压裂、设备所能承受的条件下,将盾构机推力限值调大,增加有效推力。

(2)摆动铰接,使围岩松动。在盾构掘进速度小于3mm/min时,伸缩铰接油缸,摆动盾构机,使围岩松动,以利于盾构脱困。在伸缩油缸时伸缩量不宜过大,本工程右线盾构在穿越该段地层时,因铰接油缸伸缩过猛,致使盾构机铰接密封损坏

(3)开启超挖刀进行扩挖。针对盾构机外置式同步注浆管,开启超挖刀在注浆管所在点位适当进行扩挖,减小注浆管与围岩的摩擦。

4 全断面中、粗砂层盾构施工地面沉降控制

盾构推进施工引起的地表沉降一般分为盾构施工到达前沉降、盾构施工到达、盾构通过时、盾尾通过后、后续沉降5个阶段。在实际施工过程中造成地面出现过大沉降主要是盾构施工到达、盾构通过时、盾尾通过后三个沉降阶段引起的。要很好的控制这三个沉降阶段,其关键就是建立良好的土压平衡关系和及时饱满的注浆。

案例:左线盾构穿越麻家什字民房

4.1概况

左线自ZDK1+520~ ZDK1+528(掘进环号194环~201环)里程段下穿麻家什字村民房,民房共5层,其中第一层为2001年建设(原设计层),其它几层为2004年加盖,其基础为砖混砖体扩大基础,第一层墙体为砖混结构+50cm的顶圈梁结构,其它四层均为砖混结构,没有圈梁和简易框。房屋外墙瓷砖有大面积空鼓现象,局部有细微裂纹,根据目测房屋未发现倾斜沉降,内部无明显裂缝,1层为商铺、2层有人居住,且住户较多,其它3层闲置。(隧道与民房关系见图1)

根据地质详勘报告揭露的地层,此里程段隧道埋深14m,隧道拱顶主要分布的地层为0~11m黄土+粉质粘土,11~14m为中砂,14~20m为粗砂,隧道拱顶及洞身范围位于全断面砂层中,地下水位地面以下15m(见图2)。

图4:麻家什字民房与隧道关系图

图1:隧道与民房关系图

图2:民房地质图

4.2施工过程采取的措施

盾构穿越该建筑物主要的思路为快速平稳通过,为实现这个思路及控制好地表沉降在盾构穿越前、穿越过程中及穿越后,主要采取了以下措施:①做好设备检修保养。②加强渣良。 ③严格控制土仓压力及出土量。④加强管片的背后注浆。⑤控制好盾构机的姿态。⑥加强地表及建筑物的监测,及时反馈监测信息。

4.3取得的效果

从地表及建筑物沉降监测数据看,监测点最大累积沉降-5.6mm,远低于规定的警戒值,且盾构穿越后监测数据长期处于稳定状态,民房未出现开裂倾斜等现象。本次盾构成功穿越5层民房,为盾构在全断面中、粗砂层掘进及沉降控制提供了宝贵的经验。

5全断面砂层施工螺旋输送机故障处理技术

盾构在全断面砂层掘进时,由于砂的摩阻系数大,使得盾构机特别是螺旋输送机因不正常磨损易出现故障,本工程在【运动公园站~北苑站】区间掘进施工时左、右线盾构机的螺旋输送机曾多次出现故障,严重影响了工程进度。本工程施工过程中盾构螺旋输送机出现故障有以下三类:

5.1螺旋叶片的磨损严重。该区间隧道洞身处于全断面无水砂层,由于渣土较干,且渣良效果不理想,使螺旋输送机出土不畅,存在滞土现象,导致螺旋带叶片磨损严重。

5.2螺旋齿轮箱密封及马达齿轮的损坏。由于渣土较干,渣良效果不佳,使渣土到螺旋排土口时不能顺利排出,而在排土口将渣土压密,增大了排土口的压力,长期作用使砂粒进入螺旋输送器齿轮箱磨损了密封圈,进入齿轮箱后造成了螺旋输送机马达齿轮非正常磨损严重。

5.3螺旋输送器螺旋带断裂。

2009年6月19日凌晨4:50左右,左线盾构正在掘进第540环,螺旋输送机开始出现出土不连续的现象,且螺旋输送机转动时有异常响动,上午9:10施工人员在螺旋输送机出土口检查时从出土口取出了一块20x30x2.5cm的螺旋带叶片,叶片取出后螺旋输送机虽能正常转动,但仍然不能正常出土。

通过螺旋输送机预留的检查孔进行排查,在土仓附近螺旋输送机外筒壁上切开一个观察孔(见图4)。经观察孔检查发现在土仓内出土口处有一个结实的“砂墙”,堵住了出土口,并发现螺旋带伸进土仓内的部分已经被折断且被埋在“砂墙”下面。为防止挖开砂墙后出现涌砂,施作前在观察孔上安装一个可以灵活开关的手动闸门。经过5个小时的开挖,取出了已折断的螺旋带(见图5),取出后反复转动刀盘,利用搅拌棒粉碎了“砂墙”,螺旋输送机启动后出土正常,由于螺旋带变短,其出土模式由原来的从土仓内主动取土,变作被动出土。完成了该区间剩余的80环隧道施工,到达北苑站后对其进行了更换。

图3:螺旋输送机故障示意图

图4:割开的观察孔 图5:取出的螺旋带断裂段

5.4故障成因的推断

本次螺旋输送机故障的发生,是多种不利因素集中导致的结果。从螺旋带断裂段表面凹坑及断裂断口推断,螺旋带受到了坚硬物体的碰撞,使其产生了弯曲及开裂,在出土时由于土仓内坚固的砂墙将螺旋带伸进土仓部分深埋固定,螺旋在转动过程受到扭矩作用而断裂。

5.5通过上述事件总结的经验

盾构法施工机械化程度高,设备出现故障将直接影响工期,通过上述事件,可以总结出以下防治措施:

5.5.1就螺旋输送机易磨损部位进行堆焊加固,提高螺旋的耐磨性。

5.5.2盾构在无水砂层中掘进时,渣良是很关键的环节,通常的泡沫添加剂改良效果不理想,出渣不畅是导致螺旋输送机故障“元凶”,因此在盾构施工过程中须选用一定配比的膨润土泥浆作为渣良剂,以减少设备的磨损。

5.5.3加强施工机械的日常检查机维修工作,并备足易损配件,设备出现故障维修时可有效的节约维修时间。

结束语

盾构施工总结第4篇

(北京市轨道交通首都机场线东直门~三元桥区间工程)

第一章 工程概况

第一节 概述

本工程为北京市轨道交通首都机场线03标段,主要工程为东直门~三元桥区间盾构2568.259m;3个联络通道(左K1+034.566联络通道、左K1+974.254联络通道、左K2+564.776联络通道及泵房)和区间风井风道。隧道设计施工起点为轨道交通机场线三元桥车站南端,终点为设在察慈小区住宅楼西南侧的盾构接收井。

第二节 隧道平面

本区间有5个曲线段,东直门~三元桥方向分别为JD2(R=550)、JD3(R=1500)、JD5(R=800)、JD6(R=1000)、JD7(R=4000),线路整体呈“S”型。左线与02合同段的右线线间距为10~13米。本区间隧道平面如下图所示:

图1.1——东直门~三元桥区间左线盾构隧道路线平面示意图

第三节 隧道纵断面

本区间沿盾构掘进方向以-2‰的坡度从三元桥站出发后,在K2+960.00处线路开始以-29.611‰的坡度向下前行,在K2+620.00处开始以+6.561‰坡度上行,在K1+500.00处开始以-3.017‰坡度下行至盾构接收井。

图1.2——左线隧道纵断面示意图

第四节 隧道近接环境条件

4.1临近建(构)筑物

区间沿京顺路下穿三元桥的西北孔,与三元桥扩大基础中心线水平净距0.24m,竖向净距16.3m。下穿东直门外斜街后,进入规划红线内的平房区,然后从察慈小区旁边通过到达盾构接收井。

4.2地面交通状况

本段线路下穿的三元桥是机场高速、京顺路连接三环路的节点立交,各个方向的车流在这里交汇,交通极为繁忙。

东直门外大街为二、三环之间的联络干道,现况机动车道宽度23米,为双向三车道,机非分隔带5米,非机动车道7米,道路交通繁忙。

4.3地下管线分布情况

区间沿线上方存在多条市政管线,但由于隧道埋深较深,根据以往工程经验区间施工对大部分管线的影响较小。只有一条位于三元桥东北侧横跨机场路的热力管沟由于埋深较深,控制机场线纵断。

4.4地形地貌

拟建盾构区间在K2+624处下穿三元桥,K1+150处下穿暗河, K0+800处下穿宽约6m深约 3m的亮马河。

第五节 地质条件

5.1工程地质概况

本工程所在的土层,自地表以下依次为人工填土层、第四纪全新世冲洪积层和第四纪晚更新世冲洪积层。区间隧道主要穿越粘土、粉土,局部遇到粉细砂、中砂层。属于一般地质条件的地层。

第二章盾构机类型及主要技术参数

第一节 盾构机类型

本工程使用的盾构机为德国海瑞克S169加泥式土压平衡盾构机,采用向开挖土体中注入泡沫的方式来改良土体,推进千斤顶为被动式铰接千斤顶。刀盘是作为“重型钢结构”针对挖掘北京土质特点设计的。主驱动的总输出功率为945KW,刀盘最大可能转速为3.0rpm。

第二节 主要技术参数

主要技术参数如下:

(1)管片参数

外径6000mm

内径5400mm

片数3A+2B+1C

最大片重3.3T

水压2bar

(2)盾构参数

主机数量(前体和中体)1

直径6190mm

长度(前体和中体)4280mm

类型土压平衡

最小水平转弯半径350m

最大工作压力3bar

最大设计压力4.5bar

土压检测点5

人闸1

人闸联连法兰1

螺旋输送机上连接法兰1

盾尾1

盾尾数量1

连接形式铰接

长度3550mm

密封3层密封刷

注脂线8(2X4)

注浆点4

(3)推进千斤顶

数量16

推力28350KN

行程2000mm

推进速度80mm/min

缩回速度1400mm/min

(4)铰接油缸

铰接型式 被动式

数量 14

尺寸φ180/80mm

缩进压力7340KN

行程150mm

(5)刀盘

刀盘数量 1

形式 面板式

直径 6200mm

旋转方向 左/右

刀具(软土层) 124把齿刀;16把周边刀

回转接头 4个泡沫管

(6)刀盘主驱动

刀盘主驱动数量 1

形式 液压驱动

马达个数 8

额定扭距 4085KNm

脱困扭距 4700KNm

转速 1.50/3.00rpm

电功率 480KW

主轴承外径 2600mm

主轴承寿命 10000小时

(7)人闸

人闸数量 1

形式 双人闸

长度 2000mm

直径 1600mm

工作压力 3bar

工作人员 2~3

(8)拼装机

拼装机数量 1

型式 中心自由转动拼装机

夹紧系统机械式

自由度6

旋转范围+/-200o

管片长度1200mm

伸缩距离1000mm

轴向行程2000 mm

控制方式线控

(9)螺旋输送机

螺旋输送机数量1

形式中心轴式

直径700mm

电功率110KW

最大扭距190KNm

转速0至19rpm

最大出土量250m3/h

螺距600mm

伸缩可以

出土门有

(10)皮带机

皮带机数量1

驱动电力

带宽800mm

带长约45m

速度2.5m/s

最大输出能力450 m3/h

(11)后部供给系统

管片存放机1

管片吊车1

吊车轨道1

液压部件1

冷却系统1

注浆设备1

注浆泵1

控制阀2

压力测量装置5

储浆罐1

注泡沫系统1

发生器4

水泵1

泡沫剂泵1

空气控制设备1

注膨润土系统1

注入泵1

压缩空气供应1

空气压缩机2

气罐1

压缩空气调节设备1

主驱动润滑脂泵1

盾尾注脂泵1

操作室1

控制板1

变压器1

软管系统1

高压电缆盘1

轨道起重机1

二级通风系统1

输送管存储装置1

导向系统1

数据记载系统1

(12)后配套系统

台车数目5+桥

(13)电气系统

初级电压10KV(+10%/-15%)

次级电压630V

变压器1250KVA

控制电压24V/230V

照明电压230V

阀电压24V

频率50HZ

保护系统(电马达)IP55

PLCS7(西门子)

(14)安装功率

驱动480KW

推进油缸 55KW

管片拼装机油缸 45KW

冷却油 11KW

注脂4KW

螺旋输送机闸门 22KW

螺旋输送机110KW

注泡沫系统8KW

注浆设备 19KW

皮带输送机 22KW

二级通风设备 15KW

现场及插座用电 50KW

总计844KW

(15)尺寸

总长 57m

本体含盾尾 7.8m

第三章 一般地质条件下盾构隧道施工技术总结

第一节 盾构隧道施工的地面用地面积及场地布置

1.1本工程施工的地面用地面积如下表所示:

始发井及提升区面积(㎡)办公、生活用房区面积(㎡)管片堆放区面积(㎡)材料、物资堆放区面积(㎡)施工区域内通道面积(㎡)集土坑

921347.8116.23231.54529.77135

1.2施工场地平面布置如下图所示:

图3.1——盾构施工场地平面布置图

第二节 盾构隧道施工用电

2.1供电方案

业主将提供施工临时用电电源,其容量为1250KVA+600KVA的变压器,接口根据承包商施工组织设计的接电点位置由业主组织有关单位现场确定。同时,在施工现场配备发电机,做为备用。施工现场的供电系统主要包括配电房和发电机房。

配电房向外与10KV输电线路相接,其中1路直接送到盾构机内,1路通过配电房内的变压器电压转化为380V/220V,分别供其它施工设备和照明使用。为防止意外停电对工程的影响,在施工现场备用1台200KW柴油发电机,确保施工的正常进行。

2.2进场阶段的临时供电

为保证施工临时设施的搭建、前期准备工作的正常进行以及生活用电的需要,安排1台250KW的发电机作为临时电源。在供电部门为施工变电所送电后,撤消临时电源但作为备用电源保留,在突发性停电时,供洞内的照明、抽水及推进油缸保压用。

在取得监理工程师同意后,我单位施工队伍进场立即进行场区电缆敷设、变电器、配电箱柜等安装及接电调试工作。

2.3盾构施工阶段的供电

1)变压器的配置

盾构机掘进施工时,由业主配置一台总容量为630KVA的变压器,供龙门吊等辅助设备供电使用,另需配置总容量为1250KVA的10KV高压电源,供盾构机使用。

2)高压配电所的配置

高压配电所配置盾构电源和地面设备低压用电的变压器馈出仓位。

3)配电柜的设置

设置高压配电柜1个,低压配电柜3个。每一用电点从邻近低压配电柜引出,通过分配电箱再配出到各用电设备。

4)功率因数补偿器的配置

为实现COSΦ=0.8的功率因数,拟设置6个功率因数补偿器,它们的无功功率补偿能力分别为:2台300Kvar。

5)供电线路的配置

高压线路:相数:3;频率:50Hz;

电压:10KV;

低压线路:相数:3;频率:50Hz;

电压:0.4KV;

照明线路电压:220V;控制电压:24V;信号电压:24V;

2.4安装与工艺要求

1)从配电柜到分配电箱的馈送回路中,每一开关的载流量和短路电流需与各用电设备的容量相匹配,设备在受电前先检验漏电开关的动作是否灵敏。

2)电缆敷设采用直埋式,过路处穿钢管暗埋敷设。

3)高压电缆送电前,经电气试验证明合格。

4)从高压配电室盾构仓位馈送到车载变压器的电缆,沿墙挂钩敷设下井,每隔50m挂“高压危险”的警告牌一块,在井的垂直部位和隧道内敷设电缆,每2m设一个固定点。

5)从井口开始,每隔100m设隧道照明专用配电箱一只,作为照明线路的分开关和隧道内小动力用电设备的电源。

6)隧道照明采用普通日光灯,控制室采用防爆荧光灯,主机采用防爆投光灯,皮带机采用防震灯,灯具金属外壳与接地线直接相连。

7)所有的单相负载采用A、B、C三相跳接的方式,注意三相负载的平衡问题。

2.5安全保护措施

1)重复接地保护:在各用电点的配电箱周围,用2m长的5#角钢2根埋入地下作为接地极,用一根25×4的镀锌扁钢与接地极焊接后,引到配电箱的接地排上。接地排与从变电所馈出的低压电缆的零线相接,构成重复接地系统。接地电阻≯1Ω。各用电设备金属外壳用接地线与接地排相接。

2)行程限位保护:所有的提升设备安装限位保护开关。

3)电气联锁保护:为保证设备运行的安全可靠,电气系统进行联锁控制,即上级流程未动作,下级流程无法动作。上级流程停止,下级所有流程自动跳闸。防止自起动和误操作带来的不安全因素。

4)相序保护:用电设备在运转时,不随意更换相序,若发生意外,相序继电器自动切断电源。

5)防雷保护:对直击雷的防护采用在变电所装设独立避雷针;对雷电波侵入的防护采用在高压侧装设阀式避雷器。

第三节 始发井及接收井施工

始发井利用三元桥车站已修建好的南侧左线盾构始发井进行始发施工;接收井利用02标在察慈小区西侧的盾构接收井进行接收施工。

第四节 盾构始发段和接收段地层加固方法、工艺及效果

4.1端头地质概况

本标段盾构始发及到达端头加固共计4处,加固部位包括机场线三元桥站始发井端头、风道接收和始发端头、盾构接收井端头。三元桥站始发端头为粘土地层,其余3个端头均为洞身上部为砂层,洞身下部为砂砾层。三元桥站始发端头加固采用1排ф800@1000mmC10素混凝土桩和14排ф600@500mm梅花形布置的旋喷桩组成,素混凝土上部采用采用三七灰土回填;风道接收和始发土体采用洞内水平注浆方式进行加固,采用水煤气管,间距500×500mm,梅花型布置;盾构接收井土体采用20排ф600@500mm梅花形布置的旋喷桩。

为了确保盾构始发和到达时的施工安全以及各地层的稳定,以防止端头地层发生坍塌或漏水涌水等意外情况,必须对端头的土体进行加固处理。另外,盾构机吊入、吊出井必须满足吊机作业地面承载力要求。

4.2加固的原则和要求

(1)盾构进出洞端头土体加固的原则:

1)根据隧道埋深及盾构隧道穿越地层情况,确定加固方法和范围。

2)在充分考虑洞门破除时间和方法,选择合适的加固方法和范围,确保盾构机进出洞的安全和洞门破除的安全。

(2)加固要求

1)加固土体强度达到0.4Mpa;

2)渗透系数≤1.0×10-8cm/s。

4.3端头加固施工

4.3.1双重管旋喷桩施工工艺

(1)旋喷桩施工工艺

旋喷采用双重管高压喷射法施工,利用高压水、压缩风共同作用在喷嘴形成高速射流切割土体、砂层,同时由底部注入水泥浆,对其进行分选和置换。喷嘴作360°旋转并匀速提升,形成具有一定直径的旋喷桩。旋喷桩施工流程参见【图3.2——旋喷桩施工工艺流程图】。

图3.2——旋喷桩施工工艺流程图

(2)施工方法

1)钻机就位

钻机就位即将使用的钻机安置在设计的孔位上,使钻杆头对准孔位的中心。钻机就位后,必须作水平校正,使其钻杆轴线垂直对准钻孔中心位置。

2)钻孔

本工程拟采用地质钻机,钻孔的倾斜度不大于1%。

3)插管

钻孔完毕,拔出岩芯管,换上旋喷管插入预定深度。在插管过程中,为防止泥沙堵塞喷嘴,可边射水、边插管,水压力不超过1Mpa。

4)喷射作业

旋喷前,要检查高压设备和管路系统,其压力和流量必须满足要求,在注浆管及喷嘴内不得有任何杂物,注浆管接头的密封圈必须良好。

喷射管达到预定深度后,由下而上进行喷射作业。喷射过程中,应时刻注意检查浆液初凝时间、注浆流量、风量、压力、旋转提升速度等参数,并且随时做好记录,绘制作业过程曲线,旋喷注浆管的旋转和提升必须连续不中断,防止喷嘴被堵。

5)拔管、冲洗机具

喷射作业完成后,拔出喷射管。注浆管等机具设备冲洗干净,管内不得残存水泥浆。把浆液换成水,在地面上喷射,将泥浆泵、注浆管软管内的浆液全部排出,管内不得有残存水泥浆。

6)移动机具、回填注浆

把钻机等机具设备移动到新孔位上,进行下一钻孔的施工,并将作业完成的孔回填注浆。

(3)旋喷施工主要技术参数

1)压缩空气

压力0.7MPa,流量3m3/min,喷嘴间隙2~4mm;

2)水泥浆液

压力20~40MPa,流量80~120L/min,喷嘴孔径2~3mm;

3)注浆管

提升速度10~20cm/min,旋转速度10~20r/min,外径φ75。

4)水泥浆

水泥采用425号水泥,水灰比1.5:1。

(4)施工技术措施

1)施工前根据现场环境和地下埋设物的位置等情况,复核高压喷射注浆的设计孔位。施工前予先挖设排浆沟及泥浆池,施工过程中将废弃的冒浆液导入或排入泥浆池,沉淀凝结后运至场外存放或弃置。

2)旋喷桩相邻两桩施工间隔时间不小于48h,间隔不小于4~6m。

3)钻机安放保持水平,钻杆垂直,其倾斜度不得大于1.5%。施工前检查高压设备及管路系统,其压力和流量满足设计要求。注浆管和喷嘴内杂物清除干净,注浆管接头的密封圈良好。

4)正式施工前进行试桩,以确定合理的水压力,提升速度,浆液配比和压力等参数。

5)旋喷过程中保证桩体的连续性,若因故停止,第二次旋喷的接桩长度必须大于20cm。

6)施工中若出现大量冒浆,立即停止并采取措施。

7)钻孔位置和设计位置的偏差不大于50mm。实际孔位、孔深和每个钻孔内的地下障碍物、洞穴、涌水、漏水及与工程地质报告不符等情况均详细记录。

8)高压喷射注浆完毕,迅速拔出注浆管彻底清洗注浆管和注浆泵,防止凝固堵塞。为防止浆液凝固收缩影响桩顶高程,必要时在原孔位采用冒浆回灌或二次注浆等措施。

4.3.2水平注浆施工

(1)水平注浆施工工艺

参见【图3.3——水平注浆施工工艺流程图】。

图3.3——水平注浆施工工艺流程图

(2)注浆施工主要技术参数

参见【表3.1—钢花管注浆施工技术参数一览表】。

表3.1—钢花管注浆施工技术参数一览表

分类项目参数

成孔下管管距×排距1.4m×0.8m,桩间护壁钻孔

孔径52mm

管偏斜<1%

钢花管钢花管长度5m(入土段长4m)

钢花管直径48mm

钢花管壁厚3mm

注浆浆液配合比(重量比)水泥:水=1: 1

初注压力0.8~1.0MPa

终注压力1.8~2.0MPa

(3)施工技术措施

1)注浆材料采用P.o32.5普硅水泥,注浆时水灰比由大至小,先灌入较稀浆液,视地层吃浆量情况逐渐调整水灰比再灌入较稠浆液。

2)一个孔的注浆作业一般应连续进行到结束,不宜中断。如因机械故障被迫中断时,应排除故障尽快恢复注浆。恢复灌浆时一般从稀浆开始,逐渐调整至稠浆。

3)注浆应有专人记录浆液消耗、注浆时间、注浆压力。当注浆出现大量吃浆不止,长时间灌不结束的情况时,应检查原因,若是因地层裂缝原因造成,可调整水灰比采用稠浆灌注,并采用中断间歇注浆方法,若到此压力就发生冒浆或大量吃浆的,可在较低压力下结束。

4)注浆结束后应立即封闭阀门,拆卸清洗输浆管路。

5)待封孔后进行水平探孔试验以确定有无达到开孔要求。

4.3.3钻孔灌注桩施工

钻孔灌注桩施工工艺

钻孔灌注桩施工工序如下:

放线定点钻机就位钻孔至设计深度测量孔深吊放导管灌注商品混凝土成桩。

(1)施工准备

正式施工前应试钻,以确定施工工艺参数。

(2)测放桩位及复核

根据轴线基准点,测放出具体桩位,复核合格后方可进行钻孔施工。

(3)钻机就位

钻机应置于平整坚实的地面上,钻机就位时,钻头对好桩位,定位误差≤2cm。同时用经纬仪或线坠调整钻杆垂直度,也可利用机械自带垂直度调整系统控制。

(4)钻进、成孔

1)采用长螺旋钻机成孔,应根据地层变化及时调整钻进速度。钻进过程中,应采用人工和装载机配合随时清理孔口积土,钻到设计孔底后应空转3~5min,把孔底虚土清净。钻杆提出孔口时应小心操作,以免虚土掉入孔中。如果出现缩径情况,应将钻杆下入孔中再次钻进,直到孔径达到设计值。

2)为保证施工安全,防止相互干扰造成塌孔,钻孔时应采用桩位跳钻的施工方法。待混凝土强度达到80%后用三七灰土回填至地面标高。

(5)成孔验收

成孔后采用测绳检测孔深,采用吊线坠检测垂直度及虚土厚。

(6)灌注混凝土成桩

成孔后要及时灌注混凝土。灌注前在孔口放置护孔漏斗,混凝土通过漏斗、串筒灌入孔内,在混凝土灌注应连续进行。

第五节 盾构的始发(出洞)和接收(进洞)工艺

5.1 盾构的始发工艺

盾构机始发是指利用反力架及临时拼装起来的管片承受盾构机推力,盾构机在始发基座上向前推进,由始发洞门贯入地层,开始沿所定线路掘进的一系列作业。

盾构始发施工包括盾构掘进开始时的一连串作业,是盾构施工过程中开挖面稳定控制最难、工序最多、比较容易产生危险事故的环节,因此结合始发施工环境进行始发施工各个环节的准备工作至关重要。

盾构机始发段的掘进施工又称为试掘进施工,需对各种关键施工参数进行调整、优化,为正常段施工做好准备(盾构施工参数主要包括掘进速度、刀盘扭矩、土仓土压力、盾构总推力、出土量、注浆量、注浆压力、盾尾间隙等)。盾构机掘进前,先对各种施工参数进行计算,然后根据计算结果,设定施工参数。在施工中,根据设定施工参数的应用效果,结合地表监测的结果对各种参数进行调整、优化,使各项参数设定达到最佳状态。

