欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

卫星通信论文(合集7篇)

时间:2023-01-06 07:42:54
卫星通信论文

卫星通信论文第1篇

1.1卫星通信系统组成卫星通信系统由两段组成,即地面段和空间段。

1.1.1空间段空间段包括通信卫星以及地面用于卫星控制和监测的设施,即卫星控制中心,及其跟踪、遥测和指令站,能源装置等。

1.1.2地面段地面段包括所有的地球站,这些地球站通常通过一个地面网络连接到终端用户设备,或直接连接终端用户设备。地球站的主要功能是将发射的信号传送到卫星,再从卫星接收信号。地球站根据服务类型,大致可分为用户站、关口站和服务站3类。

1.2卫星通信系统的工作过程卫星通信系统地球站中各个已调载波的发射或接收通路经过卫星转发器转发,可以组成多条单跳或双跳的双工或单工卫星通信线路,整个通信系统的通信任务就是分别利用这些线路来实现的。单跳单工的卫星通信系统进行通信时,地面用户发出的基带信号经过地面通信网络传送到地球站。在地球站,通信设备对基带信号进行处理使其成为已调射频载波后发送到卫星。卫星作为中继站,接收此系统中所有地球站用上行频率发来的已调射频载波,然后进行放大和变频,用下行频率发送到接收地球站。接收地球站对接收到的已调射频载波进行处理,解调出基带信号,再通过地面网络传送给用户。为了避免上下行信号互相干扰,上下行频率一般使用不同的频谱,尽量保持足够大的间隔,以增加收发信号的隔离度。

2卫星通信所使用的频率

卫星通信所用的频率大多是C频段和Ku频段,但是由于业务量急剧增加,这两个频段乃至1—10GHz的频段都显得过于拥挤,所以必须开发更高的频段。现已开发出Ka(26—40GHz)频段,其带宽是3—4GHz,远大于上述两个频段。

3卫星通信的基本参数

3.1有效全向辐射功率:也称等效全向辐射功率,其定义为发射机发出的功率与天线增益的乘积。

3.2噪声系数和等效噪声温度:噪声系数,定义为接收机的输入信噪比与输出信噪比的比值,它用来表示接收机噪声性能的好坏。根据噪声理论,电子元器件内部的电子热运动和电子不规则的运动都将产生噪声,而且温度越高,噪声越大。所以接收机的噪声可用等效噪声温度来衡量。等效噪声温度是假设接收机输入端接一等效电阻,该电阻在一定温度下与该系统实际产生的噪声温度相同的热噪声。

3.3载噪比:卫星通信线路中的载波功率与噪声功率之比,是决定卫星通信线路性能的最基本的参数之一。

3.4地球站的品质因数,定义为接收机天线增益与接收端系统噪声温度之比。

3.5卫星转发器饱和通量密度:表示卫星转发器的灵敏度,其基本含义是,为使卫星转发器单载波饱和工作,在其接收天线的单位面积上应输入的功率。

3.6门限载噪比:为保证用户接收到的话音、图像和数据的质量达到一定要求,接收机所必须得到的最低载噪比,也是门限载噪比的含义。

4卫星通信与互联网

互联网是全球最大的多媒体商用网络、信息库和数字媒体。互联网和数字技术的发展使得所有信息内容都在网上实现,特别是数字音视频技术使得可以在互联网上看电视听广播[3]。由于卫星通信具有三维无缝覆盖能力、远程通信、广播特性、按需分配带宽,以及支持移动性的能力,成为互联网摆脱自身诸多问题的一个重要途径,也是向全球用户提供宽带综合互联网业务的最佳选择[4]。基于卫星的互联网是卫星直播、数字音视频、互联网的有机结合,作为一个开放、宽频、实时广播的网络平台,可以提供以下服务。

4.1宽带互联网接入,可根据使用者的需求,通过地面网络和卫星线路回传。

4.2多媒体服务,比如网页内容投递、内容镜像、缓存、数字电视、商务电视、流式音视频、软件分发(更新)、远程教学、信息商亭等。

4.3交互式应用,如视频点播、网上学习、网上游戏等。卫星通信与互联网结合能够带来很多益处,同时也应注意到,卫星系统和现有互联网地面基础设施之间的结合存在着互操作性问题,再设计和实现基于卫星的互联网时还存在许多技术挑战。

5卫星通信与导航定位系统

该系统是以人造卫星为导航台的星基无线定位系统,其基本作用是向各类用户和运动平台实时提供准确、连续的位置、速度和时间信息。目前该技术已基本取代无线电导航、天文测量和大地测量,成为普遍采用的导航定位技术。拥有此技术及能力,国家就会在政治、军事和经济等诸多领域占据主导地位,因此世界各大国不惜花巨资发展这一技术。1958年美国为解决北极星核潜艇在深海航行和执行任务中的精确定位问题,开始研究军用导航卫星,命名为“子午仪计划”,从1960年起就取消了无线电导航,第二代导航系统即———GPS(GlobalPositioningSyitem)便应运而生。俄罗斯的GLONASS(GlobalNavigationSatelliteSystem)是继GPS之后又一全球卫星导航系统,欧盟与欧空局也开发了新一代卫星导航系统———伽利略(Galileo)系统,习惯上称其为3G(GPSGLONASSGalileo)系统。我国的导航定位技术始于GPS,从2000年10月开始,我国发射了多颗导航卫星,命名为北斗卫星导航系统,现已覆盖我国及周边地区,预计2020年前后覆盖全球。

6卫星与激光通信

卫星与激光通信是利用激光光束作为信息载体在卫星间或卫星与地面间进行通信。经过多年探索,卫星激光通信已取得突破性进展,逐步成为开发太空、利用广阔的宇宙空间资源提供大容量、高数据率、低功耗通信的最佳方案,对于国防及商业应用都具有极大的价值。其原理是信息电信号通过调制加载在光波上,通信双方通过初定位和调整以及光束的捕获、瞄准和跟踪建立起光通信链路,然后在真空和大气中传播信息。其组成有激光光源子系统、光发射/接收子系统、APT子系统和其他一些辅助系统,其工作过程如下:

6.1发射过程。使用不同的激光器,产生信号光和信标光。经准直系统对激光进行光束准直后,具备了合适的发射角,2束光由合束器合成1束光,然后经分光片、精对准机构和天线发射出去。

6.2接收过程。接收到的光经过天线和分光片后,信标光一部分到达粗对准探测器,由粗对准控制器控制和驱动电路控制粗对准机构,完成粗对准和捕获;信标光另一部分经精对准机构、分光片、分束片到达精跟中踪探测器,由精对准控制器控制精对准机构,完成双方的精确对准和跟踪。信号光由信号光探测器检测。

7卫星与量子通信

卫星搭载量子通信技术,能够使人们借助外太空的卫星平台,建立星地高效自由空间量子信道,实现量子保密通信、星地量子纠缠分发、量子隐形传态实验。我国拟在近期发射量子通信卫星,在卫星平台应用量子技术的能力将达到世界领先水平。

7.1星地量子通信通过自动跟踪瞄准系统在高速相对运动的地面站和卫星终端之间建立高效稳定的量子信道,地面站随机发送H/V和+/-四种偏振状态的单光子信号;接收端接收量子信号,并随机选择H/V或+/-基矢对单光子信号进行测量;测量到足够的量子比特后,接收端将通过经典信道通知发射端其每次测量所用的基矢,抛弃所用基矢不一致的测量结果;接收端再将基矢选择一致的测量结果取一部分在经典信道公布出来供发射端校验。通过这一过程就可以在星地之间建立安全的量子密钥。

7.2星地纠缠分发将纠缠光源放在卫星上,通过搭载在卫星平台上的望远镜系统和自动跟瞄系统同时与两个地面站之间建立量子信道。将纠缠光子对的两个光子分别发送给两个地面站,两站在满足类空间隔条件下分别对纠缠光子对进行独立测量,观测量子纠缠现象。

7.3星地量子隐形传态地面量子信源产生一对纠缠光子,其中一个光子通过地面发射端传输给卫星,另一个放入量子存储器中存储起来。空间量子通信平台将接收到的光子态和未知量子态进行联合Bell态测量,同时将测量结果通过经典信道传输给地面系统。地面系统将另一个纠缠光子从量子存储器中读出来,并根据空间量子通信平台的测量结果进行相应的幺正变换,从而得到空间量子通信平台的未知量子态。

卫星通信论文第2篇

1.1卫星通信具有众多的优势(1)电波覆盖地域比较宽广。(2)传输路数多,通信容量大。(3)通信稳定性好、质量高。(4)卫星通信不受地域限制,运用方式灵活。

1.2卫星通信的一些劣势主要的方面有:(1)延迟现象比较常见。(2)传播过程中由于信号较差,容易出现信号中断的现象。(3)终端产品的选择面不广。

2卫星通信产品的多址体制方式的选择

卫星通信由于具有广播和大范围覆盖的特点,因此,特别适合于多个站之间同时通信,即多址通信。多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信。目前比较常用的两种卫星通信多址体制方式为:TDM-FDMA(时分复用-频分多址)和MF-TDMA(跳频-时分多址)。(1)多址体制方式一:TDM-FDMA。(2)多址体制方式二:MF-TDMA。