5.1.1盾构机初始掘进的关键问题及对策

(1)盾构机初始掘进的关键问题:

1)保证安全破洞门。

2)始发定位准确。

3)防止管片错台下沉。

(2)对策

1)端头加固

根据端头位置的地质情况和以往的施工经验,始发端头加固采用旋喷桩和钻孔灌注素桩进行加固;接收端头采用旋喷桩注浆加固;风井风道两侧端头采用洞内水平注浆的方式进行加固。加固后保证了破洞时洞门稳定,也有效防止地面开挖面坍塌和控制地面沉降。

2)优化施工参数

A.同步注浆控制

控制同步注浆量和注浆压力。按理论计算,该段注浆量不应小于160%的建筑空隙;同时也要防止注浆压力过高而顶破覆土。

B. 盾构姿态控制

盾构机保持平稳推进,减少纠偏,减少对正面土体的扰动。

平面:控制在±50mm以内。

高程:控制在±25mm左右。

转角:控制刀盘转向,以免对土体产生较大的扰动。

速度:该段施工中推进速度控制在10mm/min,如推进速度过快,容易会引起正面土体挤压过大地面隆起。

C. 沉降控制

采用信息化施工,通过监测系统提供的监测数据,及时调整盾构穿越过程中施工参数,使盾构施工对地面影响降到最低。

3)始发前的施工测量、定位

出洞前,进行盾构机始发姿态测量、导轨姿态测量、反力架姿态测量、姿态初始测量、SLS-T导向系统初始测量等一系列的测量工作,以使盾构机准确就位。

同时开始收集隧道施工平面控制测量、高程控制测量、导向测量的原始数据,为今后的测量工作提供依据。

4)解决管片错台下沉问题的措施

A.保证洞门密封的效果,如洞口漏水现象严重由预设压浆管向洞圈周围内压注化学浆液。

B.严格控制盾尾注浆的质量;

C.洞门焊接导轨。

5.1.2试验掘进段参数的选择分析

(1)盾构千斤顶的推进速度及刀盘转速的设定

盾构千斤顶的推进速度及刀盘转速与盾构机的性能密切相关,同时也受工程地质及水文地质条件的影响。始发伊始,对参数设定首先要依据理论计算值进行设定,在始发完成后的试掘进阶段可对各种参数进行对比,调整推进速度与推力、刀盘转速与扭矩的关系式,定出推进速度和转速的范围。

在本始发段中,隧道洞身范围内地层主要为粉质粘土、粉土及粘土,由于处于始发掘进阶段,推进速度初始设定10~30mm/min,初始设定刀盘转速应小于1.0r/min。

(2)盾尾注浆压力分析与取值

添加剂压注及盾尾注浆压力主要是受地层的水土压力的影响,注浆压力的设定以能填满管片与开挖土层的间隙为原则。注浆压力的计算可参考规范中的公式并在施工过程中通过测试和试验来确定和优化参数,本工程穿越三元桥、热力方沟、居民区,浆液及其注入的效果直接关系到地面沉降,因此对注浆材料及注浆压力都有较高的要求。依据现有其它地区盾构法施工经验及北京地区已有盾构施工各种参数使用效果,初始盾尾注浆压力设定为0.2~0.25Mpa。

盾尾同步注浆理论量为每环2 m3,根据经验注浆时每环应按2.9m3~3.9m3控制。同时要求同步注浆速度必须与盾构推进速度一致。

(3)添加剂使用方案

在盾构施工中,添加剂的作用是:

1)减小旋转输送机的扭矩,降低刀盘温度;

2增强土体气密性、止水性,保证开挖面稳定;

3)与土体拌和均匀,使开挖土具有良好的流动性,增强土体可排性。

依据地层不同,有不同的添加剂使用方案。本工程始发阶段盾构穿越的地层为粉质粘土层和粘质粉土层。这样的粘性土地层,土的粘结力较大,在盾构掘进施工过程中,易造成粘性土附着于刀盘上正反面形成泥饼造成刀盘扭矩增大,或者土体进入土仓后被压密固化,造成开挖、排土均无法进行的情况。此时一方面可通过刀盘上的添加剂注入孔向刀盘前方的土体注入3%~5%的泡沫和适量的水,在增加其流动性的同时,降低其粘着性,防止开挖土附着于刀头或土室内壁。另一方面粘土被切削进入土仓内后,通过土仓上的添加剂注入孔向土仓内注入泡沫并利用刀盘上的搅拌装置加以搅拌,使泡沫与切削土充分混合,以增加土的气密性和可排性。泡沫的总注入量控制在土体切削量的10%以内。此外,还可通过螺旋输送机上的添加剂注入孔向仓内注入适量的清水或注入压缩空气,以增加土体的和流动性,减小土的摩擦力,使土能经螺旋输送机顺利排出。

添加剂注入量:

刀盘前:约3%~5%的理论开挖量

密封仓:约5%的理论开挖量

添加剂注入压力:需控制参数为刀盘前的注入压力,以平衡开挖面的水压力为宜。在本区段内设定注入压力初始设定为0.15~0.2MPa。

(4)洞口密封处压浆

洞口密封处的充填注浆采取盾尾同步注浆装置注单液浆充填。待盾尾到达洞口位置时,拉紧洞口密封圈,保证浆液不溢出洞口。

5.2 盾构的接收工艺

盾构接收段施工是指盾构机刀盘距进站口50m至盾构机进入车站并完全推上接收基座的施工过程。其施工内容主要包括端头土体加固、接收设施的设计制作与安装、接收段掘进、洞口凿除等。端头土体加固的施工应在盾构接收前应提前完成。

5.2.1盾构接收前盾构姿态和线形测量

盾构机接收前80m地段即加强盾构姿态和隧道线形测量,及时纠正偏差确保盾构顺利地进站。当盾构掘进至接收前25m左右时应再次进行盾构姿态和隧道线形测量,测量内容有:定向、主导线、测量管片位置和走向偏差。

通过测量,对接收前的地段加强盾构掘进的轴线控制,使盾构机进站时其切口平面偏差满足:平面≤±25mm,高程≤±20mm; 盾构机进站时其切口平面偏差允许值:平面≤±50mm,高程≤±20mm,盾构坡度比设计坡度略大0.2%。到站所有测量数据须报测量监理单位复核验正。

5.2.2盾构到达段掘进

盾构机进入接收段后,应减小推力、降低推进速度和刀盘转速,控制出土量并时刻监视土仓压力值,土压的设定值应逐渐减小,避免较大的推力影响洞门范围内土体的稳定。盾构接收掘进可为四个阶段,在这几个阶段中,应采取不同的施工参数及控制侧重点不同。

(1)盾构过渡段掘进(进入土体加固区前30m~8m)

过渡段的掘进速度和土仓压力与正常段掘进一样,按常规控制,但此段施工应侧重加强注意调整盾构机的姿态,使盾构机的掘进方向尽量与原设计轴线方向一致,并且要在出洞前的20米处,使盾构机保持水平姿态前进或略微仰头姿态前进,保证出洞时正常接收,掘进时的轴线偏差应控制在±20mm范围内。

(2)进站的第一阶段(进入土体加固区8m~2m)

盾构机进入加固区后,掘进速度由原来正常段的20~30mm/min减至5~10mm/min,土仓压力由原来的1.5~2.0bar减至0.3~0.5bar。尽量减少对洞口的影响。压力值大约与水压相等。应在密切监控地表和洞口的情况下逐步减少压力。

(3)进站的第二阶段(进入土体加固区2m~20cm)

由于不能确定开挖时的最小土仓压力,因此在开挖过程中只能根据地质等情况使压力最小。此阶段速度一般为1~5mm/min。当盾构机接近洞口30cm~20cm时,应停止推进。

(4)进站的第三个阶段(第二阶段完成至盾构机进入车站露出)

盾构机继续前进并拼装管片,将围护结构推倒,此阶段的速度根据实际情况决定,应无压力,刀盘停止转动。此后清除坍塌下来的土体,盾构机继续推进,通过密封环后立即拉紧密封环的钢丝索,清除密封舱内的泥土。在停机后要对盾构中心进行测量,看是否满足贯通精度的要求。

5.2.3盾构机接收

为确保盾构机从接收井的预留洞口穿出,该阶段的掘进将遵守以下原则:

(1)掘进速度逐渐放慢,掘进推力相应减少。

(2)增加盾构机测量次数,并根据洞口实际位置不断校准盾构机掘进方向。

(3)加大地面监测频率,并依椐监测结果及时调整掘进参数。

(4)站内派人对洞门位置进行值班监视。

为迎接盾构机到达,应在到达洞口前做好如下准备:

(1) 安装洞门密封装置。

(2) 安装盾构机接收基座,接收基座与始发基座相同。

(3) 铺设盾构机移动基座的轨道。

(4) 部分凿除洞门处的围护结构。

(5) 在到达洞口内侧准备好砂袋、水泵、水管、方木、风炮等应急物资和工具。

(6) 准备好通讯联络工具。

(7) 准备好照明设备。

上述设备与材料需预先运入,故到时需与接收井承包商相互协调。以上准备工作完成后,盾构机才可进行最后的到达段掘进。

第六节 盾构推进的实际参数及合理参数

盾构在推进过程中施工参数会不断地变化,根据不同的地层和添加剂进行调整,在施工过程中要严格注意进土与出土的匹配情况,必要时进行适当的调整。

参见【表3.2—盾构推进主要参数实际控制值】

表3.2盾构推进主要参数实际控制值

盾构推进主要参数实际控制值

1、纵向千斤顶总推力/分组推力(KN)10000KN/100~2000KN

2、刀盘扭矩(一般/最大BAR)200~240/260KN·m

3、盾构推进一般和最大速度(cm/min)一般速度6~7 cm/min,最大速度8 cm/min

4、盾构隧道与设计轴线的最大偏差/mm50mm

5、密封仓土压力控制(与设定值的偏差/MPa)0.06~0.2

6、管片拼装(一般和最快min/环)一般20min/环,最快15 min/环

7、加泥/泡沫(一般/最大kg/环)25~33L/环

8、盾尾密封油脂(一般/最大kg/环)一般10kg/环,最大20kg/环

第七节 盾构姿态控制统计分析

地铁工程的施工测量不同于一般工程的工程测量,施测的周围环境和条件复杂,要求的施测精度相当高,因此,必须精心组织实施。

7.1施工测量要求

(1)为确保地铁测量精度,我方将抽调具有地铁测量经验的测量工程师和有测量上岗证的测量员组成项目测量组,配有高精度仪器。

(2)开工前,根据甲方提供的测量数据资料,布设地面施工控制网点将两施工井联系起来构成本区间独立控制网并与相邻区间控制网保持统一。其中导线网点按地面四等平面控制测量技术要求控制,高程按地面二等水准技术要求控制。测量成果报监理业主检测。

(3)施工现场的所有的测量主控制点均由我单位技术部测量组组织二级复核。

(4)实行定期校核制度,每个月对施工控制点进行一次校核,发现问题及时调整。

(5)每施工放样点都必须经过换人检测无误后才可定点并书面移交下道工序。

(6)做好测量记录工作。

7.2控制测量基本原则

⑴ 地铁工程测量施测环境复杂,精度要求高,采用三角网进行测量。

⑵ 布设足够的控制点,并精心做好标记,加强对控制点的保护和检查。

⑶ 保证测量精度,配备先进的测量仪器,使用先进的测量技术。

⑷ 负责保存好本合同段内全部的三角网点、水准网点和自己布设的控制点,防止移动和损坏,一旦发生损坏,及时报告监理,并协商补救措施,及时处理。

⑸ 全部的控制点三维坐标经监理工程师检查合格后,才能开展后序工作。

⑹ 严格按照相关技术规范要求进行测量工作,并做好测量资料的管理。

7.3控制测量

7.3.1平面控制测量

根据业主提供的工程定位资料和测量标志资料,对所移交的导线网、水准网及其他控制点用精密导线方式进行复测;同时放线设置施工过程中使用的固定桩,并将测量成果书报请监理工程师及业主审批。

(1).引测近井导线点

利用业主及监理批准的测量成果,以最近的导线点为基点,引测至少三个导线点至每个端头井附近,布设成三角形,形成闭合导线网。

(2).引测近井水准点

利用业主及监理批准的水准网,以最近的水准点为基点,将水准点引测至端头井附近,测量等级达到国家二级。每个端头井附近至少布设两个埋设稳定的测点,以便相互校核。

7.3.2高程控制测量

以首级控制水准网为基准设加密水准网,并且联测到相临标段所使用的水准控制点一个以上。将水准网布成附合线路,往返观测,附和闭合差应≤±8mm(L为附和线的路线长度,以公里计算),使用精密水准仪、铟钢尺按照国家二等水准测量方法的精度指标均将高程传到地下。如【图3.4—高程控制测量示意图】:

图3.4高程控制测量示意图

精密水准点的埋设采用混凝土普通标石,一定要稳定、便于保护、不易破坏,其规格按《城市测量规范》有关要求确定。传递高程时,每次独立观测三测回,每测回测得地上、地下水准点的高差较差应小于3mm。取三次观测的平均值作为地下水准点的高程。

7.3.3联系测量

联系测量是将地面测量数据传递到隧道内,以便指导隧道施工。具体方法是将施工控制点通过布设趋近导线和趋近水准路线,建立近井点,再通过近井点把平面和高程控制点引入车站底板上,为隧道开挖提供井下平面和高程依据。

(1).平面坐标传递

平面坐标传递和定向测量同时作业,主要是通过竖井将方位、坐标从地面上的控制点传递到地下控制点。

本标段采用盾构法施工,根据施工现场的条件,为保证测量精度和优化现场作业,施工联系测量均采用全站仪进行投点,传递时采用三角网传递,我们在本标段用的仪器是全自动测量全站仪,本仪器对仰角和俯角都有自动补偿,测量精度满足施工要求。传递示意图如【图3.5—平面坐标传递测量示意图】:

图3.5—平面坐标传递测量示意图

在盾构施工期间,为提高地下控制测量精度,保证隧道准确贯通,应根据工程施工进度,在每个区间应进行至少三次联系测量。

7.3.4地下控制测量

(1).地下平面控制测量

为了消除和减弱折光差对横向贯通误差的影响,将洞内控制导线点布设在隧道的两侧稳定的衬砌环片上,交叉前延。点位采用强制对中托架,在通视条件允许的情况下,每约100米布设一点,曲线段适当缩短点距。以车站内逐次重复定向测量成果的加权平均值建立的基线边为坐标和方位角的起算依据。观测采用全站仪进行测量,用全圆法趋近导线测量用Ⅰ级全站仪进行测量,测角四测回(左、右角各两测回,左、右角平均值之和与360°的较差应小于4″),测边往返观测各二测回。其观测方法和精度应符合二级或以上导线的技术要求。

盾构掘进时,盾构机身后有较长的后配套,测量控制点无法做在此范围隧道两侧,可以把控制点以吊篮的形式固定在隧道的顶部,仪器及后视棱镜采用强制归心。将自动导向系统的全站仪安置在其上,与盾构机自带的激光导向系统连接指导盾构机掘进。

(2).地下高程控制测量

地下高程测量以车站传递的水准点为基准点,隧道直线段每隔100m左右布设一个固定水准点,曲线段每隔50m左右布设一个。测量时可采用精密水准仪及其水准尺进行往返观测,相邻测点往返测闭合差≤3mm,全程闭合差≤6mm(L为全程长度,单位:Km)。

(3).盾构掘进施工测量

1)盾构机姿态和衬砌环片的测量

盾构掘进时为优化掘进参数需对盾构机姿态和衬砌环片进行测量。由于选配了VMT公司先进的测量导向系统,盾构机掘进的过程中能时时地测出盾构机的瞬间姿态。为保证盾构机姿态的准确无误,需对盾构机姿态进行复测。盾构机姿态测量是以隧道里的导线点为依据,利用全站仪及其辅助工具,测出布设在盾构机上特殊测点的三维坐标,计算出盾构机的姿态,包括俯仰、旋转、平面和高程,观测值与盾构机此时的理论值相比较,将其差值反馈给盾构操作人员,调整其参数,从而指导掘进。

衬砌环片的测量包括测量衬砌环的中心偏差、环的椭圆度等,利用全站仪及其辅助工具,通过测出环片上一些特征点的三维坐标,从而通过几何计算确定环片安装位置的正确性,并为安装人员提供操作校正参数。

2)成型环片的测量

成型环片的测量主要测定环片安装位置是否符合设计要求。具体方法是使用全站仪的五反射测量模式测得成型环片一周的七个点的坐标,通过相应的计算软件换算出成型环片中心的坐标,用水准仪及水准尺测其高程,通过已测的数值与隧道线路的设计值相比,便可得成型环片平面和高程的偏差,为以后竣工和铺轨提供依据。

3)盾构机导向系统

盾构机的导向系统如下图所示:

图3.6—盾构机导向系统示意图

盾构机导向系统是传统测量与计算机的完美结合体,在盾构机掘进过程中有测量机器人在激光导向程序的控制下自动采集数据,将光信号转换成电信号传递到控制箱。盾构机前端有一光靶,他的作用是接受测量机器人传递过来的信号,自动计算出盾构机的水平和竖直、旋转角度将这些数据传送到控制箱。控制箱将两个数据送到计算机上,通过VMT—S计算出盾构机的实际三维坐标。在盾构机掘进前计算出隧道的设计轴线,将这些数据提前导入VMT—S中,这样将形成一个设计隧道轴线坐标系。通过VMT—S系统将盾构机的实际三维坐标和设计隧道轴线坐标系相比较就得出盾构机在掘进时的动态位置(如下图)。

图3.7—设计坐标系示意图

图3.8—盾构机姿态示意图

上图中显示的是在这一时刻的盾构机姿态,盾构机操作手可以看着盾构姿态和导向系统提供的相关参数来控制盾构机的掘进方向。

7.4 隧道贯通测量

本标段的区间隧道长度在2500m左右,在隧道贯通前约50米要增加施工测量的次数,并对控制导线进行全线复测,对观测值严密平差,保证隧道贯通。

隧道贯通后,从隧道两端向贯通面进行二等导线测量,分析在贯通面上的贯通误差。在做贯通测量时应将联测地上、车站、隧道导线网、水准网,并进行严密平差,为竣工和铺轨提供高精度的控制点和准确的水准点。

7.5 竣工测量

7.5.1线路中线测量

以施工控制导线点为依据,布设隧道内中线点,中线点的间距直线上平均100m,曲线上恢复所有的曲线元素点。区间各施工控制中线点组成附合导线。中线点组成的导线应采用全站仪进行观测,并对观测值进行平差,将成果上报相关单位。

7.5.2隧道净空断面测量

以测定的线路中线点为依据,直线段每6米,曲线上包括曲线要素点每4.5米测设一个结构横断面,结构横断面可采用全站仪测量,测定端面里程误差允许为±50 mm,断面测量精度为±10mm。

7.6 测量施工组织

为做好盾构施工测量工作,保证盾构机准确进入起吊井,做到盾构施工万无一失,选派有经验的测量专业人员组成盾构施工测量技术领导班子,专门领导和研究盾构施工测量技术工作,及盾构施工测量中出现的各种问题。

测量仪器选用性能稳定、精度高的进口全站仪及其配套的辅助设备。所有的仪器和工具都严格按照国家计量法进行检定。

第八节 管片拼装质量控制统计分析

管片衬砌作为盾构隧道工程最重要的主体结构,其拼装质量的好坏直接影响着盾构隧道工程的质量。

本程中采用了标准环+左右楔型环作为管片衬砌,管片外径6000mm,内径5400mm,每环管片长度1200mm,管片采用“3A+2B+1C(楔块)”错缝拼装,管片接缝采用弹性密封防水,弹性密封为三元乙丙橡胶和水膨胀橡胶止水条。

8.1管片拼装位置确定

管片在使用时必须预先根据盾构机的位置及盾尾间隙大小选定管片的拼装位置,管片的拼装依据主要有以下两条,在管片拼装分析时要综合分析确定,缺一不可。

8.1.1 盾尾法面和管片法面的相互关系

管片拼装的总原则是拼装的管片与盾尾的构造方向应尽量保持一致。

8.1.2 管片拼装前后管片外表面与盾壳内面的间隙

在盾构机尾部设有三道密封刷,用于保证在施工过程中不会有水土进入隧道,在盾构机掘进的同时,将向密封刷补充油脂,确保盾构机密封性能,在密封刷前端设有保护块用于保护密封刷不受损害,如果盾尾间隙过小,在管片脱出盾尾时,将产生较大变形,影响成型隧道的质量;同时,过小的盾尾间隙也将直接损坏盾构机的密封刷。

8.2 管片拼装施工要求

为保证管片拼装质量及施工进度,施工时必严格按照如下要求进行管片拼装的施工:

1) 为加快拼装施工速度,必须保证管片在掘进施工完成前10分钟进入拼装区,以便为下一步施工做好准备;另外,为保证管片在掘进过程中不被泥土污染,也不宜提前将管片备好。

2) 在拼装过程中要清除盾尾拼装部位的垃圾,同时必须注意管片定位的正确,尤其是第一块管片的定位会影响整环管片拼装质量及与盾构的相对位置,尽量做到对称。

3) 管片拼装要严格控制好环面的平整度及拼装环的椭圆度。

4) 每块管片拼装完后,要及时靠拢千斤顶,以防盾构后退及管片移位,在每环衬砌拼装结束后及时拧紧连接衬砌的纵、环向螺栓,在该衬砌脱出盾尾后,应再次拧紧纵、环向螺栓。

5) 封顶块防水密封垫应在拼装前涂润滑剂,以减少插入时密封垫间的摩阻力,必要时设置尼龙绳或帆布衬里,以限制插入时橡胶条的延伸。

6) 在管片拼装的过程中如果需要调整管片之间的的位置,不能在管片轴向受力时进行调整,以防止损坏防水橡胶条。

8.3管片拼装质量要求

1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。

2)确保质量合格、管片类型符合工程师指令的管片才准进洞。

3)严格按指定的拼装工艺进行拼装。

4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。

5)管片安装前应对管片安装区进行清理,清除如污泥、污水,保证安装区及管片相接面的清洁,重点清理管片的环、纵接缝面。

6)严禁非管片安装位置的推进油缸与管片安装位置的推进油缸同时收缩。

7)管片安装质量应以满足设计要求的隧道轴线偏差和有关规范要求的椭圆度及环、纵缝错台标准进行控制。拼装时要综合考虑隧道线路要求和盾尾间隙,合理选择管片拼装点位。

第九节 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

同步注浆(同一环)

1、浆液类型惰性浆液

2、浆液配比砂800kg、粉煤灰240kg、膨润土64kg、水300kg

3、注浆压力/MPa0.35~0.4

4、注浆量/m32.8~3.8

5、注浆结束标准达到要求注浆压力

补注浆(同一环)

1、浆液类型双液浆

2、浆液配比水泥:水玻璃=1:1

3、注浆压力/MPa0.3

4、注浆量/m31.0~2.0

5、注浆结束标准以设定压力注浆,直到注不进为止

6、注浆次数2

第十节 刀具、刀盘的磨损、损耗特征、规律

10.1 刀具更换的标准

刀具磨损的标准是:周边刀磨损量为5~10mm,齿刀磨损量为15~20mm。根据这一标准。在刀具更换的同时,工作人员必须检查一下螺栓是否完好。

10.2 刀具的损耗特征、规律

刀具在一般土层下掘进500~700m即达到磨损标准,在砂层或卵石层中掘进100m左右即达到磨损标准。需对土样进行观查,若发现添加剂加入正常,而出入较热,可初步判定刀具有磨损;施工参数异常,推进速度与出土速度不成比例或推进时扭矩较大,也可初步判定刀具有磨损,可开仓对刀盘的刀具进行检查。

第十一节 长距离推进的换刀

换刀可分为两种方式:一种是常压开仓换刀,适用于盾构到达竖井等刀盘前无土压情况下;一种是加压开仓换刀,适用于盾构在正常掘进过程中,在前方有一定土压力的情况下。

刀具更换的程序和方法

进舱前,每次进舱准备10~15把齿刀,还要求准备M36、M34及M32的螺栓若干和SW36的套筒及加力杆。

每次更换时,工作人员先将刀具周围的泥土清掉,保证有一定的工作空间。由刀盘外侧向内逐个检查刀具的磨损情况,确定需要更换时,用对应标号的刀具进行替换。用套筒及加力杆卸下固定螺栓,将拆下的螺栓及附件放入随身携带的工具袋内,以防丢失。将换下的刀具递到人闸内,同时将固定螺栓和固定座用水清洗干净,并检查一下是否有裂纹,如有裂纹必须更换新螺栓,以确保新装刀具有足够的固定强度。将新的刀具按原来的位置安装好,并将固定螺栓拧紧。每次带一批刀具和螺栓进舱,每批刀具换完后,把废刀具和没有安装的新刀放进料闸内。与此同时操作手转动刀盘。工作人员通过料闸把下一批刀具送入土舱内,再继续更换下一组刀具。每换完一批后,由值班机械工程师检查一遍安装质量,并检查是否有漏掉的或者没有固定好的。机械工程师确认无误后方可继续作业。更换速度按实际情况定,必须以保证安装质量为前提。

第十二节 盾构施工进度指标

根据业主提供的工期合理安排施工进度,平均每个月掘进400m。

第十三节 盾构始发至接收的一次最大施工长度及统计分析

盾构由三元桥站始发,施工掘进1100m后发现施工参数异常,于是决定开仓检查刀具,发现刀具耐磨有较大磨损,需对刀具进行部分更换。当时盾构机地面上方为公园,且地层中含水量不大,采用常压开仓检查并更换刀具。此次更换刀具共计40把,其中周边刀8把,齿刀32把。

第十四节 盾构隧道防水

14.1管片的防水

盾构隧道渗漏水的位置主要在管片的接缝、管片自身小裂缝、注浆孔和螺栓孔等。其中以管片接缝处为防水重点。通常接缝防水的对策是使用密封材料,靠弹性压密,以接触面压应力来止水。

管片防水措施主要有:

(1)管片结构的自防水结构是首选的防水措施,主要方法为管片材料采用防水混凝土。地铁结构物一般用普通防水混凝土,而盾构隧道衬砌由预制管片拼装而成,多用外加剂防水混凝土,抗渗可达S12以上。渗水量,包括接缝渗水小于0.1L/m2/d。