3卫星通信在铁路应急通信中的应用网络架构

有时候会因为遇到突发性、严重的自然灾害、人为因素导致其他所有通信手段无法使用时,而应急指挥中心又急需现场相关资料,这时就可以利用卫星通信覆盖区域广和快速部署的优势将信息发送到应急指挥中心。常规卫星系统现场接入方式可以分成两种:一种是车载型,一种是便携型,这两种卫星接入方式可以视现场情况而定。而对于铁路应急通信人员来说,以上两种接入方式均可以采用,但在到达应急现场后,还需要在现场对卫星接入设备进行开设,考虑操作使用人员的技术水平和熟练程度,选择自动对星的车载或便携卫星设备就显得非常的方便,可确保快速建立通信链路保证通信。

事发现场人员要将信息传送到应急指挥中心,在铁路应急卫星通信系统网络建设时,可根据实际情况需要,按下文所述三种方案进行建设,如图1所示。

方式一:在中国铁路总公司应急中心建立卫星地面通信站,这样就可以通过应急指挥中心收发数据,再通过地面的有线网络传输到需要数据的各路局应急指挥中心。这种方案对于现代网络资源的应用比较充分,但在遇到一些突况时,数据可能无法通过地面有线网络传输到需要数据的各路局应急指挥中心,这就导致可能会出现一些无法预知的情况。

方式二:在各个路局的应急指挥中心建立卫星通信站,这样就可以在发生状况时迅速的将数据发送到各路局的应急指挥中心,同时各路局也能够及时的下达指令,进行相关问题的处理。这样做的好处是各路局应急指挥中心能及时掌握应急现场状况,但不利的是其建设费用将会大大增加。

方式三:在中国铁路总公司应急指挥中心以及各路局应急指挥中心均设置卫星通信站,这样一来,无论发生什么灾害情况,各路局应急指挥中心与中国铁路总公司应急指挥中心都可以实时掌握事发现场情况。这样做的好处不言而喻,但其建设费用也无疑会昂贵很多。

4结束语

卫星通信论文第3篇

3GPP(The3rdGenerationPartnershipProject,第三代合作伙伴计划)的LTE(LongTermEvolution,长期演进)标准是4G移动通信的主要技术方案之一。文献[1-2]针对星上功率放大器引起的非线性失真、大时延特性和时间分集对LTE空中接口进行改进。文献[3]通过分析卫星信道物理特性,并将信道物理特性作为依据对LTE的空中接口进行改进,增强了卫星信道传输的可靠性。上述文献都提出了LTE空中接口适应卫星通信系统可能会遇到的典型问题,并给出了主流的改进策略,但并没有在理论上详细探究LTE空中接口在卫星系统上的可行性,并且没有将WCDMA与OFDMA两种空中接口在卫星信道下对比分析。

文中首先系统性的阐述了以WCDMA和OFDMA为典型代表的地面3G、4G移动通信空中接口,研究了卫星移动通信系统的架构和特点,然后从信噪比门限、误码率、功放非线性影响这3个方面对比了WCDMA和OFDMA作为卫星系统空中接口的可行性,最后总结了现有文献基于LTE在卫星系统中使用的改进方案,为未来卫星移动通信系统空中接口的制定起到了一定的指导作用。

1地面空中接口概述

WCDMA和OFDMA分别是地面3G、4G标准的空中接口,本节分别对两种空中接口的特点、信道、调制编码方式等方面进行了概述。

1.1WCDMA空中接口

WCDMA是通用移动通信系统(UniversalMobileTelecommunicationsSystem,UMTS)的空中接口标准,而UMTS是国际标准化组织3GPP制定的全球3G标准之一。WCDMA基于直扩序列码分多址(DS-CDMA)技术,采用QPSK调制,载波带宽为5MHz,工作模式是FDD双工,并且支持不同数据速率的业务传输,最高可达2Mbps。在UMTS标准的后续版本引入新的链路层技术,支持更高的数据速率服务,具有更好的功率/带宽效率,如增强版本是高速分组接入(HighSpeedPacketAccess,HSPA),HSPA包括高速下行分组接入(HSDPA)和高速上行分组接入(HSUPA)。HSDPA引入高速下行链路共享信道(HighSpeedDownlinkSharedChannel,HS-DSCH),支持突发性、非对称和高速率的分组数据业务。它支持QPSK/16QAM的调制方式,使用基本速率为1/3的并行级联卷积Turbo码(ParallelConcatenatedConvolutionalCode,PCCC),速率匹配通过打孔或重传实现。HSUPA引入增强型专用信道(EnhancedDedicatedChannel,E-DCH),支持更高的上行数据传输速率。该信道使用BPSK调制和正交可变扩频因子(OrthogonalVariableSpreadingFactor,OVSF)码。