(2)管片接缝防水管片接缝防水主要采用弹性密封垫防水。

第十五节 监控量测

北京地铁机场线工程盾构区间地处东直门-三元桥之间,贯穿三元桥、机场高速路、东直门斜街等城区,沿线工程地质水文条件复杂多变,地表多为危旧民宅和公交车站,道路交通繁忙,地下管线密集且纵横交错,沿途还有三元桥、公园、亮马河等重点建筑。在盾构施工过程中必须通过严格控制施工技术参数,确保隧道沿线两侧的重要建筑物以及民用建筑的安全,使盾构顺利通过危险源。加强监测周边环境情况,并分析其盾构机影响范围和影响程度,对盾构安全掘进是非常重要的。

一、施工监控量测的主要目的是:

盾构的工法有别于传统的施工方法,根据盾构机的工作环境及其工艺特点,必须了解盾构机通过时对其周边的影响情况。

(1)通过监控量测采集各个施工阶段的数据,通过对监测数据的分析及回归,隧道环片的动态变化,及时将分析成果化为施工指令,反映到盾构掘进施工中以保障施工过程时时处在安全状态。

(2)通过对监测数据处理分析结合相关的施工实际情况,得出地面以及隧道成型环片变化的原因,及时采取相应的措施确保地面交通顺畅,地面建(构)筑物的正常使用,以及保证隧道的限界和质量。

(3)通过实际的测量结果来检验理论于实际之间的差异,并把监测结果分析后及时反馈给设计以便修改设计、指导施工。

(4)通过监控量测及时反映出盾构隧道上方沉降槽区域的沉降情况,及时反映到施工中防止地面出现较大沉陷。

(5)通过监控量测了解该工程条件下的施工情况,反映出的一些地下施工规律和特点,为今后类似工程或相关工艺的发展提供借鉴、依据和指导作用。

为确保施工期间结构及建筑物的稳定和安全,根据设计要求结合隧道通过的地质条件,支护类型,施工方法等特点,本工程的监测项目为:

二、地面沉降监测

对地面监控量测,采用精密水准测量,严格按照国家二等水准测量的技术要求,一般我们在监测中采用二等闭合水准路线。在盾构施工中地面的主要监测,盾构掘进过程中引起的地表沉降和地面变形情况。我们在施工开始前两月,在地表沿隧道线路埋设监测点,监测点的埋设见下图。在隧道沿线,布设监测基准点,监测基准点一定要按照监测规范要求执行,在地表沉降区域50米外埋设基准点,这些基准点要与国家水准基点形成水准网,便于对水准基准点进行复核。用精密水准仪进行地面沉降的量测。根据监测结果进行分析,判断盾构掘进对地表沉降的影响。

监测点布置原则:监测点布置在地面隧道上方,监测断面垂直于线路方向,在中线的两侧18m范围内布置测点,由于隧道沿线有的地面有密集的房屋,地表监测断面无法满足设计要求的在隧道的上方沿隧道方向每30m布设一断面,只能在隧道上方地面的每一胡同处布置监测断面胡同间距一般70 m-40 m左右,布置的监测断面间距最长60m,最短22m,为了保证盾构施工时地面安全,采取加强地面监测,地表沉降情况联系地表建筑物监测的数据来分析,达到及时掌握地表变化的目的。

图3.9 横断面监测布点图

埋设方法:用全战仪以线路沿线地面导线为依据精确定位地面监测点位,用冲击钻活水钻在所需埋设的点位上钻孔φ50~100 mm。在孔中放入φ22mm长约500mm的钢筋,钢筋顶端为圆面微露地面5mm~10mm,钢筋周围用速凝砂浆或胶状物等填充物填实。

监测频率:小于盾构机刀尖前20 m后30 m 2次/1天,大于盾构机刀尖后50 m 1次/2天,大于50 m 1次/1周

量测精度:±0.2 mm。

使用仪器: 精密水准仪、铟钢尺、全站仪。

地面沉降超过警戒值时相应措施:当地表沉降速度过大时,要增加监测频率,必要时停工检查原因,及时加强壁后注浆和二次补浆和加固地层的措施保证施工安全。

三、地面建、构筑物变形监测

监测方法:主要监测建筑物的不均匀沉降、水平位移。用精密水准仪和全站仪进行监测。在施工过程中注意观测房屋的裂缝情况,根据监控量测采集的数据,进行分析最终的出的结果来判断建筑物的变形和沉降情况,以便修正施工参数,起到指导施工的作用。

测点布置原则:对距隧道中线20米-30米以内的房屋进行监测,在建筑物的承重柱和墙及拐角位置布置测点,每一栋建筑物不少于4点,整个标段共布房屋监测点600个。

监测频率:小于盾构机刀尖前20米后30米 2次/1天,大于盾构机刀尖后50米 1次/2天,大于50米1次/1周。

量测精度:±0.2mm。

使用仪器:精密水准仪、铟钢尺,全站仪。

建筑物沉降超过警戒值时相应措施:当建筑物的变形超过+10mm,-30mm时,加快监测频率,及时采取改变土仓内土压和增加注浆量及加固地层等措施,必要时,对既有建筑物的基础采取加固措施,视实际情况制定相关补充方案和措施。

图3.10 建筑物监测测点布置示意图

四、盾构隧道收敛和拱顶下沉

监测方法:主要监测盾构隧道的成型环片的收敛和拱顶下沉情况,监测方法是用收敛仪和精密水准仪直接量测。

测点布置原则:隧道收敛和拱顶下沉测点在同一断面,沿隧道方向1断面/10m,隧道收敛和拱顶下沉测点布置如图所示。

图3.11 洞内收敛及拱顶下沉测点布置图

监测频率:当台车尾部与该环片间距小于10米时,1次/天;当台车尾部与该环片间距小于30米时,1次/2天;当台车尾部与该环片间距大于30米时,1次/周。

量测精度:±0.5mm。

使用仪器:收敛仪、精密水准仪、铟钢尺。

相应对策:当洞内收敛和拱顶下沉过大,需要加大监测频率,必要时停工检查原因,采取加设支撑、处理地层的方式保证施工安全。

五、监测数据总体概述与分析

1、地面沉降

本标段地面沉降没有超限本标段监测没有超限的监测点,整个标段经过统计地表监测点位平均沉降量在30mm左右,下面是对地表监测断面在盾构机掘进期间及掘进结束后的监测数据及其图表分析情况。下图是随时间变化第一沉降槽的变化趋势:

图3.12第一沉降槽曲线图

由上图看到在整体沉降中,在盾构机盾尾处沉降量最大,所以在这个时间段一定要加强监测。

点名5-15-25-35-45-55-65-75-85-95-105-11

沉降量-0.30-0.90-1.30-1.73-2.10-2.30-2.40-1.93-1.3-0.30-0.30

对上表中数据进行分析,画出曲线图

垂直于隧道轴线监测点的沉降曲线

从垂直于隧道轴线监测点的沉降曲线图可以清楚的看到地表沉降明显是一个沉降槽,隧道正上方沉降量最大,隧道中线两侧慢慢变小。

图3.13 地面房屋监测点监测成果表隧道周边建(构)筑物沉降数据分析

隧道周边建(构)筑物沉降曲线图

从上图中可看到隧道周边建(构)筑物的沉降可以得到控制。根据隧道施工图3.14 地面房屋监测点监测成果表隧道周边建(构)筑物沉降数据分析

情况,调整掘进参数,在盾构机通过隧道上方或周边有建筑物时,可以有效地控制周边建(构)筑物沉降量在规范之内。

为了更好地研究盾构机掘进时对周边环境影响范围,对各个不同地层进行分析监测数据,研究盾构机通过时对周围环境的影响范围,盾构机在掘进过程中在纵向和横向两个方向都有影响,为了清楚它的影响范围以及影响程度,必须对监测数据进行分析。对数据的分析分两种情况:1、分析各测点沉降与盾构机相对位置的变化规律,进而确定盾构施工时的纵向影响范围;2、采用回归分析法分析沉降槽和盾构机相对位置的变化规律,进而确定最大的影响范围和最大沉降值。

粘土层:

图3.15 断面点变化量~时间关系曲线图

通过以上的各种关系图可以看出盾构机在掘进过程中地表变化的趋势为:在粘土层段盾构机在没有到达前15m时粘土层段开始微有上升的趋势,上升的量不大,不超过2mm,在盾构机到达时开始下降直至盾构机过后20m开始趋于稳定,最大沉降量不超过7mm。

卵石层:

砂砾卵石层,此段盾构机是叩头掘进,平均覆土厚度为16m,在该地层选取K0+762里程的断面的监测数据进行分析:

图3.16 断面G点时间变化曲线图

断面的地表沉降关系图可以看出盾构机在掘进过程中地表变化的趋势为:在砂层段盾构机在没有到达前时没有上升趋势,在前20m时有下降的趋势,直至盾构机过后20米开始趋于稳定。最大沉降量在16mm 。

盾构掘进时土压力对盾构机前面土体的影响有着密切的关系,结合各监测断面的时间曲线图与上图中盾构掘进时土压力进行分析,盾构机掘进时土压建立的大小与盾构机到达时之前地表的沉降量有一定的规律,从土压曲线图可以看出,盾构机掘进时在粘土层里的平均土压为2.3bar,在砂层和卵石层中的平均土压为1.2bar左右,盾构机在粘土层里掘进的土压比在卵石层和砂层里掘进的土压高出1bar左右,而在盾构机到达之前前面土体有隆起的趋势但量很小,粘土层段地表隆起的量比卵石层要大,粘土层隆起达2mm,卵石层只有1mm左右,砂层几乎没有隆起的这一过程。产生这一现象的主要原因是因为在粘土层密实性好掘进时比卵石层和砂层中土仓里的水因土压作用不易散失,能使土压建立较高,从而对盾构机前面的土体产生推力以至使地表隆起。粘土层的土压高对前面土体的推力大所以隆起量比卵石层要大。综上所述,盾构机掘进时平均土压建立在1bar-2.3bar之间是符合北京地层的。

以上分析都是采用现场采集的数据,它的横向影响范围只反应了监测时布设的宽度,不能反应出在某一时间段实际应该影响的范围,变化程度也是实际所发生的,只有对这些数据进行回归分析才能掌握相关规律。

从曲线图可以清楚地看到,每一段面的沉降量都不同,与各段的地质等情况有关。最大沉降量的曲线是在隧道正上方处有防空洞,而最小的是在盾构机掘进前对这段地层进行了加固。从曲线图就能看出盾构施工的整个过程当中,监控量测对盾构机的掘进参数指导作用。通过对监测数据的分析,从以上分析的各种图表可以得出:(1)盾构施工能有效控制地表沉降,对地表影响较小;(2)盾构施工时隧道中心地表沉降最大往隧道两侧慢慢变小;(3)盾构机在掘进过程中离刀盘前10m左右的地表稍有隆起,在+5mm左右,盾构机盾尾通过后此处地表沉降变化最大,它的变化量占该点总沉降量的三分之二。

施工监控量测对施工具有重要的是指导意义,监测与施工紧密的结合在一起,监控量测的设计要求与现场施工监测存在较大的差异,所以我们要根据现场施工条件与设计要求相互结合,制定出最佳的监控量测方案,使得监控量测做到“安全监控、设计反馈和指导施工”。

第十六节 运输组织

16.1 工作流程

图3.17—— 运输系统流程图

运输系统由地面运输系统和地下(隧道内)运输系统组成。地面运输系统主要包括龙门吊、管片运输车、渣土车和装载机。地下运输系统主要指轨道运输列车。运输系统的主要作用是将掘进需要的材料(管片、浆液、型钢、钢轨、油脂、泡沫剂等)运到隧道内的掘进现场,并将掘进排出的渣土等运到地面,其运输流程参见【图3.17—— 运输系统流程图】。

16.2 运输能力需求

运输系统是影响盾构掘进速度的重要环节,盾构施工运输系统由地面运输系统和地下(隧道)运输系统组成。地面运输系统主要包括龙门吊、管片运输车、渣土车和挖掘机;地下运输系统主要指轨道运输列车。运输系统的主要作用是将掘进需要的材料(管片、浆液、型钢、钢轨、油脂、泡沫剂等)运到隧道掘进工作面,并将掘进排出的渣土等运到地面。

本工程使用的管片外径为6000mm,环宽为1200mm。盾构机刀盘的直径为6200mm,每环的出土量

V=kπl (D/2)2

K—可松性系数,取1.3~1.4;

D—盾构机直径;

l—管片环宽

代入计算式计算出每环出土量约为47m3 ,在运输组织设计中,按1.4考虑,出土按50 m3考虑。

隧道内配置3列运输列车(参见【图3.18——左线隧道掘进时列车编组示意图】),第一、二列车由5辆土斗车和1辆牵引机车组成,总长约25m。第三列车由2辆管片车、1辆浆液车和1辆牵引机车组成,总长约16m。

隧道弃渣通过皮带输送机装入渣斗后,由电瓶车牵引至工作井口,再由地面15T龙门吊提升至地面,卸渣于渣土存放区内,由挖掘机将渣土直接从渣土存放区装至全封闭运土车上,倒运至弃土场废弃。

图3.18——左线隧道掘进时列车编组示意图

16.3 配置运输系统能力的检算

在运输系统的配置上,必须保证盾构掘进速度。掘进速度按最大12m/天,每天工作24小时计算,即每环的循环时间为144min。

最大运输能力按本区间隧道运输距离最远计算,即以盾构隧道最长距离(此处暂取2560m)计算,隧道为双线轨道,盾构机内为单线轨道,出土车按两列车共10节土斗车运完一环的出土量。

每个循环时间检算如下:

(1)电瓶车的行车速度为10~15km/h,按平均速度12km/h计算,即200m/min。当最大运距为2.2km时需时约11min;

吊一斗渣土需要时间约为5min,一列渣土车共5个斗,需要30min,同样另一列车返回时间约为11min;考虑列车编组调车时间9min,故列车一个往返的运行时间约为20min。

(2)管片拼装和注浆

当掘进完成后即开始进行管片拼装,管片拼装时间控制为40min。注浆作业不占用盾构推进作业循环时间。

(3)掘进(装渣)作业

盾构机设计最大掘进速度为8cm/min,掘进时间按平均4cm/min,则每环掘进时间为30min,考虑到出土中间要换车出土,所以掘进时间定为40min。

(4)管片吊运和浆液运输

当盾构机掘进出土时,可以进行管片的吊运工作,从竖井口吊运一环管片到平板车上用时约为20min。

浆液采用溜管放入浆液斗内,在管片吊放时间内可完成。

第一、二列机车从盾构井处到盾构掘进面装土后返回到盾构井处所需时间约为:15min+20min=35min;第三列机车在盾构井吊土+吊管片时间约为:30min+20min=50min能够满足每一环144min的机车运行需要。

从以上看出,两列机车能够满足双线最长运输需要。

综上,该运输系统能力为:

(1)以掘进一环用三列车设计,隧道内一条线走浆液车和管片车,一条线走两列土车。

(2)推进一环时间为40分钟,管片安装为40分钟,电瓶车速度为12km/h,往返行进时间为20分钟,第一、二列列车上装有5个土斗,第三列列车上装有浆液斗、管片车,吊土、吊管片的时间为50min。

(3)电瓶车从作业面到井口所用时间均按最大运距2500m考虑。

(4)每环的工作最大循环时间是150分钟。

16.4 井口及地面运输系统配置

(1) 移动式龙门吊

现场吊运用一台15t的龙门吊,一台10t的龙门吊,分别负责渣土的吊运、管片的吊运、型钢、钢轨、临时材料、其它材料的吊运等,其主跨度为16m,可同时吊起三块管片,吊钩提升速度为13m/min,龙门吊行车速度为30m/min。

(2) 管片运输车

组织5辆管片运输车,负责将管片从管片厂运到施工现场,每辆车可运输2环管片。每天的管片运入量将根据实际进度确定,一般范围为10~20环/天。

(3) 土方运输车

组织10辆8~12m3的专用密封土方车,负责将土方从现场的渣土场运到弃土场,在政策允许范围内,渣土及时外运。当出现特殊情况造成土方积压时,将采取临时增加运输力量或设置临时渣土堆放场地的办法紧急抢运,做到不影响隧道掘进。

(4) 渣土挖掘机

在现场配置1台装载机,负责渣土的归堆整理及装车外运。

16.5 地下运输系统配置

(1)牵引机车

采用兰州产25T直-交流蓄电池机车,承担列车牵引动力,机车性能完全能满足本工程最大33.5‰坡度的需要,时速达12km/h

(2)渣土运输车

洞内渣土运输车采用5m3平板运输车。车斗与车架可以分离。

(3)管片运输车

采用两台平板运输车,每节车可装载管片3片。

(4)浆液运输车

采用平板运输车上置容量3m3带有卧式搅动叶片的浆液车。

16.6 运输轨道设计

16.6.1 钢轨及轨枕

根据配套设备情况选用24kg/m钢轨,钢轨间距762mm,轨枕间距1200mm。轨枕采用“H200”型钢。

16.6.2 扣件设置

本工程轨道连接选用铁路常用扣件,用普通M24螺栓加防转垫圈代替螺栓旋道钉。扣件由M24螺栓、螺母、平垫圈、弹簧垫圈、扣板、铁座、绝缘缓冲垫板、衬垫等零件组成。

16.6.3 道岔设置

本工程共铺设道岔5副,其中“Y”型道岔2副(放置到盾构机后配套后), “N”型道岔3副(始发隧道口1个,其它2个根据施工掘进里程再增设),以满足盾构掘进三列车的交叉施工。

16.6.4 轨道连接

(1)轨枕与管片连接

为了避免轨枕破坏管片,需在轨枕两端焊接端板才可放置在管片上,轨枕与管片采用面接触。

(2)钢轨与轨枕连接

钢轨与轨枕采用扣板式扣件连接。

(3)后配套车架由于重量较轻、行进速度较慢,其钢轨与轨枕采用一般连接。

16.7 地下运输线路布置

根据盾构机的掘进能力和电瓶车的运输能力,在隧道内主要铺设双线。在始发处洞口设置“N”型道岔,在盾尾后配套处设置“Y”型道岔,在盾构机内部采用单线铺设。

第十七节 通风

17.1 通风方式

隧道的通风主要采用压入通风为主,排风为辅。在盾构始发井设置大功率的通风机,将地面的新鲜空气送入隧道,利用软风管连接到盾构机的盾尾位置,保证盾构机上有足够的新鲜空气,在盾构机的台车尾部设置较小功率的排风机,将盾构机上的热空气排走。完成热空气交换和补充新鲜空气的功能。使掘进工人在较好的条件下工作。

盾构法隧道施工,盾构机上的各种动力元件及变压器、配电柜等为主要的热源。此外,潮湿、尘土也是洞内环境较差的主要影响因素。采用机械通风才能有效的降温、降湿、降尘和增氧,改善人、机的工作环境。

17.2 风量的估算

隧道内通风量计算依据,一是根据洞内最多工作人数确定供氧风量;二是根据洞内横断面上的最低风速要求计算风量。盾构法施工人员的供氧量完全可以满足;只有最低风速的要求,隧道断面上风速取0.3m/s ,工作面的风量按下式计算:

QW = 60·S·V

式中: QW – 工作面所需要的风量, m3/min

S –隧道断面面积, m2

V - 最低风速 0.12 m/s , 取V = 0.3m/s

则: QW = 60×3.14×2.7×0.3

= 412 m3/min

隧道通风需经过较长距离管道输送,风管接头处会产生漏风,漏风系数

K = Qf / QW

式中: K - 漏风系数 , 取K=1.5

Qf – 风机风量 , m3/min

则: 风机供风量应为:

Qf= 1.5×412 = 618 m3/min= 37080 m3/ h

17.3 通风系统的布置

拟采用直径为800mm单节长度为20m的PVC塑料软风管,并在风管外加Φ6的钢筋环箍,两节风管之间采用拉链加尼龙搭扣进行连接,以降低漏风量和接头连接的可靠性。由于隧道较长,漏风量将随着隧道的延长而增加,根据计算及以往施工的经验,选用2SZ-100A型风机。该风机的参数为:

风量为60000 m3/ h;

风压:4800Kpa;

噪声:88分贝。

风机布置在井内,垂直安装,用基座固定于井壁上,风机增设降噪设备。取风口及进洞口段采用刚性的玻璃钢风管,取风口要有防雨措施,当玻璃钢风管进入隧道后即采用帆布风管。风管在隧道内的固定,在管片纵向连接螺栓上加装一个3mm厚的钢片,钢片与风管的吊挂竿连接(直接挂接或焊接),每一环即1.2m间距,设置一个吊挂点。帆布风管的端头与伸缩风管连接,完成对盾构机及工作面的供风。隧道每延伸100m安装一次帆布风管(5节)。

17.4 通讯与监控

通讯主要依靠内部电话网络,场地办公室设置内部通话系统,各主要生产部门、各重要位置(如竖井口、出土口、浆液站、调度室、盾构机及其控制室、隧道口等)均设置电话,保证场地内的各主要位置通讯畅通无阻。场地与外界的联系利用电信局的有线电话网、移动通讯网和国际互联网,做到沟通无限。详见【图3.19——通讯与监控系统示意图】。

场地监控主要利用监控室和各位置设置的监控设备来实现。在场地内拟设置摄像头8支,分别安装在盾构机螺旋机的出土口、皮带机的出土口,隧道口、出土井口等位置,监视器10台,除每台盾构机控制室安装两台监视器外,其它监视器均安装在地面的监控室内,由土建工程师统一监控和调度。

图3.19——通讯与监控系统示意图

盾构机监控,在盾构机的控制室内,控制掘进的计算机和控制导向的计算机通过专用调制解调器向地面控制室内的监控计算机发送信号,有关数据通过专用数据线传入地面专用调制解调器并进入地面的监控计算机实现储存和显示,将信号传输到打印机可实现数据的纸化提取。

第四章 困难地质条件下盾构隧道施工技术总结

第一节 单一中粗砂或以中粗砂为主的地层施工

1.1 盾构穿越中粗砂及卵石层的施工

根据地质勘察报告,本区间盾构隧道距接收井50m处范围内为上部粉细砂、下部夹卵石圆砾。盾构掘进到此区段时,地表沉降量预计会有所增加,而且盾构掘进过程中会出现刀盘切削扭矩加大,排土困难等现象,是施工过程中的难点之一。

1.2 根据地质勘察报告中土层的物理力学性能参数和隧道埋深、地下水位情况,计算确定此段隧道拱顶土压力理论值为0.1MPa,在盾构掘进过程中以该值和盾构机土仓内土压力传感器读数为依据控制盾构掘进时的土仓压力在0.12MPa~0.15MPa之间,同时严格控制每环出土量在50m3以内,避免超挖。

1.3 调整壁后注浆配比,使浆液的凝结时间和强度适应砂层施工的要求;根据拱顶水土压力调整注浆工艺参数,将掘进过程中盾构机上部注浆压力控制在0.25MPa~0.3MPa之间,下部注浆压力控制在0.3MPa~0.35 MPa之间,同时严格控制每环控制注浆量在3.5m3~5.0m3之间,确保管片与地层之间的空隙被完全充填。结合地表沉降监测,必要时采取二次补浆措施。

1.4 提高泡沫的膨胀率,产生较大的泡沫,阻挡过多的地层中的水进入土仓。加大泡沫注入率,改善刀盘切削条件,减小刀盘切削扭矩和刀具磨损,必要时辅以膨润土浆液,增加土仓中土的粘粒含量,提高土的可排性,降低土的透水性。

1.5 加强地面沉降观测和信息反馈,及时调整优化盾构掘进工艺参数,把沉降控制在允许范围之内。

1.6 停机时保证建立土仓压力,同时采取注入膨润土浆液等必要措施,维持土仓内土压力。

第五章 盾构隧道近接穿越施工技术总结

第一节 近接穿越既有建(构)筑物

1.1穿越既有建(构)筑物工况

北京市轨道交通首都机场线03标段工程包括东直门~三元桥区间左线盾构隧道起于三元桥车站西侧站端,向西穿越三元桥后,进入东外斜街,下穿亮马河桥,到达察慈小区住宅楼西南侧的盾构接收井。左线隧道采用盾构法施工;区间联络通道及风道采用暗挖法施工,风井采用明挖法施工。盾构计划从三元桥车站西端始发,从察慈小区住宅楼西南侧的盾构接收井出洞。

设计线路距接收井665.136m区段范围内为民房区,此区段上方有大量民房(从K0+460—K1+151进入民房区段),房屋普遍建成时间为60~70年代,沿线也存在一些临时建房,在盾构接收井附近过二级风险源察慈小区住宅楼。在右线盾构先行通过后再进行穿越施工难度较大。

1.2 近接穿越工作程序

前期地质雷达探测——盾构正常掘进——管片拼装——同步注浆——二次注浆及深孔注浆——地表沉降监测

1.3既有建(构)筑物加固及地层预加固措施及效果

对既有建(构)筑物加固及地层预加固采用二次注浆及深孔注浆的方式。盾构同步注浆后,由于浆液的脱水,浆液体积收缩会加剧地表的后期沉降量,又由于盾构推力,衬砌和土层间会相互分离,二次注浆能有效地进一步充实背衬和提高止水能力。在盾构常规段以盾尾同步注浆即可满足沉降控制的要求,为保证沉降控制效果,在穿越民房段采用对已完成结构外侧二次补注浆进行加强补浆,控制地面的后期沉降。

二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位起吊孔内装入单向逆止阀并凿穿管片外侧保护层进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为1:1水泥-水玻璃双液浆。参照本工程在穿越三元桥的施工经验每环注浆量在3m3~7m3,地面沉降在6mm左右。

如果二次补注浆不能够较好的控制地表沉降,则采用深孔注浆的方法。方法为:在16号位管片位置打设5m长花管,注水泥水玻璃双液浆,注浆压力控制在0.4MPa。

1.4 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

同步注浆浆液类型为水泥-水玻璃双液浆,浆液配比为水泥:水玻璃双液浆=1:1,在盾尾对管片进行同步注浆,注浆压力为0.35~0.40MPa。

补注浆包括二次注浆和深管注浆。二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位起吊孔内装入单向逆止阀并凿穿管片外侧保护层进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为1:1水泥-水玻璃双液浆。