1.2OFDMA空中接口

4G移动通信比较成熟的标准有3GPPLTE标准和IEEE移动WiMAX标准,两者均为基于正交频分多址接入(OrthogonalFrequencyDivisionMultiplexingAccess,OFDMA)技术的空中接口,具有抗频率衰落和灵活分配子载波的特点。LTE和移动WiMAX的每个用户需要进行时间-频率子载波分配,支持可扩展的带宽,FDD/TDD双工,提供高数据传输速率和高频谱利用率的业务。

LTE和WiMAX标准之间存在差异。LTE标准与HSPA标准类似,使用了基本速率为1/3、可进行速率匹配的并行级联卷积Turbo码(PCCC),而移动WiMAX标准规定了各种FEC码,如双二进制卷积Turbo码。另外,它们具有不同的帧结构、系统参数和子载波复用方式。LTE的上行链路采用了DFT扩频OFDMA,而WiMAX的上行链路和下行链路直接采用OFDMA。图1描述了HSPA、LTE和移动WiMAX这3个地面移动通信标准的演进过程。

2卫星移动通信系统架构及特点

从上世纪90年代开始,卫星移动通信系统已经取得了的长足的发展。卫星移动通信系统与地面移动通信系统的关键优势是其大的覆盖面积,而固有的大衰落、长时延、高成本又给卫星移动通信系统带来了挑战。卫星移动通信系统可以支持单个或多个卫星,且每一颗卫星可以提供单点波束或多点波束的覆盖。用户终端通过卫星连接到网络,无线信号被指向发往或来自某个网关,系统根据运营商的要求制定一个集中分布或分散分布的网关。卫星环境下,信号由于传输途中受到建筑物或地势遮挡而衰弱。为了确保覆盖的连续性,利用地面补充部分(ComplementaryGroundComponents,CGC)进行信号重传。卫星移动通信系统架构如图2所示,用户终端可以直接与卫星之间收发信号,也可以通过CGC进行信号重传。由于卫星信道与地面移动信道在物理特性有较大差异,在对卫星移动通信系统的设计过程需要关注传输特性的改进,需要充分考虑卫星信道的影响,卫星信道主要有以下几个特点:

1)大衰落

随着收发端之间环境的变化,信号在长的传播途中缓慢变化,除了自由空间传播损耗外,雨衰的影响也很大。除了考虑来自卫星的直射信号之外,还需要考虑多径衰落的影响,多径衰落能使接收信号在短距离或短时间内的快速变化。

2)长时延

大传输时延是卫星通信的固有缺陷,主要是由于星地距离较大造成的,这对时间同步造成一定的挑战。另外,由于OFDM系统对频偏非常敏感,而卫星链路还会产生较大的频率偏差,这都将对系统产生严重影响。

3)多普勒频移

由于多普勒频移的存在会降低信号传输的可靠度,对卫星系统性能造成较大影响,因此在编码、调制、信道估计等多个环节都需要检测估计出多普勒频移信息,对其进行补偿。

3可行性对比

在针对WCDMA和OFDMA两种空中接口可行性研究的基础上,本章从信噪比门限、误码率性能、功放非线性容限三个方面对上述接口进行了分析和对比,研究结果发现OFDMA空中接口在卫星系统中具有更好的链路性能。WCDMA作为卫星空中接口的可行性研究主要包括:1)MSS系统采用WCDMA可扩充UMTS容量。2)允许与地面UMTS网络技术上的协同性。3)启用所有波束和卫星的全频率复用。4)支持大区域广播/组播服务。5)对由于商业原因未部署网络覆盖的地区、需扩展网络容量的地区、由于自然灾害造成地面网络被损坏的地区提供了网络服务[4]。OFDM作为卫星空中接口的可行性研究主要包括:1)尽管具有大的峰均功率比(PAPR),OFDM信号还是能够在非线性卫星链路上有效传输。2)预失真设计和前向纠错编码是互补的。3)卫星视距(LOS)传播条件下可以实现正确接收;卫星非视距(NLOS)传播条件下,由于存在负的链路余量,手持终端无法实现正确的业务接收[5]。