如果二次补注浆不能够较好的控制地表沉降,则采用深孔注浆的方法。方法为:在16号位管片位置打设5m长花管,注水泥水玻璃双液浆,注浆压力控制在0.4MPa。

第二节 近接穿越桥桩

2.1近接关系描述

本工程在桩号K2+650~ K2+700线路下穿三元桥。三元桥是机场高速、京顺路连接三环路的节点立交,各个方向的车流在这里交汇,交通繁忙。

盾构隧道和三元桥基础的关系详见下图。

图5.1 盾构隧道和三元桥基础位置关系剖面图

2.2 桥桩施工影响控制标准

左、右线施工前后,对桥桩不均匀累计沉降要不大于5mm

2.3 盾构实际推进参数及推荐的合理推进参数

施工过程中要全速前进,没有特殊情况不得停机,每环的同步注浆压力及方量必须满足要求,压力不满足要求不能进行下一步施工。

建立较高的土仓压力,同时控制进土与出土的方量关系。

2.4 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

1)、盾尾同步注浆

在施工过程中对注浆应加强管理,注浆操作是盾构施工中的一个关键工序。为防止土体挤入盾尾空隙,必需严格按照“确保注浆压力,兼顾注浆量”的双重保障原则,对注浆量一定要确保在理论计算值的130~200%,并且在实际平均注浆量的合理范围内波动。注浆操作必需有专人完成,在每环掘进完成后必需对注浆量进行记录,当发现注浆量变化较大时,应认真分析其原因,通过加大注浆压力等方法补注,当补注不能进行时必需及时进行二次(三次)补浆。此区域盾构施工采用四点注浆,来控制成型隧道的质量。注浆压力调为3.5bar-4bar,注浆时一定要确保注浆压力,直到地层注满为止。在每环管片拼装结束后,必须进行补浆,在盾尾压力达到设定压力后并维持相对稳定后,方可进行下一环的施工。且为缩短浆液凝结时间将浆液改为水泥砂浆,配比为将原配比中的粉煤灰更换为水泥。根据掌握的反馈信息及时调整浆液的配比,使浆液的配比更科学、更合理。为保证浆液的质量,要对制备浆液的原材料进行严格控制,要定期测定浆液的坍落度、粘性、离析率、凝结时间、抗压强度等。

2)、严格控制二次注浆,做好洞内加固

在盾构常规段以盾尾同步注浆即可满足沉降控制的要求,为保证沉降控制效果,在穿越三元桥段采用对已完成结构外侧二次补注浆进行加强补浆,控制地面的后期沉降。

二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位预留注浆孔安装注浆塞进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为水泥-水玻璃双液浆。

3)、三次补注浆加固

盾构施工进入桥区后,管片拼装采用“16位—2位—16位—2位”的拼装方式。若二次补浆不能满足要求,采取三次注浆处理,注浆位置为靠近桥桩的管片2号位,注浆浆液为水泥-水玻璃双液浆。通过管片预留注浆孔用洛阳铲将管片壁后的土体掏挖10m长的孔洞,打入10m长的花管后用水泥浆封堵预留孔周围间隙,再进行补注浆,补注浆的压力控制在0.5~0.6MPa。

第七章 盾构隧道联络通道施工

第一节 联络通道的布置形式

1.1联络通道结构形式

联络通道采用复合式衬砌,拱顶直墙式结构,联络通道初衬厚度为250mm,二衬厚度为300mm(仰拱厚350mm)。在初衬和二衬之间设置柔性外包防水层。

初期支护采用C20早强喷射混凝土,二衬衬砌采用C30钢筋混凝土,抗渗等级S10,细石混凝土保护层采用C15素混凝土。

第二节 联络通道处盾构隧道的管片类型

联络通道处盾构隧道的管片类型为两环混凝土管片,拼装方式采用通缝拼装,拼装位置为适合通道开洞口位置。

第三节 开口施工方法及工艺

破除(切割)联络通道口的混凝土管片前,在通道口处的隧道内架设临时刚性支撑,防止通道位置附近的管片由于管片拆除发生过大变形。加固范围为盾构区间联络通道开口处及相临左右各10环管片,在加固范围内每环管片均设20#H型钢加固环,每块混凝土管片通过安装在提升孔处的钢旋塞与加固钢环焊接连接,加固钢环间用20#H型钢拉结,环内设20#H型钢辐条,加固钢环与混凝土管片间用钢板背紧,每块管片背紧点不少于2处。加固环与拉杆及辐条的连接采用螺栓连接。洞门加固前须先将加固范围内的管片连接螺栓全部复紧。待支撑安装完毕后,利用切割机破除通道洞门处管片。管片正式切割前按照设计提供的方位、尺寸要求,在被切割墙体上准确放线定位。具体施作采用碟式切割方法进行切割,为不损伤无需切割墙体,在每道切割段始端和终端先钻孔,再切割,并确保废弃管片的吊运安全施工。

第四节 接合部防水施工方法及工艺

4.1盾构隧道与联络通道结构接合部防水

盾构隧道与联络通道结构衔接处后浇防水混凝土环梁采用补偿收缩合成纤维防水混凝土或钢纤维防水混凝土浇注,其混凝土强度等级应比联络通道混凝土高一级。它与现浇钢筋混凝土内衬墙、盾构管片的接缝处各设置两道预水膨胀嵌缝胶;并在两道嵌缝胶之间预埋注浆管,注浆管在拱部及两侧拱腰处经由注浆导管引出。

第五节 联络通道施工方法及工艺

5.1联络通道施工工艺流程

联络通道洞门管片支撑注浆加固土体凿除通道开口处混凝土管片洞门补浆超前支护土方分台阶开挖安装钢格栅、挂钢筋网片并喷射混凝土防水层铺设绑扎底板钢筋浇注底板混凝土绑扎拱墙钢筋安装二衬模板浇注拱墙混凝土拆摸并养护其它设施安装。

5.2施工方法

5.2.1洞门凿除施工

1、洞门土体加固

采用洞内双液注浆加固联络通道洞门上下各3m、长10m范围土体。注浆施工主要分两部分进行:首先通过盾构隧道开口段两环及左右各三环钢筋混凝土管片的吊装孔插管注浆加固,其次在开洞门的混凝土区域钻孔注浆,最后待洞门部位管片拆除后,对其他区域进行补充注浆施工。

图5-2 联络通道注浆加固平面示意图

图5-3 联络通道开口处注浆加固平、断面示意图

图5-4 联络通道洞门补充注浆示意图

2、洞门凿除施工

破除(切割)联络通道口的混凝土管片前,在通道口处的隧道内架设临时刚性支撑,防止通道位置附近的管片由于管片拆除发生过大变形。加固范围为盾构区间联络通道开口处及相临左右各10环管片,待支撑安装完毕后,利用切割机破除通道洞门处管片。管片正式切割前按照设计提供的方位、尺寸要求,在被切割墙体上准确放线定位。具体施作采用碟式切割方法进行切割,为不损伤无需切割墙体,在每道切割段始端和终端先钻孔,再切割,并确保废弃管片的吊运安全施工,参见图5-5。

图5-5联络通道管片切割示意图

3、马头门施工

为了保证施工安全,把管片分为上下分为两部分进行破除,先进行上半部分施工。打开管片后,如图5-6所示在拱部的开挖轮廓线上方进行超前小导管支护体系施工,超前小导管长度2.5m,环向间距300mm布置。小导管注1:1水泥水玻璃双液浆。待加固体强度形成后进行上台阶的开挖,直接安装第三榀钢格栅形成支护结构,待上台阶完成5米后进行下半部分的管片破除与下台阶的开挖。待洞体贯通后,在第三榀格栅处向管片上方打设长度2.5m,环向间距300mm布置的超前小导管,小导管注1:1水泥水玻璃双液浆,再破除喷射砼,按照图纸进行反挖完成第一、二榀格栅的施工。

图5-6 马头门超前小导管施工示意图

4. 2. 2超前支护施工

联络通道土方开挖前,采用超前小导管注浆加固土体。小导管采用DN32的钢管加工,每根长度为2.5m,在导管中段以梅花形均布小孔/前端加工成锥形。小导管沿拱顶环向布置,间距30cm,外插角为 5°~10°,沿隧道纵向每两榀格栅打设一道小导管,导管必须穿过前榀钢拱架中腹。小导管施工前喷射混凝土将工作面封闭,沿开挖轮廓线测放出小导管钻设位置。小导管使用小钻机钻孔施工,其孔深略大于导管长度。注浆前用压缩空气将管内积物吹净,孔口采取暂时封堵措施。注浆时,将钢管尾部及孔口周边空隙封堵,钢管尾部使用止浆塞,孔周边用快凝水泥进行封堵。采用水泥、水玻璃浆液浆进行注浆加固,浆液在现场配制,配制的浆液应与注浆速度相应,浆液必须在规定时间内用完,禁止任意延长停放时间。注浆时应注意检查各连接管件的连接状态,对注浆速度应严格控制,注浆压力经试验确定,一般为0.3~0.5MPa。注浆后2小时方可进行土方开挖。

CT4联络通道上方为交通量非常大的机场高速路,为保证路面安全减少地表沉降,在本段联络通道进行施工时采用双层小导管,第二层小导管打设角度为30°~ 45°。

4. 2.3土方开挖

1、联络通道土方开挖

土方开挖采用留核心土上下台阶法施工,施工时,先开挖拱部土方,开挖完成后立即进行拱部支护(安装钢格栅、喷射混凝土),并施作锁脚锚管,然后开挖核心土体,并进行下导洞的初期支护,初期支护封闭,上下台阶间距保持3.0m。开挖采用探挖的方法,即采用5m洛阳铲向前探挖,以了解前方土及地下水情况,待旁站人员确认安全不需要处理后进行开挖作业。开挖3m后,再进行地层的探挖。

开挖时以激光点控制开挖尺寸,严禁欠挖,并随时注意土体变化,做到“快开挖、快封闭”。

拱部开挖后尽早封闭,尽量减少顶部土方悬空时间,施工过程中密切注意掌子面土层情况,在地层变化处需对掌子面地层性状做描述,并作好记录。联络通道断面纵向施工步骤图参见图5-7。

图5-7联络通道断面纵向施工步骤图

4. 2. 5防水施工

联络通道的防水采用1.5mm厚EVA塑料防水板进行防水全包处理,在防水层内表面设置注浆系统,塑料防水板缓冲层材料采用400g/m2的无纺布。防水敷设前先对基面进行修整处理,然后铺设无纺布和EVA防水板,防水敷设后,在防水层表面铺设无纺布作为保护层,防水层采用无钉铺设双焊缝施工工艺。结构二衬施工前,在拱顶部位预埋注浆管,结构施工完毕后对拱顶部位进行二次注浆处理,将拱顶部位二衬与防水板之间的空隙填充密实。

4. 6二衬施工

隧道二次衬砌为钢筋混凝土结构,混凝土标号为C30,防水等级S10。

通道二衬混凝土浇注分三步进行,先浇注底板混凝土,再支立模板支撑体系浇注边墙混凝土,最后浇注拱部混凝土。纵向以8m为一段进行施工。

1、工艺流程

A、绑扎底板钢筋浇注底板混凝土绑扎边墙与拱部钢筋架设模板支撑体系封堵头模板浇注边墙与拱部混凝土拆模并养护。

图5-8 隧道二次衬砌施工工艺流程

B、绑扎底拱钢筋浇注底板混凝土绑扎边墙钢筋架设模板支撑体系封堵头模板浇注边墙混凝土分段拆除下部临时横撑绑扎边墙钢筋浇注边墙。

2、施工方法

(1)底板混凝土施工

1)底板混凝土浇注前在两侧边墙上设置底板标高控制线,并在底板中部钢筋上焊接直立短钢筋,其上设置底板标高控制点。

2)与区间管片相接处设置变形缝,在底板混凝土浇注前将止水带固定好。

3)混凝土浇注使用混凝土地泵泵送,插入式振捣棒振捣密实。混凝土振捣时要防止破坏防水层。

4)混凝土表面使用刮杠挂平,再用木抹子赶浆,最后用铁抹子压光。

5)在底板混凝土初凝前插入一些短钢筋,用以固定边墙与拱部模板支撑体系。

(2)边墙与拱部施工

1)模板及支撑体系

A.边墙与拱部模板采用钢模板拼装,采用组合式钢管拱架、600×600碗扣式脚手架及φ48钢管配合可调支撑作为纵横向和斜向支撑,形成二衬模板支撑体系。

B.先安装钢管拱架,拱架间使用φ48钢管连接,拱架加工时在拱脚与边墙节点处采用铰接方式。再架设碗扣式支架,在边墙处横向设置φ48钢管与可调支撑,在拱部碗扣支架立杆顶部设置可调支撑,并设置φ48钢管和可调支撑作为斜撑,可调支撑与钢管拱架间横向设置5×10cm方木。

C.钢管拱架与支架架设完成后,进行模板拼装。模板采用定型钢模板,模板与钢管拱架间使用卡具与弯钩螺栓连接固定。每个施工段拱顶部设置一个混凝土泵送口,每两个泵送口间设置一根φ32钢管,钢管上端贴近防水层,作为混凝土浇注时的排气口和二衬背后注浆口;边墙每侧每隔2m设置一个混凝土泵送口。最后安装端头模板。

D.模板拼装完成后,调节边墙与拱部的可调支撑,使模板内边线与通道二衬轮廓线一致,同时拱顶模板要预留20mm的沉落量。

E.模板与支撑体系组装完成后要检查验收,包括支架的稳定性、模板的密封性、通道中心线及轮廓线。

图5-9 横通道二衬支模示意图

(3)混凝土浇注

联络通道采用C30模筑混凝土浇注。混凝土采用预拌混凝土,二次倒运到达工作面,人工入模浇捣混凝土。混凝土浇注时边墙部分从两侧浇注口灌入,要对称浇注,每次浇注的高度为50~60cm;拱顶部混凝土由顶部浇注口灌入。混凝土浇注过程中要随时检查支撑体系的稳定及模板的变形情况,发现问题及时处理。

(4)拆摸及养护

二衬摸板拆摸时混凝土强度不得小于设计强度的80%,因此拆摸时间由同条件养护试块的强度确定。拆摸后要喷水养护时间不少于7d。

(5)二衬背后注浆

二衬拆模后,混凝土强度达到设计要求后,进行背后注浆来充填二衬与防水层间的孔隙,增强混凝土的密实度,提高防水质量。利用预埋的注浆管注入水泥浆,水灰比为0.6~1.25,同时为减少水泥浆泌水,在水泥浆中掺入减水剂。注浆压力不要过高,只要克服注浆管阻力和二衬与防水层间空气阻力即可,注浆压力控制在0.3Mpa,压力超过0.5MPa时停止注浆。

第八章 盾构隧道工程经济分析

第一节 成本影响因素及分析

1、地质条件:地质条件直接影响施工掘进速度、刀具的磨损及更换频率、密封舱添加材料、壁后注浆量; 2、地表建筑物:建筑物的重要程度、基础及结构的完好程度、地下管线自身的完好度等因素。

第二节 地面配套设备费用

1、龙门吊进、出场及基础:20万元/台;

2、浆液站进、出场及基础:16万元/座;

3、积土坑制作:15万元;

4、盾构井临时设施:30万元。

第三节 盾构始发井、接收井单位造价

始发井及接收井单位造价均为200万元。

第四节 标准区间隧道单位造价

盾构隧道单位工程实际造价

1、支座及反力架约25万元

2、出洞地层加固约30万元

3、接收段地层加固约30万元

4、掘进(元/环)约1.2万元

5、管片(元/环)(含施工费用)约1.2万元

6、止水条(含施工费用)约700元/环

7、盾构密封油脂(含施工费用)约500元/环

8、背后注浆(含施工费用)约1100元/米

9、密封舱添加材料约1300元/米

第五节 各种近接穿越施工的措施费用

1、穿越道路:40万元/条;

2、桥梁:50万元/座。

第六节 盾构转场费用

盾构进出施工场地费用约为120万元。

北京地区地铁盾构隧道工程施工技术总结

(北京市轨道交通首都机场线东直门~三元桥区间工程)

第一章 工程概况

第一节 概述

本工程为北京市轨道交通首都机场线03标段,主要工程为东直门~三元桥区间盾构2568.259m;3个联络通道(左K1+034.566联络通道、左K1+974.254联络通道、左K2+564.776联络通道及泵房)和区间风井风道。隧道设计施工起点为轨道交通机场线三元桥车站南端,终点为设在察慈小区住宅楼西南侧的盾构接收井。

第二节 隧道平面

本区间有5个曲线段,东直门~三元桥方向分别为JD2(R=550)、JD3(R=1500)、JD5(R=800)、JD6(R=1000)、JD7(R=4000),线路整体呈“S”型。左线与02合同段的右线线间距为10~13米。本区间隧道平面如下图所示:

图1.1——东直门~三元桥区间左线盾构隧道路线平面示意图

第三节 隧道纵断面

本区间沿盾构掘进方向以-2‰的坡度从三元桥站出发后,在K2+960.00处线路开始以-29.611‰的坡度向下前行,在K2+620.00处开始以+6.561‰坡度上行,在K1+500.00处开始以-3.017‰坡度下行至盾构接收井。

图1.2——左线隧道纵断面示意图

第四节 隧道近接环境条件

4.1临近建(构)筑物

区间沿京顺路下穿三元桥的西北孔,与三元桥扩大基础中心线水平净距0.24m,竖向净距16.3m。下穿东直门外斜街后,进入规划红线内的平房区,然后从察慈小区旁边通过到达盾构接收井。

4.2地面交通状况

本段线路下穿的三元桥是机场高速、京顺路连接三环路的节点立交,各个方向的车流在这里交汇,交通极为繁忙。

东直门外大街为二、三环之间的联络干道,现况机动车道宽度23米,为双向三车道,机非分隔带5米,非机动车道7米,道路交通繁忙。

4.3地下管线分布情况

区间沿线上方存在多条市政管线,但由于隧道埋深较深,根据以往工程经验区间施工对大部分管线的影响较小。只有一条位于三元桥东北侧横跨机场路的热力管沟由于埋深较深,控制机场线纵断。

4.4地形地貌

拟建盾构区间在K2+624处下穿三元桥,K1+150处下穿暗河, K0+800处下穿宽约6m深约 3m的亮马河。

第五节 地质条件

5.1工程地质概况

本工程所在的土层,自地表以下依次为人工填土层、第四纪全新世冲洪积层和第四纪晚更新世冲洪积层。区间隧道主要穿越粘土、粉土,局部遇到粉细砂、中砂层。属于一般地质条件的地层。

第二章盾构机类型及主要技术参数

第一节 盾构机类型

本工程使用的盾构机为德国海瑞克S169加泥式土压平衡盾构机,采用向开挖土体中注入泡沫的方式来改良土体,推进千斤顶为被动式铰接千斤顶。刀盘是作为“重型钢结构”针对挖掘北京土质特点设计的。主驱动的总输出功率为945KW,刀盘最大可能转速为3.0rpm。

第二节 主要技术参数

主要技术参数如下:

(1)管片参数

外径6000mm

内径5400mm

片数3A+2B+1C

最大片重3.3T

水压2bar

(2)盾构参数

主机数量(前体和中体)1

直径6190mm

长度(前体和中体)4280mm

类型土压平衡

最小水平转弯半径350m

最大工作压力3bar

最大设计压力4.5bar

土压检测点5

人闸1

人闸联连法兰1

螺旋输送机上连接法兰1

盾尾1

盾尾数量1

连接形式铰接

长度3550mm

密封3层密封刷

注脂线8(2X4)

注浆点4

(3)推进千斤顶

数量16

推力28350KN

行程2000mm

推进速度80mm/min

缩回速度1400mm/min

(4)铰接油缸

铰接型式 被动式

数量 14

尺寸φ180/80mm

缩进压力7340KN

行程150mm

(5)刀盘

刀盘数量 1

形式 面板式

直径 6200mm

旋转方向 左/右

刀具(软土层) 124把齿刀;16把周边刀

回转接头 4个泡沫管

(6)刀盘主驱动

刀盘主驱动数量 1

形式 液压驱动

马达个数 8

额定扭距 4085KNm

脱困扭距 4700KNm

转速 1.50/3.00rpm

电功率 480KW

主轴承外径 2600mm

主轴承寿命 10000小时

(7)人闸

人闸数量 1

形式 双人闸

长度 2000mm

直径 1600mm

工作压力 3bar

工作人员 2~3

(8)拼装机

拼装机数量 1

型式 中心自由转动拼装机

夹紧系统机械式

自由度6

旋转范围+/-200o

管片长度1200mm

伸缩距离1000mm

轴向行程2000 mm

控制方式线控

(9)螺旋输送机

螺旋输送机数量1

形式中心轴式

直径700mm

电功率110KW

最大扭距190KNm

转速0至19rpm

最大出土量250m3/h

螺距600mm

伸缩可以

出土门有

(10)皮带机

皮带机数量1

驱动电力

带宽800mm

带长约45m

速度2.5m/s

最大输出能力450 m3/h

(11)后部供给系统

管片存放机1

管片吊车1

吊车轨道1

液压部件1

冷却系统1

注浆设备1

注浆泵1

控制阀2

压力测量装置5

储浆罐1

注泡沫系统1

发生器4

水泵1

泡沫剂泵1

空气控制设备1

注膨润土系统1

注入泵1

压缩空气供应1

空气压缩机2

气罐1

压缩空气调节设备1

主驱动润滑脂泵1

盾尾注脂泵1

操作室1

控制板1

变压器1

软管系统1

高压电缆盘1

轨道起重机1

二级通风系统1

输送管存储装置1

导向系统1

数据记载系统1

(12)后配套系统

台车数目5+桥

(13)电气系统

初级电压10KV(+10%/-15%)

次级电压630V

变压器1250KVA

控制电压24V/230V

照明电压230V

阀电压24V

频率50HZ

保护系统(电马达)IP55

PLCS7(西门子)

(14)安装功率

驱动480KW

推进油缸 55KW

管片拼装机油缸 45KW

冷却油 11KW

注脂4KW

螺旋输送机闸门 22KW

螺旋输送机110KW

注泡沫系统8KW

注浆设备 19KW

皮带输送机 22KW

二级通风设备 15KW

现场及插座用电 50KW

总计844KW

(15)尺寸

总长 57m

本体含盾尾 7.8m

第三章 一般地质条件下盾构隧道施工技术总结

第一节 盾构隧道施工的地面用地面积及场地布置

1.1本工程施工的地面用地面积如下表所示:

始发井及提升区面积(㎡)办公、生活用房区面积(㎡)管片堆放区面积(㎡)材料、物资堆放区面积(㎡)施工区域内通道面积(㎡)集土坑

921347.8116.23231.54529.77135

1.2施工场地平面布置如下图所示:

图3.1——盾构施工场地平面布置图

第二节 盾构隧道施工用电

2.1供电方案

业主将提供施工临时用电电源,其容量为1250KVA+600KVA的变压器,接口根据承包商施工组织设计的接电点位置由业主组织有关单位现场确定。同时,在施工现场配备发电机,做为备用。施工现场的供电系统主要包括配电房和发电机房。

配电房向外与10KV输电线路相接,其中1路直接送到盾构机内,1路通过配电房内的变压器电压转化为380V/220V,分别供其它施工设备和照明使用。为防止意外停电对工程的影响,在施工现场备用1台200KW柴油发电机,确保施工的正常进行。

2.2进场阶段的临时供电

为保证施工临时设施的搭建、前期准备工作的正常进行以及生活用电的需要,安排1台250KW的发电机作为临时电源。在供电部门为施工变电所送电后,撤消临时电源但作为备用电源保留,在突发性停电时,供洞内的照明、抽水及推进油缸保压用。

在取得监理工程师同意后,我单位施工队伍进场立即进行场区电缆敷设、变电器、配电箱柜等安装及接电调试工作。

2.3盾构施工阶段的供电

1)变压器的配置

盾构机掘进施工时,由业主配置一台总容量为630KVA的变压器,供龙门吊等辅助设备供电使用,另需配置总容量为1250KVA的10KV高压电源,供盾构机使用。

2)高压配电所的配置

高压配电所配置盾构电源和地面设备低压用电的变压器馈出仓位。

3)配电柜的设置

设置高压配电柜1个,低压配电柜3个。每一用电点从邻近低压配电柜引出,通过分配电箱再配出到各用电设备。

4)功率因数补偿器的配置

为实现COSΦ=0.8的功率因数,拟设置6个功率因数补偿器,它们的无功功率补偿能力分别为:2台300Kvar。

5)供电线路的配置

高压线路:相数:3;频率:50Hz;

电压:10KV;

低压线路:相数:3;频率:50Hz;

电压:0.4KV;

照明线路电压:220V;控制电压:24V;信号电压:24V;

2.4安装与工艺要求

1)从配电柜到分配电箱的馈送回路中,每一开关的载流量和短路电流需与各用电设备的容量相匹配,设备在受电前先检验漏电开关的动作是否灵敏。

2)电缆敷设采用直埋式,过路处穿钢管暗埋敷设。

3)高压电缆送电前,经电气试验证明合格。

4)从高压配电室盾构仓位馈送到车载变压器的电缆,沿墙挂钩敷设下井,每隔50m挂“高压危险”的警告牌一块,在井的垂直部位和隧道内敷设电缆,每2m设一个固定点。

5)从井口开始,每隔100m设隧道照明专用配电箱一只,作为照明线路的分开关和隧道内小动力用电设备的电源。

6)隧道照明采用普通日光灯,控制室采用防爆荧光灯,主机采用防爆投光灯,皮带机采用防震灯,灯具金属外壳与接地线直接相连。

7)所有的单相负载采用A、B、C三相跳接的方式,注意三相负载的平衡问题。

2.5安全保护措施

1)重复接地保护:在各用电点的配电箱周围,用2m长的5#角钢2根埋入地下作为接地极,用一根25×4的镀锌扁钢与接地极焊接后,引到配电箱的接地排上。接地排与从变电所馈出的低压电缆的零线相接,构成重复接地系统。接地电阻≯1Ω。各用电设备金属外壳用接地线与接地排相接。

2)行程限位保护:所有的提升设备安装限位保护开关。

3)电气联锁保护:为保证设备运行的安全可靠,电气系统进行联锁控制,即上级流程未动作,下级流程无法动作。上级流程停止,下级所有流程自动跳闸。防止自起动和误操作带来的不安全因素。

4)相序保护:用电设备在运转时,不随意更换相序,若发生意外,相序继电器自动切断电源。

5)防雷保护:对直击雷的防护采用在变电所装设独立避雷针;对雷电波侵入的防护采用在高压侧装设阀式避雷器。

第三节 始发井及接收井施工

始发井利用三元桥车站已修建好的南侧左线盾构始发井进行始发施工;接收井利用02标在察慈小区西侧的盾构接收井进行接收施工。

第四节 盾构始发段和接收段地层加固方法、工艺及效果

4.1端头地质概况

本标段盾构始发及到达端头加固共计4处,加固部位包括机场线三元桥站始发井端头、风道接收和始发端头、盾构接收井端头。三元桥站始发端头为粘土地层,其余3个端头均为洞身上部为砂层,洞身下部为砂砾层。三元桥站始发端头加固采用1排ф800@1000mmC10素混凝土桩和14排ф600@500mm梅花形布置的旋喷桩组成,素混凝土上部采用采用三七灰土回填;风道接收和始发土体采用洞内水平注浆方式进行加固,采用水煤气管,间距500×500mm,梅花型布置;盾构接收井土体采用20排ф600@500mm梅花形布置的旋喷桩。

为了确保盾构始发和到达时的施工安全以及各地层的稳定,以防止端头地层发生坍塌或漏水涌水等意外情况,必须对端头的土体进行加固处理。另外,盾构机吊入、吊出井必须满足吊机作业地面承载力要求。

4.2加固的原则和要求

(1)盾构进出洞端头土体加固的原则:

1)根据隧道埋深及盾构隧道穿越地层情况,确定加固方法和范围。

2)在充分考虑洞门破除时间和方法,选择合适的加固方法和范围,确保盾构机进出洞的安全和洞门破除的安全。

(2)加固要求

1)加固土体强度达到0.4Mpa;

2)渗透系数≤1.0×10-8cm/s。

4.3端头加固施工

4.3.1双重管旋喷桩施工工艺

(1)旋喷桩施工工艺

旋喷采用双重管高压喷射法施工,利用高压水、压缩风共同作用在喷嘴形成高速射流切割土体、砂层,同时由底部注入水泥浆,对其进行分选和置换。喷嘴作360°旋转并匀速提升,形成具有一定直径的旋喷桩。旋喷桩施工流程参见【图3.2——旋喷桩施工工艺流程图】。

图3.2——旋喷桩施工工艺流程图

(2)施工方法

1)钻机就位

钻机就位即将使用的钻机安置在设计的孔位上,使钻杆头对准孔位的中心。钻机就位后,必须作水平校正,使其钻杆轴线垂直对准钻孔中心位置。

2)钻孔

本工程拟采用地质钻机,钻孔的倾斜度不大于1%。

3)插管

钻孔完毕,拔出岩芯管,换上旋喷管插入预定深度。在插管过程中,为防止泥沙堵塞喷嘴,可边射水、边插管,水压力不超过1Mpa。

4)喷射作业

旋喷前,要检查高压设备和管路系统,其压力和流量必须满足要求,在注浆管及喷嘴内不得有任何杂物,注浆管接头的密封圈必须良好。

喷射管达到预定深度后,由下而上进行喷射作业。喷射过程中,应时刻注意检查浆液初凝时间、注浆流量、风量、压力、旋转提升速度等参数,并且随时做好记录,绘制作业过程曲线,旋喷注浆管的旋转和提升必须连续不中断,防止喷嘴被堵。

5)拔管、冲洗机具

喷射作业完成后,拔出喷射管。注浆管等机具设备冲洗干净,管内不得残存水泥浆。把浆液换成水,在地面上喷射,将泥浆泵、注浆管软管内的浆液全部排出,管内不得有残存水泥浆。

6)移动机具、回填注浆

把钻机等机具设备移动到新孔位上,进行下一钻孔的施工,并将作业完成的孔回填注浆。

(3)旋喷施工主要技术参数

1)压缩空气

压力0.7MPa,流量3m3/min,喷嘴间隙2~4mm;

2)水泥浆液

压力20~40MPa,流量80~120L/min,喷嘴孔径2~3mm;

3)注浆管

提升速度10~20cm/min,旋转速度10~20r/min,外径φ75。

4)水泥浆

水泥采用425号水泥,水灰比1.5:1。

(4)施工技术措施

1)施工前根据现场环境和地下埋设物的位置等情况,复核高压喷射注浆的设计孔位。施工前予先挖设排浆沟及泥浆池,施工过程中将废弃的冒浆液导入或排入泥浆池,沉淀凝结后运至场外存放或弃置。

2)旋喷桩相邻两桩施工间隔时间不小于48h,间隔不小于4~6m。

3)钻机安放保持水平,钻杆垂直,其倾斜度不得大于1.5%。施工前检查高压设备及管路系统,其压力和流量满足设计要求。注浆管和喷嘴内杂物清除干净,注浆管接头的密封圈良好。

4)正式施工前进行试桩,以确定合理的水压力,提升速度,浆液配比和压力等参数。

5)旋喷过程中保证桩体的连续性,若因故停止,第二次旋喷的接桩长度必须大于20cm。

6)施工中若出现大量冒浆,立即停止并采取措施。

7)钻孔位置和设计位置的偏差不大于50mm。实际孔位、孔深和每个钻孔内的地下障碍物、洞穴、涌水、漏水及与工程地质报告不符等情况均详细记录。

8)高压喷射注浆完毕,迅速拔出注浆管彻底清洗注浆管和注浆泵,防止凝固堵塞。为防止浆液凝固收缩影响桩顶高程,必要时在原孔位采用冒浆回灌或二次注浆等措施。

4.3.2水平注浆施工

(1)水平注浆施工工艺

参见【图3.3——水平注浆施工工艺流程图】。

图3.3——水平注浆施工工艺流程图

(2)注浆施工主要技术参数

参见【表3.1—钢花管注浆施工技术参数一览表】。

表3.1—钢花管注浆施工技术参数一览表

分类项目参数

成孔下管管距×排距1.4m×0.8m,桩间护壁钻孔

孔径52mm

管偏斜<1%

钢花管钢花管长度5m(入土段长4m)

钢花管直径48mm

钢花管壁厚3mm

注浆浆液配合比(重量比)水泥:水=1: 1

初注压力0.8~1.0MPa

终注压力1.8~2.0MPa

(3)施工技术措施

1)注浆材料采用P.o32.5普硅水泥,注浆时水灰比由大至小,先灌入较稀浆液,视地层吃浆量情况逐渐调整水灰比再灌入较稠浆液。

2)一个孔的注浆作业一般应连续进行到结束,不宜中断。如因机械故障被迫中断时,应排除故障尽快恢复注浆。恢复灌浆时一般从稀浆开始,逐渐调整至稠浆。

3)注浆应有专人记录浆液消耗、注浆时间、注浆压力。当注浆出现大量吃浆不止,长时间灌不结束的情况时,应检查原因,若是因地层裂缝原因造成,可调整水灰比采用稠浆灌注,并采用中断间歇注浆方法,若到此压力就发生冒浆或大量吃浆的,可在较低压力下结束。

4)注浆结束后应立即封闭阀门,拆卸清洗输浆管路。

5)待封孔后进行水平探孔试验以确定有无达到开孔要求。

4.3.3钻孔灌注桩施工

钻孔灌注桩施工工艺

钻孔灌注桩施工工序如下:

放线定点钻机就位钻孔至设计深度测量孔深吊放导管灌注商品混凝土成桩。

(1)施工准备

正式施工前应试钻,以确定施工工艺参数。

(2)测放桩位及复核

根据轴线基准点,测放出具体桩位,复核合格后方可进行钻孔施工。

(3)钻机就位

钻机应置于平整坚实的地面上,钻机就位时,钻头对好桩位,定位误差≤2cm。同时用经纬仪或线坠调整钻杆垂直度,也可利用机械自带垂直度调整系统控制。

(4)钻进、成孔

1)采用长螺旋钻机成孔,应根据地层变化及时调整钻进速度。钻进过程中,应采用人工和装载机配合随时清理孔口积土,钻到设计孔底后应空转3~5min,把孔底虚土清净。钻杆提出孔口时应小心操作,以免虚土掉入孔中。如果出现缩径情况,应将钻杆下入孔中再次钻进,直到孔径达到设计值。

2)为保证施工安全,防止相互干扰造成塌孔,钻孔时应采用桩位跳钻的施工方法。待混凝土强度达到80%后用三七灰土回填至地面标高。

(5)成孔验收

成孔后采用测绳检测孔深,采用吊线坠检测垂直度及虚土厚。

(6)灌注混凝土成桩

成孔后要及时灌注混凝土。灌注前在孔口放置护孔漏斗,混凝土通过漏斗、串筒灌入孔内,在混凝土灌注应连续进行。

第五节 盾构的始发(出洞)和接收(进洞)工艺

5.1 盾构的始发工艺

盾构机始发是指利用反力架及临时拼装起来的管片承受盾构机推力,盾构机在始发基座上向前推进,由始发洞门贯入地层,开始沿所定线路掘进的一系列作业。

盾构始发施工包括盾构掘进开始时的一连串作业,是盾构施工过程中开挖面稳定控制最难、工序最多、比较容易产生危险事故的环节,因此结合始发施工环境进行始发施工各个环节的准备工作至关重要。

盾构机始发段的掘进施工又称为试掘进施工,需对各种关键施工参数进行调整、优化,为正常段施工做好准备(盾构施工参数主要包括掘进速度、刀盘扭矩、土仓土压力、盾构总推力、出土量、注浆量、注浆压力、盾尾间隙等)。盾构机掘进前,先对各种施工参数进行计算,然后根据计算结果,设定施工参数。在施工中,根据设定施工参数的应用效果,结合地表监测的结果对各种参数进行调整、优化,使各项参数设定达到最佳状态。

5.1.1盾构机初始掘进的关键问题及对策

(1)盾构机初始掘进的关键问题:

1)保证安全破洞门。

2)始发定位准确。

3)防止管片错台下沉。

(2)对策

1)端头加固

根据端头位置的地质情况和以往的施工经验,始发端头加固采用旋喷桩和钻孔灌注素桩进行加固;接收端头采用旋喷桩注浆加固;风井风道两侧端头采用洞内水平注浆的方式进行加固。加固后保证了破洞时洞门稳定,也有效防止地面开挖面坍塌和控制地面沉降。

2)优化施工参数

A.同步注浆控制

控制同步注浆量和注浆压力。按理论计算,该段注浆量不应小于160%的建筑空隙;同时也要防止注浆压力过高而顶破覆土。

B. 盾构姿态控制

盾构机保持平稳推进,减少纠偏,减少对正面土体的扰动。

平面:控制在±50mm以内。

高程:控制在±25mm左右。

转角:控制刀盘转向,以免对土体产生较大的扰动。

速度:该段施工中推进速度控制在10mm/min,如推进速度过快,容易会引起正面土体挤压过大地面隆起。

C. 沉降控制

采用信息化施工,通过监测系统提供的监测数据,及时调整盾构穿越过程中施工参数,使盾构施工对地面影响降到最低。

3)始发前的施工测量、定位

出洞前,进行盾构机始发姿态测量、导轨姿态测量、反力架姿态测量、姿态初始测量、SLS-T导向系统初始测量等一系列的测量工作,以使盾构机准确就位。

同时开始收集隧道施工平面控制测量、高程控制测量、导向测量的原始数据,为今后的测量工作提供依据。

4)解决管片错台下沉问题的措施

A.保证洞门密封的效果,如洞口漏水现象严重由预设压浆管向洞圈周围内压注化学浆液。

B.严格控制盾尾注浆的质量;

C.洞门焊接导轨。

5.1.2试验掘进段参数的选择分析

(1)盾构千斤顶的推进速度及刀盘转速的设定

盾构千斤顶的推进速度及刀盘转速与盾构机的性能密切相关,同时也受工程地质及水文地质条件的影响。始发伊始,对参数设定首先要依据理论计算值进行设定,在始发完成后的试掘进阶段可对各种参数进行对比,调整推进速度与推力、刀盘转速与扭矩的关系式,定出推进速度和转速的范围。

在本始发段中,隧道洞身范围内地层主要为粉质粘土、粉土及粘土,由于处于始发掘进阶段,推进速度初始设定10~30mm/min,初始设定刀盘转速应小于1.0r/min。

(2)盾尾注浆压力分析与取值

添加剂压注及盾尾注浆压力主要是受地层的水土压力的影响,注浆压力的设定以能填满管片与开挖土层的间隙为原则。注浆压力的计算可参考规范中的公式并在施工过程中通过测试和试验来确定和优化参数,本工程穿越三元桥、热力方沟、居民区,浆液及其注入的效果直接关系到地面沉降,因此对注浆材料及注浆压力都有较高的要求。依据现有其它地区盾构法施工经验及北京地区已有盾构施工各种参数使用效果,初始盾尾注浆压力设定为0.2~0.25Mpa。

盾尾同步注浆理论量为每环2 m3,根据经验注浆时每环应按2.9m3~3.9m3控制。同时要求同步注浆速度必须与盾构推进速度一致。

(3)添加剂使用方案

在盾构施工中,添加剂的作用是:

1)减小旋转输送机的扭矩,降低刀盘温度;

2增强土体气密性、止水性,保证开挖面稳定;

3)与土体拌和均匀,使开挖土具有良好的流动性,增强土体可排性。

依据地层不同,有不同的添加剂使用方案。本工程始发阶段盾构穿越的地层为粉质粘土层和粘质粉土层。这样的粘性土地层,土的粘结力较大,在盾构掘进施工过程中,易造成粘性土附着于刀盘上正反面形成泥饼造成刀盘扭矩增大,或者土体进入土仓后被压密固化,造成开挖、排土均无法进行的情况。此时一方面可通过刀盘上的添加剂注入孔向刀盘前方的土体注入3%~5%的泡沫和适量的水,在增加其流动性的同时,降低其粘着性,防止开挖土附着于刀头或土室内壁。另一方面粘土被切削进入土仓内后,通过土仓上的添加剂注入孔向土仓内注入泡沫并利用刀盘上的搅拌装置加以搅拌,使泡沫与切削土充分混合,以增加土的气密性和可排性。泡沫的总注入量控制在土体切削量的10%以内。此外,还可通过螺旋输送机上的添加剂注入孔向仓内注入适量的清水或注入压缩空气,以增加土体的和流动性,减小土的摩擦力,使土能经螺旋输送机顺利排出。

添加剂注入量:

刀盘前:约3%~5%的理论开挖量

密封仓:约5%的理论开挖量

添加剂注入压力:需控制参数为刀盘前的注入压力,以平衡开挖面的水压力为宜。在本区段内设定注入压力初始设定为0.15~0.2MPa。

(4)洞口密封处压浆

洞口密封处的充填注浆采取盾尾同步注浆装置注单液浆充填。待盾尾到达洞口位置时,拉紧洞口密封圈,保证浆液不溢出洞口。

5.2 盾构的接收工艺

盾构接收段施工是指盾构机刀盘距进站口50m至盾构机进入车站并完全推上接收基座的施工过程。其施工内容主要包括端头土体加固、接收设施的设计制作与安装、接收段掘进、洞口凿除等。端头土体加固的施工应在盾构接收前应提前完成。

5.2.1盾构接收前盾构姿态和线形测量

盾构机接收前80m地段即加强盾构姿态和隧道线形测量,及时纠正偏差确保盾构顺利地进站。当盾构掘进至接收前25m左右时应再次进行盾构姿态和隧道线形测量,测量内容有:定向、主导线、测量管片位置和走向偏差。

通过测量,对接收前的地段加强盾构掘进的轴线控制,使盾构机进站时其切口平面偏差满足:平面≤±25mm,高程≤±20mm; 盾构机进站时其切口平面偏差允许值:平面≤±50mm,高程≤±20mm,盾构坡度比设计坡度略大0.2%。到站所有测量数据须报测量监理单位复核验正。

5.2.2盾构到达段掘进

盾构机进入接收段后,应减小推力、降低推进速度和刀盘转速,控制出土量并时刻监视土仓压力值,土压的设定值应逐渐减小,避免较大的推力影响洞门范围内土体的稳定。盾构接收掘进可为四个阶段,在这几个阶段中,应采取不同的施工参数及控制侧重点不同。

(1)盾构过渡段掘进(进入土体加固区前30m~8m)

过渡段的掘进速度和土仓压力与正常段掘进一样,按常规控制,但此段施工应侧重加强注意调整盾构机的姿态,使盾构机的掘进方向尽量与原设计轴线方向一致,并且要在出洞前的20米处,使盾构机保持水平姿态前进或略微仰头姿态前进,保证出洞时正常接收,掘进时的轴线偏差应控制在±20mm范围内。

(2)进站的第一阶段(进入土体加固区8m~2m)

盾构机进入加固区后,掘进速度由原来正常段的20~30mm/min减至5~10mm/min,土仓压力由原来的1.5~2.0bar减至0.3~0.5bar。尽量减少对洞口的影响。压力值大约与水压相等。应在密切监控地表和洞口的情况下逐步减少压力。

(3)进站的第二阶段(进入土体加固区2m~20cm)

由于不能确定开挖时的最小土仓压力,因此在开挖过程中只能根据地质等情况使压力最小。此阶段速度一般为1~5mm/min。当盾构机接近洞口30cm~20cm时,应停止推进。

(4)进站的第三个阶段(第二阶段完成至盾构机进入车站露出)

盾构机继续前进并拼装管片,将围护结构推倒,此阶段的速度根据实际情况决定,应无压力,刀盘停止转动。此后清除坍塌下来的土体,盾构机继续推进,通过密封环后立即拉紧密封环的钢丝索,清除密封舱内的泥土。在停机后要对盾构中心进行测量,看是否满足贯通精度的要求。

5.2.3盾构机接收

为确保盾构机从接收井的预留洞口穿出,该阶段的掘进将遵守以下原则:

(1)掘进速度逐渐放慢,掘进推力相应减少。

(2)增加盾构机测量次数,并根据洞口实际位置不断校准盾构机掘进方向。

(3)加大地面监测频率,并依椐监测结果及时调整掘进参数。

(4)站内派人对洞门位置进行值班监视。

为迎接盾构机到达,应在到达洞口前做好如下准备:

(1) 安装洞门密封装置。

(2) 安装盾构机接收基座,接收基座与始发基座相同。

(3) 铺设盾构机移动基座的轨道。

(4) 部分凿除洞门处的围护结构。

(5) 在到达洞口内侧准备好砂袋、水泵、水管、方木、风炮等应急物资和工具。

(6) 准备好通讯联络工具。

(7) 准备好照明设备。

上述设备与材料需预先运入,故到时需与接收井承包商相互协调。以上准备工作完成后,盾构机才可进行最后的到达段掘进。

第六节 盾构推进的实际参数及合理参数

盾构在推进过程中施工参数会不断地变化,根据不同的地层和添加剂进行调整,在施工过程中要严格注意进土与出土的匹配情况,必要时进行适当的调整。

参见【表3.2—盾构推进主要参数实际控制值】

表3.2盾构推进主要参数实际控制值

盾构推进主要参数实际控制值

1、纵向千斤顶总推力/分组推力(KN)10000KN/100~2000KN

2、刀盘扭矩(一般/最大BAR)200~240/260KN·m

3、盾构推进一般和最大速度(cm/min)一般速度6~7 cm/min,最大速度8 cm/min

4、盾构隧道与设计轴线的最大偏差/mm50mm

5、密封仓土压力控制(与设定值的偏差/MPa)0.06~0.2

6、管片拼装(一般和最快min/环)一般20min/环,最快15 min/环

7、加泥/泡沫(一般/最大kg/环)25~33L/环

8、盾尾密封油脂(一般/最大kg/环)一般10kg/环,最大20kg/环

第七节 盾构姿态控制统计分析

地铁工程的施工测量不同于一般工程的工程测量,施测的周围环境和条件复杂,要求的施测精度相当高,因此,必须精心组织实施。

7.1施工测量要求

(1)为确保地铁测量精度,我方将抽调具有地铁测量经验的测量工程师和有测量上岗证的测量员组成项目测量组,配有高精度仪器。

(2)开工前,根据甲方提供的测量数据资料,布设地面施工控制网点将两施工井联系起来构成本区间独立控制网并与相邻区间控制网保持统一。其中导线网点按地面四等平面控制测量技术要求控制,高程按地面二等水准技术要求控制。测量成果报监理业主检测。

(3)施工现场的所有的测量主控制点均由我单位技术部测量组组织二级复核。

(4)实行定期校核制度,每个月对施工控制点进行一次校核,发现问题及时调整。

(5)每施工放样点都必须经过换人检测无误后才可定点并书面移交下道工序。

(6)做好测量记录工作。

7.2控制测量基本原则

⑴ 地铁工程测量施测环境复杂,精度要求高,采用三角网进行测量。

⑵ 布设足够的控制点,并精心做好标记,加强对控制点的保护和检查。

⑶ 保证测量精度,配备先进的测量仪器,使用先进的测量技术。

⑷ 负责保存好本合同段内全部的三角网点、水准网点和自己布设的控制点,防止移动和损坏,一旦发生损坏,及时报告监理,并协商补救措施,及时处理。

⑸ 全部的控制点三维坐标经监理工程师检查合格后,才能开展后序工作。

⑹ 严格按照相关技术规范要求进行测量工作,并做好测量资料的管理。

7.3控制测量

7.3.1平面控制测量

根据业主提供的工程定位资料和测量标志资料,对所移交的导线网、水准网及其他控制点用精密导线方式进行复测;同时放线设置施工过程中使用的固定桩,并将测量成果书报请监理工程师及业主审批。

(1).引测近井导线点

利用业主及监理批准的测量成果,以最近的导线点为基点,引测至少三个导线点至每个端头井附近,布设成三角形,形成闭合导线网。

(2).引测近井水准点

利用业主及监理批准的水准网,以最近的水准点为基点,将水准点引测至端头井附近,测量等级达到国家二级。每个端头井附近至少布设两个埋设稳定的测点,以便相互校核。

7.3.2高程控制测量

以首级控制水准网为基准设加密水准网,并且联测到相临标段所使用的水准控制点一个以上。将水准网布成附合线路,往返观测,附和闭合差应≤±8mm(L为附和线的路线长度,以公里计算),使用精密水准仪、铟钢尺按照国家二等水准测量方法的精度指标均将高程传到地下。如【图3.4—高程控制测量示意图】:

图3.4高程控制测量示意图

精密水准点的埋设采用混凝土普通标石,一定要稳定、便于保护、不易破坏,其规格按《城市测量规范》有关要求确定。传递高程时,每次独立观测三测回,每测回测得地上、地下水准点的高差较差应小于3mm。取三次观测的平均值作为地下水准点的高程。

7.3.3联系测量

联系测量是将地面测量数据传递到隧道内,以便指导隧道施工。具体方法是将施工控制点通过布设趋近导线和趋近水准路线,建立近井点,再通过近井点把平面和高程控制点引入车站底板上,为隧道开挖提供井下平面和高程依据。

(1).平面坐标传递

平面坐标传递和定向测量同时作业,主要是通过竖井将方位、坐标从地面上的控制点传递到地下控制点。

本标段采用盾构法施工,根据施工现场的条件,为保证测量精度和优化现场作业,施工联系测量均采用全站仪进行投点,传递时采用三角网传递,我们在本标段用的仪器是全自动测量全站仪,本仪器对仰角和俯角都有自动补偿,测量精度满足施工要求。传递示意图如【图3.5—平面坐标传递测量示意图】:

图3.5—平面坐标传递测量示意图

在盾构施工期间,为提高地下控制测量精度,保证隧道准确贯通,应根据工程施工进度,在每个区间应进行至少三次联系测量。

7.3.4地下控制测量

(1).地下平面控制测量

为了消除和减弱折光差对横向贯通误差的影响,将洞内控制导线点布设在隧道的两侧稳定的衬砌环片上,交叉前延。点位采用强制对中托架,在通视条件允许的情况下,每约100米布设一点,曲线段适当缩短点距。以车站内逐次重复定向测量成果的加权平均值建立的基线边为坐标和方位角的起算依据。观测采用全站仪进行测量,用全圆法趋近导线测量用Ⅰ级全站仪进行测量,测角四测回(左、右角各两测回,左、右角平均值之和与360°的较差应小于4″),测边往返观测各二测回。其观测方法和精度应符合二级或以上导线的技术要求。

盾构掘进时,盾构机身后有较长的后配套,测量控制点无法做在此范围隧道两侧,可以把控制点以吊篮的形式固定在隧道的顶部,仪器及后视棱镜采用强制归心。将自动导向系统的全站仪安置在其上,与盾构机自带的激光导向系统连接指导盾构机掘进。

(2).地下高程控制测量

地下高程测量以车站传递的水准点为基准点,隧道直线段每隔100m左右布设一个固定水准点,曲线段每隔50m左右布设一个。测量时可采用精密水准仪及其水准尺进行往返观测,相邻测点往返测闭合差≤3mm,全程闭合差≤6mm(L为全程长度,单位:Km)。

(3).盾构掘进施工测量

1)盾构机姿态和衬砌环片的测量

盾构掘进时为优化掘进参数需对盾构机姿态和衬砌环片进行测量。由于选配了VMT公司先进的测量导向系统,盾构机掘进的过程中能时时地测出盾构机的瞬间姿态。为保证盾构机姿态的准确无误,需对盾构机姿态进行复测。盾构机姿态测量是以隧道里的导线点为依据,利用全站仪及其辅助工具,测出布设在盾构机上特殊测点的三维坐标,计算出盾构机的姿态,包括俯仰、旋转、平面和高程,观测值与盾构机此时的理论值相比较,将其差值反馈给盾构操作人员,调整其参数,从而指导掘进。

衬砌环片的测量包括测量衬砌环的中心偏差、环的椭圆度等,利用全站仪及其辅助工具,通过测出环片上一些特征点的三维坐标,从而通过几何计算确定环片安装位置的正确性,并为安装人员提供操作校正参数。

2)成型环片的测量

成型环片的测量主要测定环片安装位置是否符合设计要求。具体方法是使用全站仪的五反射测量模式测得成型环片一周的七个点的坐标,通过相应的计算软件换算出成型环片中心的坐标,用水准仪及水准尺测其高程,通过已测的数值与隧道线路的设计值相比,便可得成型环片平面和高程的偏差,为以后竣工和铺轨提供依据。