两种空中接口均有其应用优势,但在多径信道下,OFDM的频谱利用率较WCDMA更高;而WCDMA接收机的载噪比高于OFDM[5]。为了完善两种空中接口可行性研究,下面从信噪比门限、误码率性能、功放非线性容限三个角度比较了两者在卫星信道下的链路性能[6]。

1)信噪比门限

卫星宽带衰落信道存在稳定的传播时延,HSPA与LTE/WiMAX的Eb/N0门限值是可比的。然而,HSDPA采用了地面中继,对微弱卫星信号进行增强,因此比LTE/WiMAX需要的Eb/N0门限低。

2)误码率

卫星信道的大时延会造成码正交性的显著降低,成为HSDPA高速数据传输的严重制约因素。当HSDPA传输速率为2.4Mbps时,误码率在Eb/N0为4~5dB时达到最低,却仍达不到10-3。3)功放非线性影响功放非线性会使链路性能受到一定程度的降级。其中,HSDPA在单码传输时功放非线性对链路性能影响非常小,而多码传输则会使PAPR增加,性能降低;LTE的上行链路使用SC-FDMA,这种调制方式对功放非线性的敏感性较小;WiMAX的上行链路则直接使用OFDMA,对功放非线性的敏感性较大。另外,文献[7]证明了回退和数字预失真结合的方法可以减小放大器非线性的影响。综上,可以得出以下结论:①卫星宽带衰落信道环境下,HSDPA与LTE/WiMAX的Eb/N0门限是可比的。②大传播时延的卫星信道环境下,HSDPA比LTE/WiMAX的Eb/N0门限低。③大传播时延的卫星信道环境下,码正交性的损失构成了HSDPA高速数据传输正确性的严重限制因素。④所有空中接口的链路性能都会因为放大器的非线性受到一定程度的降低。其中:-HSPA:在多码传输时PAPR增加。-LTE/WiMAX:OFDM的IFFT处理导致PAPR增加。其中,LTE上行链路使用SC-FDMA,受影响小;而WiMAX上行链路直接使用OFDMA,受影响大。因此,LTE和WiMAX空中接口在卫星信道下表现的链路性能比HSPA更可靠。然而,不论是WCDMA或是OFDMA空中接口都缺少TTI的有效时间分集,从而缺少了时间交织增益,使性能至少损失了5dB。同时,由于卫星系统的功率受限和大时延的存在会使短TTI失去优势。

4基于LTE的改进方案

前文已对卫星移动通信系统特点以及两种地面空中接口在卫星系统下的可行性对比进行了研究,得出LTE空中接口在卫星信道下表现出更好的链路性能的结论。由于LTE标准中所规定的传输时间间隔(TTI)较小,因此在大时延的卫星链路下无法得到好的时间分集。另外,卫星链路产生的大频偏和衰落,对OFDM产生严重的影响,而传统OFDM技术的峰均比(PAPR)较大,会导致严重失真。因此,要想将LTE空中接口应用到卫星系统,则需要针对卫星信道环境的大时延、大衰落特性带来的约束,对LTE空中接口进行改进。针对这些问题,需要调整接口以补偿卫星系统的大往返时延和大衰落,目前已有几种主流的改进方法,如频率复用技术、卫星链路同步技术、PAPR降低技术和自适应编码调制与交织技术。

4.1频率复用技术

由于频谱资源有限,在卫星系统中需要提高卫地信道的频谱利用率,频率复用是一种较好的解决方案,可以很好的促进地面网与卫星网的融合。

对于采用WCDMA的多点波束卫星系统,可通过给相邻波束分配不同的扩展码来实现频率复用。而对于OFDMA,则一般采用小数倍频率复用(fractionalfrequencyreuse,FFR),采用该技术可以改善基于OFDMA的多点波束卫星系统的频谱利用率,有效复用卫星频率。

图3显示了基于OFDMA的多波束卫星系统的频率复用模式。每一波束分为中心和边缘区域,每一帧分为两个时段T1和T2。时段T1被分配给波束半径为R1的点波束中心的终端,该时间段能被多有子载波利用。时段T2被分配给波束边缘的终端,该时间段只能被单个子载波利用。然而,为防止相邻点波束之间的干扰,两个区域的用户信号不能同时传输。频谱利用率与点波束中心区域大小有关,如果设置点波束中心区域的半径比点波束半径的一半还要大时,即R1>R2/2,则可以获得比传统方案更高的频谱利用率。