3)盾构机导向系统

盾构机的导向系统如下图所示:

图3.6—盾构机导向系统示意图

盾构机导向系统是传统测量与计算机的完美结合体,在盾构机掘进过程中有测量机器人在激光导向程序的控制下自动采集数据,将光信号转换成电信号传递到控制箱。盾构机前端有一光靶,他的作用是接受测量机器人传递过来的信号,自动计算出盾构机的水平和竖直、旋转角度将这些数据传送到控制箱。控制箱将两个数据送到计算机上,通过VMT—S计算出盾构机的实际三维坐标。在盾构机掘进前计算出隧道的设计轴线,将这些数据提前导入VMT—S中,这样将形成一个设计隧道轴线坐标系。通过VMT—S系统将盾构机的实际三维坐标和设计隧道轴线坐标系相比较就得出盾构机在掘进时的动态位置(如下图)。

图3.7—设计坐标系示意图

图3.8—盾构机姿态示意图

上图中显示的是在这一时刻的盾构机姿态,盾构机操作手可以看着盾构姿态和导向系统提供的相关参数来控制盾构机的掘进方向。

7.4 隧道贯通测量

本标段的区间隧道长度在2500m左右,在隧道贯通前约50米要增加施工测量的次数,并对控制导线进行全线复测,对观测值严密平差,保证隧道贯通。

隧道贯通后,从隧道两端向贯通面进行二等导线测量,分析在贯通面上的贯通误差。在做贯通测量时应将联测地上、车站、隧道导线网、水准网,并进行严密平差,为竣工和铺轨提供高精度的控制点和准确的水准点。

7.5 竣工测量

7.5.1线路中线测量

以施工控制导线点为依据,布设隧道内中线点,中线点的间距直线上平均100m,曲线上恢复所有的曲线元素点。区间各施工控制中线点组成附合导线。中线点组成的导线应采用全站仪进行观测,并对观测值进行平差,将成果上报相关单位。

7.5.2隧道净空断面测量

以测定的线路中线点为依据,直线段每6米,曲线上包括曲线要素点每4.5米测设一个结构横断面,结构横断面可采用全站仪测量,测定端面里程误差允许为±50 mm,断面测量精度为±10mm。

7.6 测量施工组织

为做好盾构施工测量工作,保证盾构机准确进入起吊井,做到盾构施工万无一失,选派有经验的测量专业人员组成盾构施工测量技术领导班子,专门领导和研究盾构施工测量技术工作,及盾构施工测量中出现的各种问题。

测量仪器选用性能稳定、精度高的进口全站仪及其配套的辅助设备。所有的仪器和工具都严格按照国家计量法进行检定。

第八节 管片拼装质量控制统计分析

管片衬砌作为盾构隧道工程最重要的主体结构,其拼装质量的好坏直接影响着盾构隧道工程的质量。

本程中采用了标准环+左右楔型环作为管片衬砌,管片外径6000mm,内径5400mm,每环管片长度1200mm,管片采用“3A+2B+1C(楔块)”错缝拼装,管片接缝采用弹性密封防水,弹性密封为三元乙丙橡胶和水膨胀橡胶止水条。

8.1管片拼装位置确定

管片在使用时必须预先根据盾构机的位置及盾尾间隙大小选定管片的拼装位置,管片的拼装依据主要有以下两条,在管片拼装分析时要综合分析确定,缺一不可。

8.1.1 盾尾法面和管片法面的相互关系

管片拼装的总原则是拼装的管片与盾尾的构造方向应尽量保持一致。

8.1.2 管片拼装前后管片外表面与盾壳内面的间隙

在盾构机尾部设有三道密封刷,用于保证在施工过程中不会有水土进入隧道,在盾构机掘进的同时,将向密封刷补充油脂,确保盾构机密封性能,在密封刷前端设有保护块用于保护密封刷不受损害,如果盾尾间隙过小,在管片脱出盾尾时,将产生较大变形,影响成型隧道的质量;同时,过小的盾尾间隙也将直接损坏盾构机的密封刷。

8.2 管片拼装施工要求

为保证管片拼装质量及施工进度,施工时必严格按照如下要求进行管片拼装的施工:

1) 为加快拼装施工速度,必须保证管片在掘进施工完成前10分钟进入拼装区,以便为下一步施工做好准备;另外,为保证管片在掘进过程中不被泥土污染,也不宜提前将管片备好。

2) 在拼装过程中要清除盾尾拼装部位的垃圾,同时必须注意管片定位的正确,尤其是第一块管片的定位会影响整环管片拼装质量及与盾构的相对位置,尽量做到对称。

3) 管片拼装要严格控制好环面的平整度及拼装环的椭圆度。

4) 每块管片拼装完后,要及时靠拢千斤顶,以防盾构后退及管片移位,在每环衬砌拼装结束后及时拧紧连接衬砌的纵、环向螺栓,在该衬砌脱出盾尾后,应再次拧紧纵、环向螺栓。

5) 封顶块防水密封垫应在拼装前涂润滑剂,以减少插入时密封垫间的摩阻力,必要时设置尼龙绳或帆布衬里,以限制插入时橡胶条的延伸。

6) 在管片拼装的过程中如果需要调整管片之间的的位置,不能在管片轴向受力时进行调整,以防止损坏防水橡胶条。

8.3管片拼装质量要求

1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。

2)确保质量合格、管片类型符合工程师指令的管片才准进洞。

3)严格按指定的拼装工艺进行拼装。

4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。

5)管片安装前应对管片安装区进行清理,清除如污泥、污水,保证安装区及管片相接面的清洁,重点清理管片的环、纵接缝面。

6)严禁非管片安装位置的推进油缸与管片安装位置的推进油缸同时收缩。

7)管片安装质量应以满足设计要求的隧道轴线偏差和有关规范要求的椭圆度及环、纵缝错台标准进行控制。拼装时要综合考虑隧道线路要求和盾尾间隙,合理选择管片拼装点位。

第九节 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

同步注浆(同一环)

1、浆液类型惰性浆液

2、浆液配比砂800kg、粉煤灰240kg、膨润土64kg、水300kg

3、注浆压力/MPa0.35~0.4

4、注浆量/m32.8~3.8

5、注浆结束标准达到要求注浆压力

补注浆(同一环)

1、浆液类型双液浆

2、浆液配比水泥:水玻璃=1:1

3、注浆压力/MPa0.3

4、注浆量/m31.0~2.0

5、注浆结束标准以设定压力注浆,直到注不进为止

6、注浆次数2

第十节 刀具、刀盘的磨损、损耗特征、规律

10.1 刀具更换的标准

刀具磨损的标准是:周边刀磨损量为5~10mm,齿刀磨损量为15~20mm。根据这一标准。在刀具更换的同时,工作人员必须检查一下螺栓是否完好。

10.2 刀具的损耗特征、规律

刀具在一般土层下掘进500~700m即达到磨损标准,在砂层或卵石层中掘进100m左右即达到磨损标准。需对土样进行观查,若发现添加剂加入正常,而出入较热,可初步判定刀具有磨损;施工参数异常,推进速度与出土速度不成比例或推进时扭矩较大,也可初步判定刀具有磨损,可开仓对刀盘的刀具进行检查。

第十一节 长距离推进的换刀

换刀可分为两种方式:一种是常压开仓换刀,适用于盾构到达竖井等刀盘前无土压情况下;一种是加压开仓换刀,适用于盾构在正常掘进过程中,在前方有一定土压力的情况下。

刀具更换的程序和方法

进舱前,每次进舱准备10~15把齿刀,还要求准备M36、M34及M32的螺栓若干和SW36的套筒及加力杆。

每次更换时,工作人员先将刀具周围的泥土清掉,保证有一定的工作空间。由刀盘外侧向内逐个检查刀具的磨损情况,确定需要更换时,用对应标号的刀具进行替换。用套筒及加力杆卸下固定螺栓,将拆下的螺栓及附件放入随身携带的工具袋内,以防丢失。将换下的刀具递到人闸内,同时将固定螺栓和固定座用水清洗干净,并检查一下是否有裂纹,如有裂纹必须更换新螺栓,以确保新装刀具有足够的固定强度。将新的刀具按原来的位置安装好,并将固定螺栓拧紧。每次带一批刀具和螺栓进舱,每批刀具换完后,把废刀具和没有安装的新刀放进料闸内。与此同时操作手转动刀盘。工作人员通过料闸把下一批刀具送入土舱内,再继续更换下一组刀具。每换完一批后,由值班机械工程师检查一遍安装质量,并检查是否有漏掉的或者没有固定好的。机械工程师确认无误后方可继续作业。更换速度按实际情况定,必须以保证安装质量为前提。

第十二节 盾构施工进度指标

根据业主提供的工期合理安排施工进度,平均每个月掘进400m。

第十三节 盾构始发至接收的一次最大施工长度及统计分析

盾构由三元桥站始发,施工掘进1100m后发现施工参数异常,于是决定开仓检查刀具,发现刀具耐磨有较大磨损,需对刀具进行部分更换。当时盾构机地面上方为公园,且地层中含水量不大,采用常压开仓检查并更换刀具。此次更换刀具共计40把,其中周边刀8把,齿刀32把。

第十四节 盾构隧道防水

14.1管片的防水

盾构隧道渗漏水的位置主要在管片的接缝、管片自身小裂缝、注浆孔和螺栓孔等。其中以管片接缝处为防水重点。通常接缝防水的对策是使用密封材料,靠弹性压密,以接触面压应力来止水。

管片防水措施主要有:

(1)管片结构的自防水结构是首选的防水措施,主要方法为管片材料采用防水混凝土。地铁结构物一般用普通防水混凝土,而盾构隧道衬砌由预制管片拼装而成,多用外加剂防水混凝土,抗渗可达S12以上。渗水量,包括接缝渗水小于0.1L/m2/d。

(2)管片接缝防水管片接缝防水主要采用弹性密封垫防水。

第十五节 监控量测

北京地铁机场线工程盾构区间地处东直门-三元桥之间,贯穿三元桥、机场高速路、东直门斜街等城区,沿线工程地质水文条件复杂多变,地表多为危旧民宅和公交车站,道路交通繁忙,地下管线密集且纵横交错,沿途还有三元桥、公园、亮马河等重点建筑。在盾构施工过程中必须通过严格控制施工技术参数,确保隧道沿线两侧的重要建筑物以及民用建筑的安全,使盾构顺利通过危险源。加强监测周边环境情况,并分析其盾构机影响范围和影响程度,对盾构安全掘进是非常重要的。

一、施工监控量测的主要目的是:

盾构的工法有别于传统的施工方法,根据盾构机的工作环境及其工艺特点,必须了解盾构机通过时对其周边的影响情况。

(1)通过监控量测采集各个施工阶段的数据,通过对监测数据的分析及回归,隧道环片的动态变化,及时将分析成果化为施工指令,反映到盾构掘进施工中以保障施工过程时时处在安全状态。

(2)通过对监测数据处理分析结合相关的施工实际情况,得出地面以及隧道成型环片变化的原因,及时采取相应的措施确保地面交通顺畅,地面建(构)筑物的正常使用,以及保证隧道的限界和质量。

(3)通过实际的测量结果来检验理论于实际之间的差异,并把监测结果分析后及时反馈给设计以便修改设计、指导施工。

(4)通过监控量测及时反映出盾构隧道上方沉降槽区域的沉降情况,及时反映到施工中防止地面出现较大沉陷。

(5)通过监控量测了解该工程条件下的施工情况,反映出的一些地下施工规律和特点,为今后类似工程或相关工艺的发展提供借鉴、依据和指导作用。

为确保施工期间结构及建筑物的稳定和安全,根据设计要求结合隧道通过的地质条件,支护类型,施工方法等特点,本工程的监测项目为:

二、地面沉降监测

对地面监控量测,采用精密水准测量,严格按照国家二等水准测量的技术要求,一般我们在监测中采用二等闭合水准路线。在盾构施工中地面的主要监测,盾构掘进过程中引起的地表沉降和地面变形情况。我们在施工开始前两月,在地表沿隧道线路埋设监测点,监测点的埋设见下图。在隧道沿线,布设监测基准点,监测基准点一定要按照监测规范要求执行,在地表沉降区域50米外埋设基准点,这些基准点要与国家水准基点形成水准网,便于对水准基准点进行复核。用精密水准仪进行地面沉降的量测。根据监测结果进行分析,判断盾构掘进对地表沉降的影响。

监测点布置原则:监测点布置在地面隧道上方,监测断面垂直于线路方向,在中线的两侧18m范围内布置测点,由于隧道沿线有的地面有密集的房屋,地表监测断面无法满足设计要求的在隧道的上方沿隧道方向每30m布设一断面,只能在隧道上方地面的每一胡同处布置监测断面胡同间距一般70 m-40 m左右,布置的监测断面间距最长60m,最短22m,为了保证盾构施工时地面安全,采取加强地面监测,地表沉降情况联系地表建筑物监测的数据来分析,达到及时掌握地表变化的目的。

图3.9 横断面监测布点图

埋设方法:用全战仪以线路沿线地面导线为依据精确定位地面监测点位,用冲击钻活水钻在所需埋设的点位上钻孔φ50~100 mm。在孔中放入φ22mm长约500mm的钢筋,钢筋顶端为圆面微露地面5mm~10mm,钢筋周围用速凝砂浆或胶状物等填充物填实。

监测频率:小于盾构机刀尖前20 m后30 m 2次/1天,大于盾构机刀尖后50 m 1次/2天,大于50 m 1次/1周

量测精度:±0.2 mm。

使用仪器: 精密水准仪、铟钢尺、全站仪。

地面沉降超过警戒值时相应措施:当地表沉降速度过大时,要增加监测频率,必要时停工检查原因,及时加强壁后注浆和二次补浆和加固地层的措施保证施工安全。

三、地面建、构筑物变形监测

监测方法:主要监测建筑物的不均匀沉降、水平位移。用精密水准仪和全站仪进行监测。在施工过程中注意观测房屋的裂缝情况,根据监控量测采集的数据,进行分析最终的出的结果来判断建筑物的变形和沉降情况,以便修正施工参数,起到指导施工的作用。

测点布置原则:对距隧道中线20米-30米以内的房屋进行监测,在建筑物的承重柱和墙及拐角位置布置测点,每一栋建筑物不少于4点,整个标段共布房屋监测点600个。

监测频率:小于盾构机刀尖前20米后30米 2次/1天,大于盾构机刀尖后50米 1次/2天,大于50米1次/1周。

量测精度:±0.2mm。

使用仪器:精密水准仪、铟钢尺,全站仪。

建筑物沉降超过警戒值时相应措施:当建筑物的变形超过+10mm,-30mm时,加快监测频率,及时采取改变土仓内土压和增加注浆量及加固地层等措施,必要时,对既有建筑物的基础采取加固措施,视实际情况制定相关补充方案和措施。

图3.10 建筑物监测测点布置示意图

四、盾构隧道收敛和拱顶下沉

监测方法:主要监测盾构隧道的成型环片的收敛和拱顶下沉情况,监测方法是用收敛仪和精密水准仪直接量测。

测点布置原则:隧道收敛和拱顶下沉测点在同一断面,沿隧道方向1断面/10m,隧道收敛和拱顶下沉测点布置如图所示。

图3.11 洞内收敛及拱顶下沉测点布置图

监测频率:当台车尾部与该环片间距小于10米时,1次/天;当台车尾部与该环片间距小于30米时,1次/2天;当台车尾部与该环片间距大于30米时,1次/周。

量测精度:±0.5mm。

使用仪器:收敛仪、精密水准仪、铟钢尺。

相应对策:当洞内收敛和拱顶下沉过大,需要加大监测频率,必要时停工检查原因,采取加设支撑、处理地层的方式保证施工安全。

五、监测数据总体概述与分析

1、地面沉降

本标段地面沉降没有超限本标段监测没有超限的监测点,整个标段经过统计地表监测点位平均沉降量在30mm左右,下面是对地表监测断面在盾构机掘进期间及掘进结束后的监测数据及其图表分析情况。下图是随时间变化第一沉降槽的变化趋势:

图3.12第一沉降槽曲线图

由上图看到在整体沉降中,在盾构机盾尾处沉降量最大,所以在这个时间段一定要加强监测。

点名5-15-25-35-45-55-65-75-85-95-105-11

沉降量-0.30-0.90-1.30-1.73-2.10-2.30-2.40-1.93-1.3-0.30-0.30

对上表中数据进行分析,画出曲线图

垂直于隧道轴线监测点的沉降曲线

从垂直于隧道轴线监测点的沉降曲线图可以清楚的看到地表沉降明显是一个沉降槽,隧道正上方沉降量最大,隧道中线两侧慢慢变小。

图3.13 地面房屋监测点监测成果表隧道周边建(构)筑物沉降数据分析

隧道周边建(构)筑物沉降曲线图

从上图中可看到隧道周边建(构)筑物的沉降可以得到控制。根据隧道施工图3.14 地面房屋监测点监测成果表隧道周边建(构)筑物沉降数据分析

情况,调整掘进参数,在盾构机通过隧道上方或周边有建筑物时,可以有效地控制周边建(构)筑物沉降量在规范之内。

为了更好地研究盾构机掘进时对周边环境影响范围,对各个不同地层进行分析监测数据,研究盾构机通过时对周围环境的影响范围,盾构机在掘进过程中在纵向和横向两个方向都有影响,为了清楚它的影响范围以及影响程度,必须对监测数据进行分析。对数据的分析分两种情况:1、分析各测点沉降与盾构机相对位置的变化规律,进而确定盾构施工时的纵向影响范围;2、采用回归分析法分析沉降槽和盾构机相对位置的变化规律,进而确定最大的影响范围和最大沉降值。

粘土层:

图3.15 断面点变化量~时间关系曲线图

通过以上的各种关系图可以看出盾构机在掘进过程中地表变化的趋势为:在粘土层段盾构机在没有到达前15m时粘土层段开始微有上升的趋势,上升的量不大,不超过2mm,在盾构机到达时开始下降直至盾构机过后20m开始趋于稳定,最大沉降量不超过7mm。

卵石层:

砂砾卵石层,此段盾构机是叩头掘进,平均覆土厚度为16m,在该地层选取K0+762里程的断面的监测数据进行分析:

图3.16 断面G点时间变化曲线图

断面的地表沉降关系图可以看出盾构机在掘进过程中地表变化的趋势为:在砂层段盾构机在没有到达前时没有上升趋势,在前20m时有下降的趋势,直至盾构机过后20米开始趋于稳定。最大沉降量在16mm 。

盾构掘进时土压力对盾构机前面土体的影响有着密切的关系,结合各监测断面的时间曲线图与上图中盾构掘进时土压力进行分析,盾构机掘进时土压建立的大小与盾构机到达时之前地表的沉降量有一定的规律,从土压曲线图可以看出,盾构机掘进时在粘土层里的平均土压为2.3bar,在砂层和卵石层中的平均土压为1.2bar左右,盾构机在粘土层里掘进的土压比在卵石层和砂层里掘进的土压高出1bar左右,而在盾构机到达之前前面土体有隆起的趋势但量很小,粘土层段地表隆起的量比卵石层要大,粘土层隆起达2mm,卵石层只有1mm左右,砂层几乎没有隆起的这一过程。产生这一现象的主要原因是因为在粘土层密实性好掘进时比卵石层和砂层中土仓里的水因土压作用不易散失,能使土压建立较高,从而对盾构机前面的土体产生推力以至使地表隆起。粘土层的土压高对前面土体的推力大所以隆起量比卵石层要大。综上所述,盾构机掘进时平均土压建立在1bar-2.3bar之间是符合北京地层的。

以上分析都是采用现场采集的数据,它的横向影响范围只反应了监测时布设的宽度,不能反应出在某一时间段实际应该影响的范围,变化程度也是实际所发生的,只有对这些数据进行回归分析才能掌握相关规律。

从曲线图可以清楚地看到,每一段面的沉降量都不同,与各段的地质等情况有关。最大沉降量的曲线是在隧道正上方处有防空洞,而最小的是在盾构机掘进前对这段地层进行了加固。从曲线图就能看出盾构施工的整个过程当中,监控量测对盾构机的掘进参数指导作用。通过对监测数据的分析,从以上分析的各种图表可以得出:(1)盾构施工能有效控制地表沉降,对地表影响较小;(2)盾构施工时隧道中心地表沉降最大往隧道两侧慢慢变小;(3)盾构机在掘进过程中离刀盘前10m左右的地表稍有隆起,在+5mm左右,盾构机盾尾通过后此处地表沉降变化最大,它的变化量占该点总沉降量的三分之二。

施工监控量测对施工具有重要的是指导意义,监测与施工紧密的结合在一起,监控量测的设计要求与现场施工监测存在较大的差异,所以我们要根据现场施工条件与设计要求相互结合,制定出最佳的监控量测方案,使得监控量测做到“安全监控、设计反馈和指导施工”。

第十六节 运输组织

16.1 工作流程

图3.17—— 运输系统流程图

运输系统由地面运输系统和地下(隧道内)运输系统组成。地面运输系统主要包括龙门吊、管片运输车、渣土车和装载机。地下运输系统主要指轨道运输列车。运输系统的主要作用是将掘进需要的材料(管片、浆液、型钢、钢轨、油脂、泡沫剂等)运到隧道内的掘进现场,并将掘进排出的渣土等运到地面,其运输流程参见【图3.17—— 运输系统流程图】。

16.2 运输能力需求

运输系统是影响盾构掘进速度的重要环节,盾构施工运输系统由地面运输系统和地下(隧道)运输系统组成。地面运输系统主要包括龙门吊、管片运输车、渣土车和挖掘机;地下运输系统主要指轨道运输列车。运输系统的主要作用是将掘进需要的材料(管片、浆液、型钢、钢轨、油脂、泡沫剂等)运到隧道掘进工作面,并将掘进排出的渣土等运到地面。

本工程使用的管片外径为6000mm,环宽为1200mm。盾构机刀盘的直径为6200mm,每环的出土量

V=kπl (D/2)2

K—可松性系数,取1.3~1.4;

D—盾构机直径;

l—管片环宽

代入计算式计算出每环出土量约为47m3 ,在运输组织设计中,按1.4考虑,出土按50 m3考虑。

隧道内配置3列运输列车(参见【图3.18——左线隧道掘进时列车编组示意图】),第一、二列车由5辆土斗车和1辆牵引机车组成,总长约25m。第三列车由2辆管片车、1辆浆液车和1辆牵引机车组成,总长约16m。

隧道弃渣通过皮带输送机装入渣斗后,由电瓶车牵引至工作井口,再由地面15T龙门吊提升至地面,卸渣于渣土存放区内,由挖掘机将渣土直接从渣土存放区装至全封闭运土车上,倒运至弃土场废弃。

图3.18——左线隧道掘进时列车编组示意图

16.3 配置运输系统能力的检算

在运输系统的配置上,必须保证盾构掘进速度。掘进速度按最大12m/天,每天工作24小时计算,即每环的循环时间为144min。

最大运输能力按本区间隧道运输距离最远计算,即以盾构隧道最长距离(此处暂取2560m)计算,隧道为双线轨道,盾构机内为单线轨道,出土车按两列车共10节土斗车运完一环的出土量。

每个循环时间检算如下:

(1)电瓶车的行车速度为10~15km/h,按平均速度12km/h计算,即200m/min。当最大运距为2.2km时需时约11min;

吊一斗渣土需要时间约为5min,一列渣土车共5个斗,需要30min,同样另一列车返回时间约为11min;考虑列车编组调车时间9min,故列车一个往返的运行时间约为20min。

(2)管片拼装和注浆

当掘进完成后即开始进行管片拼装,管片拼装时间控制为40min。注浆作业不占用盾构推进作业循环时间。

(3)掘进(装渣)作业

盾构机设计最大掘进速度为8cm/min,掘进时间按平均4cm/min,则每环掘进时间为30min,考虑到出土中间要换车出土,所以掘进时间定为40min。

(4)管片吊运和浆液运输

当盾构机掘进出土时,可以进行管片的吊运工作,从竖井口吊运一环管片到平板车上用时约为20min。

浆液采用溜管放入浆液斗内,在管片吊放时间内可完成。

第一、二列机车从盾构井处到盾构掘进面装土后返回到盾构井处所需时间约为:15min+20min=35min;第三列机车在盾构井吊土+吊管片时间约为:30min+20min=50min能够满足每一环144min的机车运行需要。

从以上看出,两列机车能够满足双线最长运输需要。

综上,该运输系统能力为:

(1)以掘进一环用三列车设计,隧道内一条线走浆液车和管片车,一条线走两列土车。

(2)推进一环时间为40分钟,管片安装为40分钟,电瓶车速度为12km/h,往返行进时间为20分钟,第一、二列列车上装有5个土斗,第三列列车上装有浆液斗、管片车,吊土、吊管片的时间为50min。

(3)电瓶车从作业面到井口所用时间均按最大运距2500m考虑。

(4)每环的工作最大循环时间是150分钟。

16.4 井口及地面运输系统配置

(1) 移动式龙门吊

现场吊运用一台15t的龙门吊,一台10t的龙门吊,分别负责渣土的吊运、管片的吊运、型钢、钢轨、临时材料、其它材料的吊运等,其主跨度为16m,可同时吊起三块管片,吊钩提升速度为13m/min,龙门吊行车速度为30m/min。

(2) 管片运输车

组织5辆管片运输车,负责将管片从管片厂运到施工现场,每辆车可运输2环管片。每天的管片运入量将根据实际进度确定,一般范围为10~20环/天。

(3) 土方运输车

组织10辆8~12m3的专用密封土方车,负责将土方从现场的渣土场运到弃土场,在政策允许范围内,渣土及时外运。当出现特殊情况造成土方积压时,将采取临时增加运输力量或设置临时渣土堆放场地的办法紧急抢运,做到不影响隧道掘进。

(4) 渣土挖掘机

在现场配置1台装载机,负责渣土的归堆整理及装车外运。

16.5 地下运输系统配置

(1)牵引机车

采用兰州产25T直-交流蓄电池机车,承担列车牵引动力,机车性能完全能满足本工程最大33.5‰坡度的需要,时速达12km/h

(2)渣土运输车

洞内渣土运输车采用5m3平板运输车。车斗与车架可以分离。

(3)管片运输车

采用两台平板运输车,每节车可装载管片3片。

(4)浆液运输车

采用平板运输车上置容量3m3带有卧式搅动叶片的浆液车。

16.6 运输轨道设计

16.6.1 钢轨及轨枕

根据配套设备情况选用24kg/m钢轨,钢轨间距762mm,轨枕间距1200mm。轨枕采用“H200”型钢。

16.6.2 扣件设置

本工程轨道连接选用铁路常用扣件,用普通M24螺栓加防转垫圈代替螺栓旋道钉。扣件由M24螺栓、螺母、平垫圈、弹簧垫圈、扣板、铁座、绝缘缓冲垫板、衬垫等零件组成。

16.6.3 道岔设置

本工程共铺设道岔5副,其中“Y”型道岔2副(放置到盾构机后配套后), “N”型道岔3副(始发隧道口1个,其它2个根据施工掘进里程再增设),以满足盾构掘进三列车的交叉施工。

16.6.4 轨道连接

(1)轨枕与管片连接

为了避免轨枕破坏管片,需在轨枕两端焊接端板才可放置在管片上,轨枕与管片采用面接触。

(2)钢轨与轨枕连接

钢轨与轨枕采用扣板式扣件连接。

(3)后配套车架由于重量较轻、行进速度较慢,其钢轨与轨枕采用一般连接。

16.7 地下运输线路布置

根据盾构机的掘进能力和电瓶车的运输能力,在隧道内主要铺设双线。在始发处洞口设置“N”型道岔,在盾尾后配套处设置“Y”型道岔,在盾构机内部采用单线铺设。

第十七节 通风

17.1 通风方式

隧道的通风主要采用压入通风为主,排风为辅。在盾构始发井设置大功率的通风机,将地面的新鲜空气送入隧道,利用软风管连接到盾构机的盾尾位置,保证盾构机上有足够的新鲜空气,在盾构机的台车尾部设置较小功率的排风机,将盾构机上的热空气排走。完成热空气交换和补充新鲜空气的功能。使掘进工人在较好的条件下工作。

盾构法隧道施工,盾构机上的各种动力元件及变压器、配电柜等为主要的热源。此外,潮湿、尘土也是洞内环境较差的主要影响因素。采用机械通风才能有效的降温、降湿、降尘和增氧,改善人、机的工作环境。

17.2 风量的估算

隧道内通风量计算依据,一是根据洞内最多工作人数确定供氧风量;二是根据洞内横断面上的最低风速要求计算风量。盾构法施工人员的供氧量完全可以满足;只有最低风速的要求,隧道断面上风速取0.3m/s ,工作面的风量按下式计算:

QW = 60·S·V

式中: QW – 工作面所需要的风量, m3/min

S –隧道断面面积, m2

V - 最低风速 0.12 m/s , 取V = 0.3m/s

则: QW = 60×3.14×2.7×0.3

= 412 m3/min

隧道通风需经过较长距离管道输送,风管接头处会产生漏风,漏风系数

K = Qf / QW

式中: K - 漏风系数 , 取K=1.5

Qf – 风机风量 , m3/min

则: 风机供风量应为:

Qf= 1.5×412 = 618 m3/min= 37080 m3/ h

17.3 通风系统的布置

拟采用直径为800mm单节长度为20m的PVC塑料软风管,并在风管外加Φ6的钢筋环箍,两节风管之间采用拉链加尼龙搭扣进行连接,以降低漏风量和接头连接的可靠性。由于隧道较长,漏风量将随着隧道的延长而增加,根据计算及以往施工的经验,选用2SZ-100A型风机。该风机的参数为:

风量为60000 m3/ h;

风压:4800Kpa;

噪声:88分贝。

风机布置在井内,垂直安装,用基座固定于井壁上,风机增设降噪设备。取风口及进洞口段采用刚性的玻璃钢风管,取风口要有防雨措施,当玻璃钢风管进入隧道后即采用帆布风管。风管在隧道内的固定,在管片纵向连接螺栓上加装一个3mm厚的钢片,钢片与风管的吊挂竿连接(直接挂接或焊接),每一环即1.2m间距,设置一个吊挂点。帆布风管的端头与伸缩风管连接,完成对盾构机及工作面的供风。隧道每延伸100m安装一次帆布风管(5节)。

17.4 通讯与监控

通讯主要依靠内部电话网络,场地办公室设置内部通话系统,各主要生产部门、各重要位置(如竖井口、出土口、浆液站、调度室、盾构机及其控制室、隧道口等)均设置电话,保证场地内的各主要位置通讯畅通无阻。场地与外界的联系利用电信局的有线电话网、移动通讯网和国际互联网,做到沟通无限。详见【图3.19——通讯与监控系统示意图】。

场地监控主要利用监控室和各位置设置的监控设备来实现。在场地内拟设置摄像头8支,分别安装在盾构机螺旋机的出土口、皮带机的出土口,隧道口、出土井口等位置,监视器10台,除每台盾构机控制室安装两台监视器外,其它监视器均安装在地面的监控室内,由土建工程师统一监控和调度。

图3.19——通讯与监控系统示意图

盾构机监控,在盾构机的控制室内,控制掘进的计算机和控制导向的计算机通过专用调制解调器向地面控制室内的监控计算机发送信号,有关数据通过专用数据线传入地面专用调制解调器并进入地面的监控计算机实现储存和显示,将信号传输到打印机可实现数据的纸化提取。

第四章 困难地质条件下盾构隧道施工技术总结

第一节 单一中粗砂或以中粗砂为主的地层施工

1.1 盾构穿越中粗砂及卵石层的施工

根据地质勘察报告,本区间盾构隧道距接收井50m处范围内为上部粉细砂、下部夹卵石圆砾。盾构掘进到此区段时,地表沉降量预计会有所增加,而且盾构掘进过程中会出现刀盘切削扭矩加大,排土困难等现象,是施工过程中的难点之一。

1.2 根据地质勘察报告中土层的物理力学性能参数和隧道埋深、地下水位情况,计算确定此段隧道拱顶土压力理论值为0.1MPa,在盾构掘进过程中以该值和盾构机土仓内土压力传感器读数为依据控制盾构掘进时的土仓压力在0.12MPa~0.15MPa之间,同时严格控制每环出土量在50m3以内,避免超挖。

1.3 调整壁后注浆配比,使浆液的凝结时间和强度适应砂层施工的要求;根据拱顶水土压力调整注浆工艺参数,将掘进过程中盾构机上部注浆压力控制在0.25MPa~0.3MPa之间,下部注浆压力控制在0.3MPa~0.35 MPa之间,同时严格控制每环控制注浆量在3.5m3~5.0m3之间,确保管片与地层之间的空隙被完全充填。结合地表沉降监测,必要时采取二次补浆措施。

1.4 提高泡沫的膨胀率,产生较大的泡沫,阻挡过多的地层中的水进入土仓。加大泡沫注入率,改善刀盘切削条件,减小刀盘切削扭矩和刀具磨损,必要时辅以膨润土浆液,增加土仓中土的粘粒含量,提高土的可排性,降低土的透水性。

1.5 加强地面沉降观测和信息反馈,及时调整优化盾构掘进工艺参数,把沉降控制在允许范围之内。

1.6 停机时保证建立土仓压力,同时采取注入膨润土浆液等必要措施,维持土仓内土压力。

第五章 盾构隧道近接穿越施工技术总结

第一节 近接穿越既有建(构)筑物

1.1穿越既有建(构)筑物工况

北京市轨道交通首都机场线03标段工程包括东直门~三元桥区间左线盾构隧道起于三元桥车站西侧站端,向西穿越三元桥后,进入东外斜街,下穿亮马河桥,到达察慈小区住宅楼西南侧的盾构接收井。左线隧道采用盾构法施工;区间联络通道及风道采用暗挖法施工,风井采用明挖法施工。盾构计划从三元桥车站西端始发,从察慈小区住宅楼西南侧的盾构接收井出洞。

设计线路距接收井665.136m区段范围内为民房区,此区段上方有大量民房(从K0+460—K1+151进入民房区段),房屋普遍建成时间为60~70年代,沿线也存在一些临时建房,在盾构接收井附近过二级风险源察慈小区住宅楼。在右线盾构先行通过后再进行穿越施工难度较大。

1.2 近接穿越工作程序

前期地质雷达探测——盾构正常掘进——管片拼装——同步注浆——二次注浆及深孔注浆——地表沉降监测

1.3既有建(构)筑物加固及地层预加固措施及效果

对既有建(构)筑物加固及地层预加固采用二次注浆及深孔注浆的方式。盾构同步注浆后,由于浆液的脱水,浆液体积收缩会加剧地表的后期沉降量,又由于盾构推力,衬砌和土层间会相互分离,二次注浆能有效地进一步充实背衬和提高止水能力。在盾构常规段以盾尾同步注浆即可满足沉降控制的要求,为保证沉降控制效果,在穿越民房段采用对已完成结构外侧二次补注浆进行加强补浆,控制地面的后期沉降。

二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位起吊孔内装入单向逆止阀并凿穿管片外侧保护层进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为1:1水泥-水玻璃双液浆。参照本工程在穿越三元桥的施工经验每环注浆量在3m3~7m3,地面沉降在6mm左右。

如果二次补注浆不能够较好的控制地表沉降,则采用深孔注浆的方法。方法为:在16号位管片位置打设5m长花管,注水泥水玻璃双液浆,注浆压力控制在0.4MPa。

1.4 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

同步注浆浆液类型为水泥-水玻璃双液浆,浆液配比为水泥:水玻璃双液浆=1:1,在盾尾对管片进行同步注浆,注浆压力为0.35~0.40MPa。

补注浆包括二次注浆和深管注浆。二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位起吊孔内装入单向逆止阀并凿穿管片外侧保护层进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为1:1水泥-水玻璃双液浆。

如果二次补注浆不能够较好的控制地表沉降,则采用深孔注浆的方法。方法为:在16号位管片位置打设5m长花管,注水泥水玻璃双液浆,注浆压力控制在0.4MPa。

第二节 近接穿越桥桩

2.1近接关系描述

本工程在桩号K2+650~ K2+700线路下穿三元桥。三元桥是机场高速、京顺路连接三环路的节点立交,各个方向的车流在这里交汇,交通繁忙。

盾构隧道和三元桥基础的关系详见下图。

图5.1 盾构隧道和三元桥基础位置关系剖面图

2.2 桥桩施工影响控制标准

左、右线施工前后,对桥桩不均匀累计沉降要不大于5mm

2.3 盾构实际推进参数及推荐的合理推进参数

施工过程中要全速前进,没有特殊情况不得停机,每环的同步注浆压力及方量必须满足要求,压力不满足要求不能进行下一步施工。

建立较高的土仓压力,同时控制进土与出土的方量关系。

2.4 同步注浆、补注浆的浆液类型、配比和注浆工艺及参数

1)、盾尾同步注浆

在施工过程中对注浆应加强管理,注浆操作是盾构施工中的一个关键工序。为防止土体挤入盾尾空隙,必需严格按照“确保注浆压力,兼顾注浆量”的双重保障原则,对注浆量一定要确保在理论计算值的130~200%,并且在实际平均注浆量的合理范围内波动。注浆操作必需有专人完成,在每环掘进完成后必需对注浆量进行记录,当发现注浆量变化较大时,应认真分析其原因,通过加大注浆压力等方法补注,当补注不能进行时必需及时进行二次(三次)补浆。此区域盾构施工采用四点注浆,来控制成型隧道的质量。注浆压力调为3.5bar-4bar,注浆时一定要确保注浆压力,直到地层注满为止。在每环管片拼装结束后,必须进行补浆,在盾尾压力达到设定压力后并维持相对稳定后,方可进行下一环的施工。且为缩短浆液凝结时间将浆液改为水泥砂浆,配比为将原配比中的粉煤灰更换为水泥。根据掌握的反馈信息及时调整浆液的配比,使浆液的配比更科学、更合理。为保证浆液的质量,要对制备浆液的原材料进行严格控制,要定期测定浆液的坍落度、粘性、离析率、凝结时间、抗压强度等。

2)、严格控制二次注浆,做好洞内加固

在盾构常规段以盾尾同步注浆即可满足沉降控制的要求,为保证沉降控制效果,在穿越三元桥段采用对已完成结构外侧二次补注浆进行加强补浆,控制地面的后期沉降。

二次补注浆安排在当前拼装管片后数第8环管片处开始,对每环管片的16号位预留注浆孔安装注浆塞进行注浆,注浆压力控制在0.3~0.4MPa,注浆浆液为水泥-水玻璃双液浆。

3)、三次补注浆加固

盾构施工进入桥区后,管片拼装采用“16位—2位—16位—2位”的拼装方式。若二次补浆不能满足要求,采取三次注浆处理,注浆位置为靠近桥桩的管片2号位,注浆浆液为水泥-水玻璃双液浆。通过管片预留注浆孔用洛阳铲将管片壁后的土体掏挖10m长的孔洞,打入10m长的花管后用水泥浆封堵预留孔周围间隙,再进行补注浆,补注浆的压力控制在0.5~0.6MPa。

第七章 盾构隧道联络通道施工

第一节 联络通道的布置形式

1.1联络通道结构形式

联络通道采用复合式衬砌,拱顶直墙式结构,联络通道初衬厚度为250mm,二衬厚度为300mm(仰拱厚350mm)。在初衬和二衬之间设置柔性外包防水层。

初期支护采用C20早强喷射混凝土,二衬衬砌采用C30钢筋混凝土,抗渗等级S10,细石混凝土保护层采用C15素混凝土。

第二节 联络通道处盾构隧道的管片类型

联络通道处盾构隧道的管片类型为两环混凝土管片,拼装方式采用通缝拼装,拼装位置为适合通道开洞口位置。

第三节 开口施工方法及工艺

破除(切割)联络通道口的混凝土管片前,在通道口处的隧道内架设临时刚性支撑,防止通道位置附近的管片由于管片拆除发生过大变形。加固范围为盾构区间联络通道开口处及相临左右各10环管片,在加固范围内每环管片均设20#H型钢加固环,每块混凝土管片通过安装在提升孔处的钢旋塞与加固钢环焊接连接,加固钢环间用20#H型钢拉结,环内设20#H型钢辐条,加固钢环与混凝土管片间用钢板背紧,每块管片背紧点不少于2处。加固环与拉杆及辐条的连接采用螺栓连接。洞门加固前须先将加固范围内的管片连接螺栓全部复紧。待支撑安装完毕后,利用切割机破除通道洞门处管片。管片正式切割前按照设计提供的方位、尺寸要求,在被切割墙体上准确放线定位。具体施作采用碟式切割方法进行切割,为不损伤无需切割墙体,在每道切割段始端和终端先钻孔,再切割,并确保废弃管片的吊运安全施工。

第四节 接合部防水施工方法及工艺

4.1盾构隧道与联络通道结构接合部防水

盾构隧道与联络通道结构衔接处后浇防水混凝土环梁采用补偿收缩合成纤维防水混凝土或钢纤维防水混凝土浇注,其混凝土强度等级应比联络通道混凝土高一级。它与现浇钢筋混凝土内衬墙、盾构管片的接缝处各设置两道预水膨胀嵌缝胶;并在两道嵌缝胶之间预埋注浆管,注浆管在拱部及两侧拱腰处经由注浆导管引出。

第五节 联络通道施工方法及工艺

5.1联络通道施工工艺流程

联络通道洞门管片支撑注浆加固土体凿除通道开口处混凝土管片洞门补浆超前支护土方分台阶开挖安装钢格栅、挂钢筋网片并喷射混凝土防水层铺设绑扎底板钢筋浇注底板混凝土绑扎拱墙钢筋安装二衬模板浇注拱墙混凝土拆摸并养护其它设施安装。

5.2施工方法

5.2.1洞门凿除施工

1、洞门土体加固

采用洞内双液注浆加固联络通道洞门上下各3m、长10m范围土体。注浆施工主要分两部分进行:首先通过盾构隧道开口段两环及左右各三环钢筋混凝土管片的吊装孔插管注浆加固,其次在开洞门的混凝土区域钻孔注浆,最后待洞门部位管片拆除后,对其他区域进行补充注浆施工。

图5-2 联络通道注浆加固平面示意图

图5-3 联络通道开口处注浆加固平、断面示意图

图5-4 联络通道洞门补充注浆示意图

2、洞门凿除施工

破除(切割)联络通道口的混凝土管片前,在通道口处的隧道内架设临时刚性支撑,防止通道位置附近的管片由于管片拆除发生过大变形。加固范围为盾构区间联络通道开口处及相临左右各10环管片,待支撑安装完毕后,利用切割机破除通道洞门处管片。管片正式切割前按照设计提供的方位、尺寸要求,在被切割墙体上准确放线定位。具体施作采用碟式切割方法进行切割,为不损伤无需切割墙体,在每道切割段始端和终端先钻孔,再切割,并确保废弃管片的吊运安全施工,参见图5-5。

图5-5联络通道管片切割示意图

3、马头门施工

为了保证施工安全,把管片分为上下分为两部分进行破除,先进行上半部分施工。打开管片后,如图5-6所示在拱部的开挖轮廓线上方进行超前小导管支护体系施工,超前小导管长度2.5m,环向间距300mm布置。小导管注1:1水泥水玻璃双液浆。待加固体强度形成后进行上台阶的开挖,直接安装第三榀钢格栅形成支护结构,待上台阶完成5米后进行下半部分的管片破除与下台阶的开挖。待洞体贯通后,在第三榀格栅处向管片上方打设长度2.5m,环向间距300mm布置的超前小导管,小导管注1:1水泥水玻璃双液浆,再破除喷射砼,按照图纸进行反挖完成第一、二榀格栅的施工。

图5-6 马头门超前小导管施工示意图

4. 2. 2超前支护施工

联络通道土方开挖前,采用超前小导管注浆加固土体。小导管采用DN32的钢管加工,每根长度为2.5m,在导管中段以梅花形均布小孔/前端加工成锥形。小导管沿拱顶环向布置,间距30cm,外插角为 5°~10°,沿隧道纵向每两榀格栅打设一道小导管,导管必须穿过前榀钢拱架中腹。小导管施工前喷射混凝土将工作面封闭,沿开挖轮廓线测放出小导管钻设位置。小导管使用小钻机钻孔施工,其孔深略大于导管长度。注浆前用压缩空气将管内积物吹净,孔口采取暂时封堵措施。注浆时,将钢管尾部及孔口周边空隙封堵,钢管尾部使用止浆塞,孔周边用快凝水泥进行封堵。采用水泥、水玻璃浆液浆进行注浆加固,浆液在现场配制,配制的浆液应与注浆速度相应,浆液必须在规定时间内用完,禁止任意延长停放时间。注浆时应注意检查各连接管件的连接状态,对注浆速度应严格控制,注浆压力经试验确定,一般为0.3~0.5MPa。注浆后2小时方可进行土方开挖。

CT4联络通道上方为交通量非常大的机场高速路,为保证路面安全减少地表沉降,在本段联络通道进行施工时采用双层小导管,第二层小导管打设角度为30°~ 45°。

4. 2.3土方开挖

1、联络通道土方开挖

土方开挖采用留核心土上下台阶法施工,施工时,先开挖拱部土方,开挖完成后立即进行拱部支护(安装钢格栅、喷射混凝土),并施作锁脚锚管,然后开挖核心土体,并进行下导洞的初期支护,初期支护封闭,上下台阶间距保持3.0m。开挖采用探挖的方法,即采用5m洛阳铲向前探挖,以了解前方土及地下水情况,待旁站人员确认安全不需要处理后进行开挖作业。开挖3m后,再进行地层的探挖。

开挖时以激光点控制开挖尺寸,严禁欠挖,并随时注意土体变化,做到“快开挖、快封闭”。

拱部开挖后尽早封闭,尽量减少顶部土方悬空时间,施工过程中密切注意掌子面土层情况,在地层变化处需对掌子面地层性状做描述,并作好记录。联络通道断面纵向施工步骤图参见图5-7。

图5-7联络通道断面纵向施工步骤图

4. 2. 5防水施工

联络通道的防水采用1.5mm厚EVA塑料防水板进行防水全包处理,在防水层内表面设置注浆系统,塑料防水板缓冲层材料采用400g/m2的无纺布。防水敷设前先对基面进行修整处理,然后铺设无纺布和EVA防水板,防水敷设后,在防水层表面铺设无纺布作为保护层,防水层采用无钉铺设双焊缝施工工艺。结构二衬施工前,在拱顶部位预埋注浆管,结构施工完毕后对拱顶部位进行二次注浆处理,将拱顶部位二衬与防水板之间的空隙填充密实。

4. 6二衬施工

隧道二次衬砌为钢筋混凝土结构,混凝土标号为C30,防水等级S10。

通道二衬混凝土浇注分三步进行,先浇注底板混凝土,再支立模板支撑体系浇注边墙混凝土,最后浇注拱部混凝土。纵向以8m为一段进行施工。

1、工艺流程

A、绑扎底板钢筋浇注底板混凝土绑扎边墙与拱部钢筋架设模板支撑体系封堵头模板浇注边墙与拱部混凝土拆模并养护。

图5-8 隧道二次衬砌施工工艺流程

B、绑扎底拱钢筋浇注底板混凝土绑扎边墙钢筋架设模板支撑体系封堵头模板浇注边墙混凝土分段拆除下部临时横撑绑扎边墙钢筋浇注边墙。

2、施工方法

(1)底板混凝土施工

1)底板混凝土浇注前在两侧边墙上设置底板标高控制线,并在底板中部钢筋上焊接直立短钢筋,其上设置底板标高控制点。

2)与区间管片相接处设置变形缝,在底板混凝土浇注前将止水带固定好。

3)混凝土浇注使用混凝土地泵泵送,插入式振捣棒振捣密实。混凝土振捣时要防止破坏防水层。

4)混凝土表面使用刮杠挂平,再用木抹子赶浆,最后用铁抹子压光。

5)在底板混凝土初凝前插入一些短钢筋,用以固定边墙与拱部模板支撑体系。

(2)边墙与拱部施工

1)模板及支撑体系

A.边墙与拱部模板采用钢模板拼装,采用组合式钢管拱架、600×600碗扣式脚手架及φ48钢管配合可调支撑作为纵横向和斜向支撑,形成二衬模板支撑体系。

B.先安装钢管拱架,拱架间使用φ48钢管连接,拱架加工时在拱脚与边墙节点处采用铰接方式。再架设碗扣式支架,在边墙处横向设置φ48钢管与可调支撑,在拱部碗扣支架立杆顶部设置可调支撑,并设置φ48钢管和可调支撑作为斜撑,可调支撑与钢管拱架间横向设置5×10cm方木。

C.钢管拱架与支架架设完成后,进行模板拼装。模板采用定型钢模板,模板与钢管拱架间使用卡具与弯钩螺栓连接固定。每个施工段拱顶部设置一个混凝土泵送口,每两个泵送口间设置一根φ32钢管,钢管上端贴近防水层,作为混凝土浇注时的排气口和二衬背后注浆口;边墙每侧每隔2m设置一个混凝土泵送口。最后安装端头模板。

D.模板拼装完成后,调节边墙与拱部的可调支撑,使模板内边线与通道二衬轮廓线一致,同时拱顶模板要预留20mm的沉落量。

E.模板与支撑体系组装完成后要检查验收,包括支架的稳定性、模板的密封性、通道中心线及轮廓线。

图5-9 横通道二衬支模示意图

(3)混凝土浇注

联络通道采用C30模筑混凝土浇注。混凝土采用预拌混凝土,二次倒运到达工作面,人工入模浇捣混凝土。混凝土浇注时边墙部分从两侧浇注口灌入,要对称浇注,每次浇注的高度为50~60cm;拱顶部混凝土由顶部浇注口灌入。混凝土浇注过程中要随时检查支撑体系的稳定及模板的变形情况,发现问题及时处理。

(4)拆摸及养护

二衬摸板拆摸时混凝土强度不得小于设计强度的80%,因此拆摸时间由同条件养护试块的强度确定。拆摸后要喷水养护时间不少于7d。

(5)二衬背后注浆

二衬拆模后,混凝土强度达到设计要求后,进行背后注浆来充填二衬与防水层间的孔隙,增强混凝土的密实度,提高防水质量。利用预埋的注浆管注入水泥浆,水灰比为0.6~1.25,同时为减少水泥浆泌水,在水泥浆中掺入减水剂。注浆压力不要过高,只要克服注浆管阻力和二衬与防水层间空气阻力即可,注浆压力控制在0.3Mpa,压力超过0.5MPa时停止注浆。

第八章 盾构隧道工程经济分析

第一节 成本影响因素及分析

1、地质条件:地质条件直接影响施工掘进速度、刀具的磨损及更换频率、密封舱添加材料、壁后注浆量; 2、地表建筑物:建筑物的重要程度、基础及结构的完好程度、地下管线自身的完好度等因素。

第二节 地面配套设备费用

1、龙门吊进、出场及基础:20万元/台;

2、浆液站进、出场及基础:16万元/座;

3、积土坑制作:15万元;

4、盾构井临时设施:30万元。

第三节 盾构始发井、接收井单位造价

始发井及接收井单位造价均为200万元。

第四节 标准区间隧道单位造价

盾构隧道单位工程实际造价

1、支座及反力架约25万元

2、出洞地层加固约30万元

3、接收段地层加固约30万元

4、掘进(元/环)约1.2万元

5、管片(元/环)(含施工费用)约1.2万元

6、止水条(含施工费用)约700元/环

7、盾构密封油脂(含施工费用)约500元/环

8、背后注浆(含施工费用)约1100元/米

9、密封舱添加材料约1300元/米

第五节 各种近接穿越施工的措施费用

1、穿越道路:40万元/条;

2、桥梁:50万元/座。

盾构施工总结第5篇

【关键词】盾构机;吊出井;到达接收

1 工程概况

该工程位于广州市海珠区南洲路站至江泰路站,含东晓南路站~江泰路站(东~江),南洲站~东晓南路站(南~东)两个区间,采用盾构法施工的隧道工程,由江泰路站始发,经过东晓南站,再由南洲站吊出井吊出,双线采用一台盾构机掘进。其中左线隧道在2007年4月18日始发,在2008年1月28日到达吊出井。吊出井此时正在进行围护结构施工,根据工期策划要求,右线隧道应于2008年6月28日始发。若待吊出井主体施工完成后,盾构机才出洞再拆解吊出,则盾构机将在吊出井围护结构外停置至少半年,且右线隧道始发时间亦将推后至少两个月。这对施工工期和施工安全都极其不利,为了能使右线隧道按计划时间始发,该工程决定采取先吊出盾构机后施工主体的施工方案。