4.2卫星链路同步接收技术

从物理层角度出发,卫星链路中存在大时延会造成严重张曼倩,等地面空中接口在卫星移动通信的适用性研究的载波间干扰(ICI)和符号间干扰(ISI),其中以频偏影响更为严重。一些传统的同步算法可以应用到卫星系统,但效率不高。目前相关研究组提出了一种基于莱斯信道模型的频偏估计算法,该算法利用时域恒包络零自相关(CAZAC)序列进行符号同步和整数频偏估计,相对现有算法更加快速可靠。在地面OFDMA系统,上行链路帧同步可由随机接入过程获得。由于小区内的用户之间的延迟差比子帧长短,子帧长相当于LTE系统的传输时间间隔(TTI)。在这种情形下,用户传输一个前导告知基站自己的位置,然后基站在一个TTI内给用户分配资源。然而,卫星系统一个波束内用户之间的时延差比1个TTI长,这需要修改LTE系统的上行链路定时同步或资源分配方案,使适用于卫星环境。

如果考虑只修改LTE系统中的上行链路定时同步方案,资源分配方案不变,这表示上行链路信号应在卫星端同时接收。因此,同一波束内的所有用户都将利用一定的延迟,在同一时刻到达卫星。该方案会造成有效时间资源的浪费,达到了数十毫秒,并直接影响系统吞吐量和延迟敏感业务的QoS。为了解决该问题,需要将上行链路定时同步与修改的资源分配方案相结合,上行链路定时同步方案与传统LTE一致,以保留与LTE系统物理层的最大兼容性[8]。例如,UE1和UE2分别代表了位于点波束边缘和点波束中心的终端,即UE1和UE2分别具有最大和最小的往返时延(RTD)。设定UE1延迟时间为参照,即UE1一旦接收到下行链路的资源分配信息,就会立即传输上行链路信号,等待时间D1=0。那么其余UEj的Dj可以通过修改的资源分配方案计算。实际上,卫星事先通过随机接入方案可以得到每一个UE的位置信息,并根据位置信息分配资源。该方案中,可以保证最大的时延Dj不超过一个子帧时间,从而增强了整个系统的吞吐量,降低了时延。

4.3PAPR降低技术

OFDM因具有较高的频谱利用率和较好的抗多径衰落能力而被广泛应用于卫星通信系统中,但其较大的PAPR使得信号非线性容抗较差,要求系统内的部件具有很大的线性动态范围,否则出现非线性产生多载波互调噪声干扰,所以,降低PAPR是提高卫星系统传输性能的一个重要研究方向。目前已经有很多降低PAPR的方法,如限幅滤波、编码、有效星座扩展(ACE)、多信号表示法等,其中较为常用的有:LTE上行链路采用SC-FDMA调制,通过增加DFT和IDFT提高传输的准确性,降低传输时延;部分格状成形技术不仅能有效降低OFDM信号的PAPR,而且在保持较高信息率的情况下灵活地与纠错编码相结合,大大改善OFDM卫星通信系统的误码率性能[3];分数阶傅里叶变换(FRFT)代替传统OFDM系统中的FFT,在改善OFDM系统误码率性能的同时有效降低了PAPR[3]。

4.4自适应编码调制与TTI交织技术

自适应编码调制技术(AMC)是一种对抗信道衰减的技术,其使用受限是由于卫星系统的大往返时延造成的。文献[8]提到了一种有效的功率控制和符号卷积结合的AMC方案,适用于基于LTE的卫星移动通信系统,该方案相对传统AMC方案有高达10.2%的频谱效率增益和高达8dB的功率增益。

当终端移动速度降低到一定程度时,信道编码抵抗衰落效果将会不明显。卫星链路具有大的环路延迟和缓慢的长衰落[9],LTE标准中的TTI机制无法产生较好的时间分集效果。利用现有混合自动重传请求(HARQ)的灵活性降低信道的相关性,把LTE发射机同一环路缓存中的数据映射到不同TTI中,达到时间分集的目的。

5结束语

卫星通信论文第4篇

论文摘要:低轨道(LEO)卫星移动通信系统是卫星距离地面500~1500km,运行周期2~4小时的卫星通信系统。铱系统、全球星系统及系统是地轨道卫星移动通信系统发展最快的范例。LEO卫星移动通信系统具有广阔的发展前景

1LEO卫星移动通信系统的特点

低轨(LEO)卫星移动通信系统与中轨(MEO)和静止轨道(GEO)卫星移动通信系统比较,具有以下特点:

1.1由于具有更小的信号衰减和更低的传播时延,低轨卫星通信系统更有利于实现个人全球通信。LEO系统的路径传输损耗通常比GEO低几十分贝,所需发射功率是GEO的1/200-1/2000,传播时延仅为GEO的1/7~1/50,这对于实现终端手持化和达到话音通信所需要的延时要求是十分有利的。

1.2蜂窝通信、多址、点波束、频率复用等技术的发展为LEO卫星移动通信提供了技术保障。

1.3由于地面移动终端对卫星的仰角较大,天线波束不易受到地面反射的影响,可避免多径衰落。

1.4它在若干个轨道平面上布置多个卫星,由星间通信链路将多个轨道平面上的卫星联接起来。整个星座如同结构上连成一体的大型平台,在地球表面形成蜂窝状服务小区,服务区用户至少被一个卫星覆盖,用户可随时接入系统。

1.5由于卫星的高速运动和卫星数目多,也带来了多普勒频移严重和星间切换控制复杂等问题。但不管怎样,低轨卫星移动通信系统的上述特点对于支持实现个人通信是有巨大吸引力的。

2LEO卫星通信系统用户切换的一般过程

低轨卫星移动通信系统中,由于卫星的高速运动,使得它的波束覆盖区也跟着移动,而波束覆盖区的移动速度远大于用户的运动速度,因此,在LEO卫星移动通信系统中,切换主要是由于卫星波束移动引起的。

对于卫星移动通信系统中的呼叫切换,通常经历这样一个过程:

2.1用户周期测量当前使用波束和邻近波束的导频信号或广播信道的信号强度的变化,以便确定它是否正在穿越相邻波束之间的边界或者处于相邻波束的重叠区内。

2.2若用户进入相邻波束的重叠区,达到切换触发的条件,将开始启动切换过程。用户中止利用当前波束进行通信,等待分配信道利用新波束进行通信。

2.3切换过程开始后,需要在新到达波束中为该用户按照一定的信道分配算法进行信道分配,并在原先波束中释放使用的信道;如果采用了波束内切换或信道重安排,则原先波束还须按照呼叫结束后的信道重安排算法进行波束内的信道优化分配,进行必要的波束内分配。分配完成后,将数据流从旧链路转移到新链路上来,完成切换。

3LEO卫星通信系统用户切换的种类

低轨卫星通信系统用户切换可分为以下类型:

3.1同一信关站和卫星的不同波束之间的切换

目标波束和现用波束在同一信关站和同一卫星内,该切换涉及两个波束的信道分配和修改同一信关站(不采用星上交换)或卫星(采用星上交换)的交换路由表。

3.2同一信关站不同卫星之间的切换

目标波束与现用波束不在同一颗卫星内、但在同一个信关站范围内,它涉及两颗卫星的信道分配;对于采用星上交换的体制,需要改变两颗卫星星上交换路由表;对于卫星透明转发的体制,需要修改信关站交换路由表。

3.3不同信关站同一卫星的波束间的切换

目标波束和现用波束属于同一颗卫星,但属于不同的信关站,它涉及两个信关站之间的切换,包括信道分配、改变地面线路连接、位置更新、记费等,对于采用星上交换的卫星还需要改变其交换路由表。

3.4不同信关站不同卫星之间的切换

目标波束和先用波束属于不同的卫星且属于不同的信关站,它涉及两个信关站和两颗卫星之间的切换,信关站涉及信道分配、改变地面线路连接、位置更新、记费等问题,对于采用星上交换的卫星需要改变其交换路由表。

4LEO卫星通信系统中用户切换目标卫星的选择准则

在低轨卫星移动通信系统的切换控制中,切换的目标卫星的选择策略对切换的最终性能也有着直接的影响。因此,根据系统的需要,设计出适合于本系统的切换目标卫星选择方案至关重要。目前,低轨卫星移动通信系统中的切换目标卫星选择策略主要有以下几种:最近卫星准则、最强信号准则、最长可视时间准则、最多可用信道数准则、覆盖时间与仰角加权准则及最小跳数切换准则。

其中,最近卫星准则认为距离用户终端最近(仰角最大)的卫星能够提供很好的服务质量(QoS),可从纯几何上对其性能进行分析,也称为最大仰角准则。采用该准则时,用户终端在任何时候都选择能够为其提供最大仰角的卫星。该准则实现简单,但一般不会在实际系统中采用,因为它既没有考虑无线信号在空中的传播条件,也没有考虑网络的运行状况。强信号准则是终端在任何时候选择能够接收到最强信号的卫星。拥有足够高的信号强度是无线通信的一个基本条件,可以认为最强信号卫星准则能够提供较好的服务质量。

最长可视时间准则又称为最大覆盖时间准则。按照这个策略,用户将利用星座系统运行的先验知识,始终选择具有最大服务时间的卫星作为其切换的目标卫星。该准则基于对最小化系统的切换请求到达率考虑,延长了切换后呼叫一直被某个卫星服务的时间,从而可获得较低的被迫中断概率。