二八号线延长线盾构1标吊出井位于南洲路站北面,基坑平面尺寸为43.9m×20.7m,开挖深度约25.218m,局部开挖深度约18.343m。基坑围护结构采用Φ1200mm,间距1350mm的钻孔灌注桩,桩间采用Φ600mm的单管旋喷桩止水。基坑支撑体系采用五道支撑,其中第一道为钢筋混凝土支撑;第二、三、四、五道为钢支撑,局部为钢筋混凝土支撑。

2 盾构机入井后的空间位置

盾构机到达吊出井后,继续掘进并拼装临时管片,待掘进至里程K10+077.568(进入吊出井内14.68m),此时临时管片已拼装4环(通缝拼装),第4环临时管片在盾尾部分沿隧道轴线方向推进0.45m,此时盾构机刀盘距南侧侧墙2.82m,盾尾离基坑北端头的水平距离约为6m,盾构机顶与第四道腰梁底的垂直距离约为2m,盾构机底与吊出井基底的垂直距离约为1.6m,停机范围地层为地层为主。盾构机在基坑中的空间位置关系,如图所示。

图1 基坑平面图

图2 盾构机入井后平面示意图

图3 盾构机入井后立面示意图

图4

图5

图6 围护桩及冠梁加强设计范围示意图(图中左边方框为围护桩及冠梁加强设计范围)

3 盾构机拆解吊装控制要点

3.1 拆解吊装前的准备工作

(1)吊装专项方案的审查

在监理工程师审批《盾构机在吊出井拆吊方案》时应特别注意盾构机分解及吊装的顺序,盾构机各部件的外形尺寸、重量、内部结构、安装方式以及吊装起重设备的各项参数,测定地基基础的承载力,选定吊装地点,并根据各项参数计算每次吊装的安全系数。特别值得注意的是吊装地点的选择,充分考虑各个部件的重量、各个部件与吊装设备的平面位置关系、吊装设备吊臂的长度、吊臂倾角与吊机有效功率的关系等因素。根据吊装地点地层的地质情况,提前制定地层的加固方案,采取有效措施对地层进行加固,使地层的地基承载力能满足吊装的要求。

(2)围护结构的处理措施

在施工左线隧道范围内的围护桩时,对左线隧道范围内围护桩的钢筋笼也进行了特殊的长度设计,即该范围内的钢筋笼长度只安放至隧道顶,控制钢筋笼底距离隧道顶约30cm左右,如此将可在盾构机入洞破桩时省去了要割除围护桩钢筋的麻烦,避免了开仓作业的风险,让盾构机入洞时更顺利安全。

在吊出井围护结构设计阶段,针对盾构机吊出,考虑围护桩除受土体压力外,还将承受盾构机吊装时的荷载作用,因此设计对左线范围内的围护桩和冠梁在配筋方面进行了加强设计,加强范围如图所示,除此之外还将基坑西侧原本为钢支撑的第四道支撑局部改成了混凝土支撑,以加强支撑的强度。

(3)地层和地面的加固措施

起重机吊装地点为吊出井的南端头,由于南端头地层较好,只对南端头地面进行了加固而未对地层进行加固。南端头地面的加固措施是:在吊装设备停放范围内浇筑了厚30cm的C40钢筋混凝土板,在板内布置了上下两层钢筋网,吊装时在板上铺设两块长8m,宽1.5m,厚8mm的钢板。

(4)盾构机到达吊出井前的控制

在左线盾构机掘进到达吊出井时之前30m需对盾构机进行定位及线路轴线复核测量,若发现偏差则需勤测勤纠;后20环管片需采用扁钢进行连接,并进行二次复紧,且每隔5环注双液防水环箍。

(5)吊出井基坑土方开挖

盾构机开挖前,吊出井基坑围护结构已施工完成,基坑封闭。待盾构机进入吊出井后,需分两步进行土方开挖,并将盾构机开挖出来。

第一步:先进行吊出井上层土方开挖,待开挖至标高约-8.8时(开挖深度约15.8m),此时盾构机刀盘顶标高约-10.3,盾构机上覆土厚度约为1.5m,开始由人工清理盾构机正上方土体。

第二步:盾构机两侧面土体则由人工配合小型机具进行开挖,两侧开挖标高至-15.5(开挖深度为22.5m),此时盾体两侧覆土约0.8m。

3.2 盾构机拆解吊装步骤

盾构机进入吊出井停机后,后配套与盾构机分离后保养(管路封堵、电缆头处理),后配套台车及桥架和主机分离后,用电瓶车拉回始发井。桥架固定到管片车上,边铺轨边用两台电瓶车往回拉。

当土方开挖至盾构机顶时,为防止挖掘机对盾构机造成损伤,采用人工开挖,人工挖除盾构机周边上半部分土体(此时盾构机盾体约外露出5.2m)后,则对盾构机进行拆解,其顺序如下:

拆除管片,焊接各种吊环并做探伤检测拆卸螺旋输送器并放置于成型隧道内拆卸管片拼装器并吊装分离中盾与尾盾并吊装尾盾分离前盾与中盾并吊装中盾拆卸并吊装刀盘吊装前盾吊装螺旋输送器

图7 盾构机半埋在井内

图8 管片拆卸及吊装

图9 盾尾吊装

图10 前盾吊装

3.3 盾构机拆解吊装要点

(1)吊装过程中的控制

每次吊装现场都有安全人员、指挥人员、司索人员、起重机司机,且配备通讯器材。吊装时司索挂钩完毕后,检查卸扣、钢丝绳的状态情况,由现场指挥人员、安全人员和起重机司机三人确认后,方可起吊。起吊时控制物体的稳定,在起吊10cm时停止一下,再次检查卸扣、钢丝绳的状态情况,确定安全后,则匀速提升物体。在整个吊装过程中安全人员、指挥人员、司索人员和起重机司机对所吊物体进行目视跟踪,观察吊物的扶护或绳索的稳固情况,避免吊装过程中与支撑发生碰撞。

(2)吊装过程应注意加强监测

注意加强对基坑的各项监测工作。在吊装前针对因吊装而使基坑容易发生变形的位置布设变形观测点并测定初始值,吊装时对变形观测点进行跟踪观测,掌握基坑的变形量,及时了解基坑的安全状态。

(3)吊装过程中应注意对支撑的保护

由于基坑内所有支撑都未拆除而且处于受力状态,基坑的空间受到限制,一旦吊装物体与支撑发生碰撞就很容易发生意外,因此在吊装过程加强现场指挥,起吊速度尽量缓慢并保持匀速,尽量避免与支撑发生碰撞,以免发生安全事故。

(4)吊环焊接后进行探伤检测

在进行盾构吊装前必须对吊环的焊接进行探伤检测,以免发生安全事故。

4 与先施工主体后吊出方案的比较

在盾构法隧道施工中,通常是先施工完吊出井的主体结构后再进行盾构吊出,但本工点由于吊出井前期施工滞后,致使工期紧迫,为保证右线隧道能按时始发,采取了先盾构吊出再施工吊出井主体结构。

下面将先从技术和工序上与先施工主体后吊出比较,分析其利弊:

4.1 有利因素

(1)缩短了盾构隧道施工的工期,为二次始发争取了宝贵的时间。

(2)吊出井主体结构施工时无需预留盾构吊出洞口,中板施工时也无需预留钢筋,中板可一次性完成浇筑。

(3)盾构机到达时无需接收架,且不需进行端头加固,到达安全可靠。

(4)无需预留隧道洞门,不需进行洞门破除,洞门可与侧墙同时浇筑,有利于防水。

4.2 不利因素

(1)盾构机需解体分次吊装。

(2)须对吊出井的围护结构进行加强设计。

(3)要求要有较好的地层。

由于施工技术和工序的不同,相对应的施工费用也有所不同,其对比如下:

(1)增加的施工费用

1)围护桩及冠梁加强设计所增加的材料费用;

2)地层及地面加固所增加的费用。该部分费用较少,因为就普通的盾构吊出有时也需对地层和地面进行加固,只是本工点的地层及地面加固的强度要求高点。

(2)节省的施工费用

1)节省了制作接收架的费用;

2)节省了端头加固及对加固效果进行检测的费用;

3)节省了洞门破除的费用。

盾构施工总结第6篇

关键词:地铁盾构施工调配优化思路

一、工程概况

福州市轨道交通1号线工程线路全长29.2公里,全部为地下线,共设车站24座。09标段工程包括三个车站和三段区间(黄山站~排下站区间、排下站、排下站~城门站区间、城门站、城门站~三角埕站区间、三角埕站),标段全长2.5km,工程原计划工期为973天,2010年12月31日工程开工,2013年8月30日全部工程竣工验收结束,32个月。其中,盾构区间要求在2013年2月贯通。采用2台盾构机施工。

【黄山站~排下站】区间隧道总长1857.762m,【排下站~城门站】区间隧道总长1316.992m,【城门站~三角埕站】区间隧道总长1736.636m;区间线路自三角埕站出发,沿着福峡路北行,到达黄山站。沿线两侧主要是居民小区及商业用地,沿道路两侧大部分为3~5层居民楼。盾构隧道所穿越的土层主要为③1淤泥、④粉质粘土、⑤1淤泥质粉质土、⑬a残积粉质粘土、⑭c全风化凝灰熔岩、⑭b全风化凝灰岩、⑮c散体状强风化凝灰熔岩、⑯c碎块状强风化凝灰熔岩等土层。

区间隧道覆土厚度约为12~15m。采用盾构法施工,单圆断面型式,错缝拼装、预制钢筋混凝土管片衬砌。盾构穿越土层,上部主要分布粘土,下部分布软岩、较硬岩、硬岩,盾构掘进面变化大,且部分区域盾构掘进面上软下硬,盾构掘进困难,地面沉降大。

二、盾构施工方案分析

根据现场环境条件、地质资料及施工工期安排等方面综合考虑,按照盾构机施工顺序及流向,以下列举四种方案:

1、按原设计顺序及流向进行施工。

即按原招标要求,投入两台盾构,由城门站北端头始发,向北掘进至排下站南端头井后,解体站外转场至北端头井,继续向北推进至黄山站;到(1)工期分析:

按原计划2台盾构设备分别于2011年9月和10月进场,单台盾构掘进2430延米,日掘进量6.5m,站外转场按2个月/台次计算,完成时间为2013年2月。工期可保证。

(盾构施工进度指标可见下表1)

(2)质量、安全分析:

采用复合式盾构机推进,可满足软土、粉质粘土、强、中风化岩层甚至弱风化岩石的掘进,对沿线穿越建构筑物及地面道路、地下管线的沉降、变形,可采取达黄山站后解体吊出,转场至城门站南端头井,向南掘进施工城门~三角埕区间。(见下图2)

调整土仓压力、螺旋机出土量、同步注浆、二次注浆等方式有效控制。质量、安全可保证。但其施工需六次安拆、四次站外转场运输,深基坑吊装、运输频繁,在机械设备深井吊装作业上需要严格按照安全规范执行,避免设备吊拆发生安全事故。

(3)场地布置:

2台盾构管片、出渣、注浆场地均布置在城门站,不需要额外增加,仅在站外转场时临时占用地面场地,施工不影响其他车站附属施工。

(4)成本分析:

盾构施工需十二次吊装、六次安拆、四次站外转场,按站外转场120万/台次(含盾构机安拆及运输)计算,需发生费用480万元,且转场工期长、二次始发速度慢,成本高、工效低。

2、调整施工顺序,黄山站和三角埕站采用站内调头。

调整现有盾构施工顺序及流向,1号盾构由城门站北端头井左线下井始发,向北推进至排下站南端头后,站外转场至北端头井继续向北掘进到达黄山站南端头井,站内调头至右线,向南二次始发,完成黄山~排下区间右线隧道,在排下站北端头井解体吊出。2号盾构由城门站南端头井左线下井始发,向南推进至三角埕站北端头后,站内调头至右线,向北推进完成城门~三角埕区间右线隧道,在城门站南端头井解体,站外转场至城门站北端头井,继续向北推进到达排下站南端头井后,解体吊出。(见下图3)

(1)工期分析:

按现有施工顺序,2台盾构设备同样于2011年9月和10月进场,10月和11月开始始发掘进,1号盾构掘进2730单延米,2号盾构掘进2130单延米,日掘进量6.5m,站外转场按2个月/台次,站内调头二次始发按1个月/台次计算,1号盾构完成时间为2013年2月,2号盾构完成时间为2012年12月。工期可满足要求。

(2)质量、安全分析:

同样采用复合式盾构机推进,可满足软土、粉质粘土、强、中风化岩层甚至弱风化岩石的掘进要求。同时,减少了两次站外转场和盾构设备的安拆,仅需要采用盾构站内调头解决,一方面提高了盾构施工转接工序作业效率,另外也降低了设备多次深井吊装的安全风险。

(3)场地布置:

2台盾构管片、出渣、注浆场地同样仍布置在城门站,不需要额外增加,但需黄山站和三角埕站站内端头井提供盾构机调头和二次始发作业所需空间,同时车站端头井根据盾构机调头要求,需要将端头井部位底板上翻梁修改为下翻梁型式。

(4)成本分析:

按此方案实施盾构施工,仅需二次站外转场,二次站内调头即可满足盾构机施工需要。按站外转场120万/台次、站内调头40万/台次计算,发生费用为320万元,且站内调头时间短、速度快,盾构机不需再次组装,二次始发方便,相对成本较低。

3、调整变更,将排下站、城门站负二层净空抬高1.65m,采用盾构过站方式进行施工。

区间盾构改从三角埕站北端头始发,一直向北推进至黄山站,调整排下站和城门站车站结构高度,将结构加深或抬高1.65m,将原设计负二层净空6.1m改为7.75m,盾构采用站内过站型式通过两个车站。(见下图5)

(1)工期分析:

2台盾构设备同样于2011年9月和10月进场,10月和11月开始始发掘进,单台盾构掘进2430延米,日掘进量6.5m,站内过站按1个月/台次计算,盾构完成时间为2013年1月。工期可满足原施工要求,并可提前1个月完成。

(2)质量、安全分析:

采用站内过站方式,将站外转场全部取消,提高了盾构施工转接工序作业效率,降低了设备多次深井吊装的安全风险;但是车站结构从围护桩深度、基坑开挖、结构层高等各方面都需要进行大范围的调整,方案变更较大,需对车站覆土埋深、结构板受力、抗浮力等进行检算,技术设计工作量较大。另外,将结构加深1.65m,将增加基坑开挖支护的施工安全风险,将结构抬高1.65m,又需要考虑车站埋深覆土小于1.5m时的结构质量隐患,质量、安全风险较大。

(3)场地布置:

2台盾构管片、出渣、注浆场地均布置在三角埕站,其他车站不需要提供盾构施工用地。

(4)成本分析:

按此方案实施,仅需四次站内过站即可满足盾构机施工需要。按盾构过站估算25万/台次计算,发生费用仅为100万元左右,且过站时间短,盾构机不需再次组装,盾构发生成本最低。

但是,在成本分析中,需要考虑到因改为盾构过站,引起的排下站和城门站两个车站的结构变更造价费用影响,如采用车站结构加深1.65m方案,初步估算需增加造价280万元/站,总造价需560万元以上;如采用车站结构抬高1.65m方案,也需增加总造价260万元左右,且不考虑车站抗浮增加费用。

4、综合前三个方案,由排下站进行始发、城门站改为盾构过站、黄山站和三角埕站站内调头。

综合前三个方案,将盾构始发场地改为排下站,城门站进行结构变更以满足盾构过站需要,黄山站和三角埕站端头提供站内调头;1号盾构由排下站北端头始发,施工黄山~排下区间隧道;2号盾构由排下站南端头始发,施工排下~城门~三角埕两个区间隧道,盾构机在城门站过站,三角埕站北端头井调头。(见下图7)

图7方案4盾构施工流向顺序示意图

(1)工期分析:

2台盾构设备同样于2011年9月和10月进场,10月和11月开始始发掘进,1号盾构掘进1860延米,2号盾构掘进3000延米,按日掘进量6.5m,盾构过站及站内调头均按1个月/台次计算,2号盾构需18个月方可完成,盾构完成时间为2013年3月。工期不能满足原施工要求,需滞后1个月。

(2)质量、安全分析:

采用了站内调头和过站相结合的方式,将站外转场全部取消,提高了盾构施工转接工序作业效率,降低了设备多次深井吊装的安全风险;但是车站结构变更的风险仍存在。

(3)场地布置:

2台盾构管片、出渣、注浆场地均布置在排下站,另外黄山站和三角埕站还需提供站内调头条件,占用车站内部分场地。

(4)成本分析:

按此方案实施,需二次盾构过站、二次站内调头施工。按盾构过站估算25万/台次、站内调头40万/台次计算,发生费用为130万元左右,盾构发生成本较低。

但是,在成本分析中,仍需要考虑到因改为盾构过站,引起的城门站车站主体的结构变更造价费用影响,估算可能将增加工程总造价130~280万元之间(费用根据结构抬高或加深估算而浮动较大)。

三、各方案综合比选

通过以上四个方案的列举,从工期安排、施工技术可行性、质量安全的风险控制、经济投资和成本投入比较等多方面的讨论,通过下表2综合对比方案优劣。

四、结论

盾构施工总结第7篇

关键词:盾构施工;地层移动;地面沉降

Abstract: There are significant influence the safety of city subway construction on the ground buildings, ground movement caused by ground movement theory, through the experience of shield tunneling, the development process of the ground movement caused a brief discussion.

Key words: shield construction; strata movement; ground subsidence

中图分类号:U231+.1文献标识码:A 文章编号:

1、 盾构法施工的特点

盾构法做为一个综合多项技术的的施工工艺,其施工过程有其独特的地方,盾构法施工的主要内容包括:

(1)在隧道某段的一端建造竖井或基坑做为始发井,将盾构机安装就位。

(2)盾构机从始发井的墙壁预留孔处出发,沿隧道设计轴线,向前方推进。

(3)通过盾构千斤顶将推进中所受到的地层阻力传到盾尾,再通过安装完毕的预制衬砌(管片)传到始发井的后靠壁或反力架上。

盾构机是一个既能能支承地层压力又能在地层中掘进的钢筒型结构,形状多样,如圆形、矩形及其他特制的形状。考虑到安装衬砌的方便,盾构机的直径略大于隧道衬砌的直径,盾构的支撑和开挖土体的装置布置在钢筒的前面,盾构掘进所需的顶进力由钢筒周围的千斤顶提供,盾尾是具有一定空间的壳体结构,隧道管片的安装就在这个空间内完成。随着盾构的不断推进,管片也随之进行安装,为防止土体开挖引起地面的下沉过大,在安装管片期间,需通过注浆管向周围的土体及空隙中进行压力注浆,同时需要通过盾构掘进系统的运输设备将开挖的土体输送出隧道。

在盾构施工期间,盾构从始发井出发后一般需有一段距离作为推进试验阶段,在这期间应做到:

(1)熟悉并熟练掌握盾构的性能和工作状况;

(2)确定适合于当前工程和盾构施工管理的要素;

(3)摸索出盾构施工中地表变形的一般规律。

在试验段的推进中,需要结合地表变形的监测数据等要求,通过对施工参数的不断调整,测试,优化,以达到最佳的施工效果。对于土压平衡式盾构而言,一般选定以下几个施工管理参数:平衡压力,推进速度(千斤顶行程速度),总推力,刀盘扭矩,出土量,同步注浆及二次注浆压力等。在试验段推进中,结合地表变形量测情况和工程质量、盾构设备的要求,对施工参数反复量测、分析、调整,进一步优化。

盾构法施工前,需要根据地质条件,周边环境,地下水情况,隧道的用途等因素,确定选择何种样式的盾构机械。在截面选择上,也需要考虑截面的力学性能与施工的方便程度,鉴于以上的因素,目前国内使用最广泛的是圆形截面的盾构机。

2.盾构施工引起的地层移动理论

在开挖隧道的过程中,周边土体的应力与位移都会产生一定程度的变化,无论何种施工工艺都将引起地层的移动,使地面产生一定的沉降。在周边环境比较空旷的情况下,这些地面沉降不会得到人们的重视,但是在周边环境复杂的市区,准确的预测隧道开挖引起的地面沉降大小及范围,对保证地面工程安全和确保施工顺利具有重要的意义。

3、盾构施工引起的地层移动的原因

在盾构隧道开挖的过程中,由于土体被挖出后引起隧道周边的土体发生了松动和塌落,其最直接的表现就是地表发生了沉降。受地表沉降的影响,隧道周边地区的建筑物等会产生一定程度的位移与变形,甚至影响建筑物的正常使用。经过理论分析与工程实践经验总结得出,形成地表沉降的主要因素包括:土体损失和被扰动后的土颗粒产生固结沉降。

3.1土体损失

第一类:正常土体损失。此类土体损失排除了操作过程等主观因素的影响,假定操作过程是仔细、认真的,合乎预定的操作规程,没有任何主观的失误。土体损失的原因全部归结于施工现场的地质条件或盾构施工工艺的选择等客观条件。因为在实际施工中无论选用何种类型的盾构机械,地面沉降都不可避免,但这种沉降可以控制在一定的限度范围内。在这种情况下,地面沉降槽体积和地层损失量相等。如果地层分布比较均匀,正常地层损失所引起的地面沉降也是比较均匀的。

第二类:非正常土体层损失。此类土体损失是由于盾构施工过程中的一些主观操作失误而引起的,如盾构施工中的各类参数设置不合理、超挖、注浆不及时等。这类地层损失所引起的地面沉降的特征是在局部会有一定的变化。

第三类:灾害性土体损失。此类土体损失是由于不可预见性的突况引起的,例如盾构开挖面发生突发性急剧流动,引起灾害性的地面沉降。这类情况的发生通常是由于盾构施工中遇到水压大、透水性强的颗粒状土的透镜体或遇到地层中的贮水洞。在软粘土中进行盾构施工时,土体损失所形成的空隙会被周边的土壤及时填满,从而引起地层运动,产生施工沉降(瞬时沉降),土的应力随之发生变化,从而形成:应变—变形—位移—地面沉降。

3.2固结沉降

固结沉降主要分为主固结沉降和次固结沉降两种,在盾构推进过程中,由于土体被挤压、超挖和盾尾的压浆作用,使地层产生了一定的扰动,隧道周边土层中的地下水产生了正、负超孔隙水压力,主固结沉降是由于超孔隙水压力消散而引起的土层压密引起的沉降,次固结沉降是由于土层位移引起的剪切变形引起的沉降。主固结沉降与土层的厚度有着密切关系,因此,即使隧道埋深较大,施工沉降很小,但主固结沉降的作用也应当引起重视。次固结沉降的过程是一个累积的过程,在软塑和流塑性土层中,由于灵敏度与孔隙比都较大,次固结沉降的过程要持续几个月甚至要几年以上,次固结沉降在总沉降中的比例可达 30%以上。理论上,盾构法隧道施工引起的周边地表沉降总量表达式为:

沉降总量=主固结沉降+次固结沉降+施工沉降(瞬时沉降)

若不考虑次固结沉降,地表总沉降等于土层损失造成的施工沉降与因地层扰动而引起的固结沉降之和。此时位于隧道上方的任一土层的相对沉降值相等,这是由于超孔隙水压力的消散,使得土颗粒向其原来的相对位置移动,在超孔隙水压力全部消散后,土颗粒也就回到其原来的相对位置上。若总沉降中计入次固结沉降的影响,地表总沉降还应加上因地层土体原有结构的破坏引起的蠕变沉降。

4盾构施工引起地层移动的发展过程

4.1前期沉降

初期沉降是指从盾构开挖面距离某测量位置相距一定距离(一般几十米)时开始到盾构机到达观测点之前,在盾构推进前方的土体滑裂面以外产生的沉降。由于初期沉降的量一般较小,而且不是所有的盾构施工工程都会发生的,一般不被人们觉察,据部分实测资料分析,初期沉降与盾构施工所引起的地下水(或孔隙水)的下降有关,同时也与隧道上部岩土体所产生的压缩和固结沉降有关。

4.2开挖面沉降(或隆起)

指从开挖面距观测点极近(几米)时起直到开挖面位于观测点正下方之间所产生的沉降或隆起现象,多由于开挖面的崩塌、盾构机的推力过大等所引起的开挖面土压力失衡所致。这是一种由于土体的应力释放或盾构开挖面的反向土压力、盾构机周围的摩擦力等的作用而产生的地基塑性变形。国际上一般用超载系数 OFS(设计采用的计算荷载与标准荷载的倍比系数)来衡量开挖面土体的稳定性。开挖面的超载系数越大土的自立性就越差,开挖面向盾构方向的位移量或土体损失量也就越大,开挖面的沉降因此而产生。

4.3尾部沉降

尾部沉降是指盾构在通过观测点时产生的地面沉降。因盾壳与土体之间有摩擦阻力存在,就必然会在土体中产生一个滑动面,这时,靠近滑动面的土层中就会存在产生剪切应力的作用,当盾构刚刚通过这些已经受到剪切破坏的土层时,因受剪切而产生的拉应力会使土体向盾尾空隙移动,为了保持盾构前进方向与隧道设计轴线保持一致,在盾构推进过程中必须压缩一部分土体,就使得另一部分的土壤得到松驰,被压缩的土体保证了盾构不会偏离轴线方向,而松驰的土体则会引起地面沉降。

4.4盾尾空隙沉降

它发生在盾尾部通过之后。引起沉降的原因是因为盾构尾部空隙增加使得地表沉陷,隧道周围土层被扰动。在土力学上表现为,土的应力释放,密实度下降。由于衬砌需要有一定的厚度,为了在施工中安装方便,使盾壳内与衬砌间必须留有一定的空隙,一般盾构的外径要比隧道衬砌的外径大 2%,这个空隙称为盾尾空隙,盾尾空隙在充填前,周围土体会向“空隙”移动,从而形成地面沉降。

4.5长期后续沉降

它是指盾构通过后在相当长一段时间内仍延续着的沉降,是一种固结和蠕变残余变形沉降。这类沉降归结于地基土的徐变特性的塑性变形。该阶段的沉降起因是土层的本身性质和隧道周围土体受挠动,它的滞后时间与盾构的种类、地质条件、施工质量等因素有关。