最多可用信道数准则为:用户选择具有最多可用信道数的卫星为它提供服务。该准则出于对整个系统信道资源利用率考虑,以使卫星系统中每个卫星所承载的业务量趋于均匀分布,避免因某个卫星节点超负荷而失效,从而影响到整个系统性能。应用这个准则时,不管卫星的具置,新呼叫和切换呼叫会经历相同的阻塞率或被迫中断概率,从而可以避免出现某个卫星超载的情况。

最小跳数切换准则则应用于具有星上路由的情况,策略要求用户在任何时候都选择能够为其提供最少跳数路径的卫星。在具体实现过程中,通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。当然,如果通信双方的当前卫星出现低于最小仰角(或信噪比)时,也需要进行切换。假定卫星系统使用准静态路由算法,路由表项中带有卫星到卫星的路由跳数,而且其路由信息随着网络拓扑变化由系统自动刷新。

5低轨卫星通信系统用户切换与路由

在切换时,由于服务卫星的改变,对于采用星上交换和星上路由的卫星通信系统,原有路由也需要被重新建立。重建路由有以下几种方案:全路由重建,部分路由重建,重路由结合扩展路由,动态概率优化路由,最小跳数路由。

其中全路由重建卫星切换方案:原有路由完全被新路由代替,该方案得到的新路由仍然是最优化路径,但其处理时延比较大。

部分路由重建卫星切换方案:当切换发生时,原有路由被部分保存,只有变化部分被更新,该方案处理时延比较小,但新生成的路由可能不是最优化路径。

重路由与扩展路由结合:切换后首先进行路由扩展,再进行路由优化。以降低延时,但信令开销增大。

动态概率优化路由:全路由重建节约带宽,但是扩大了信令资源,需要选择合适的优化概率P,在带宽和信令资源之间折中。即并不对所有扩展后的路由进行优化,而是以概率P,对一部分路由进行优化,一部分仍保持原扩展路由。

最小跳数路由策略:用户在任何时候都选择能够为其提供最少跳数路径的卫星。通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。该策略能够获得较低的传播延时和较小的切换频率,具有很好的系统性能。

参考文献

[1]陈振国,杨鸿文,郭文彬.卫星通信系统与技术.北京:北京邮电大学出版社,2003

卫星通信论文第5篇

该过程组负责对为客户提供服务所需的所有资源管理和运行维护工作,主要资源包括卫星空间资源、地面卫星系统、知识资源库、IT系统以及后勤配套设施等。该部分负责对基础设施资源进行管理、运行和维护,确保基础设施资源稳定可靠运行,保障基础设施资源处于良好状态并可快速响应客户需求或员工需要。另外,该过程还承担资源信息监控、收集、汇总和统计分析工作,通过对资源信息的汇总、关联和统计分析,从而提高资源使用效率。(4)供应商和合作伙伴关系管理。供应商/合作伙伴主要包含卫星建造商、设备供应商、系统集成商及工程服务商等合作伙伴,该过程组主要负责与各供应商或合作伙伴进行接口和管理,负责采购信息、分析评估、对比选择、合同签署、到货付款以及质量管理等工作。

2战略与基础设施模块垂直过程分组细化设计

战略与基础设施模块垂直过程分为战略和基础设施生命周期管理两个垂直过程分组,如图3所示。战略指出了为开发和实现某个特定市场战略所需的资源建设重点任务,基础设施生存期管理过程驱动和支持为客户提品。它们的重点是满足客户对商务的期望,包括为客户提供的产品或服务、支持运营服务的基础设施,或者在企业为客户提品的过程中涉及的供应商或合作伙伴。(1)战略。该过程负责制定支持产品服务和基础设施的战略,还负责在企业内为实现这些战略而建立的规划方案的落实实施。它覆盖了市场、客户、产品服务和资源各种层次的运营,通过所基于的服务和资源及涉及到的供应商/合作伙伴来满足客户需求。战略高度重视分析研究,其给出企业内专门的业务战略和业务购入策略的侧重点,战略实现的成功与否需要进行有效性跟踪,并且在必要时做相应的调整。(2)基础设施生命周期管理。基础设施生命周期管理负责对基础设施的性能进行评估,并确定新的基础设施或新服务引进开发和建设部署,从而为满足市场和客户需求的运营服务提供支撑。因此,基础设施生命周期管理对客户需求响应和提供企业竞争力具有重要的意义。

3战略与基础设施模块水平过程分组细化设计

与运营和服务模块的四个水平分组相对应,战略与基础设施模块也有四个水平的功能过程分组:营销和定价、业务规划和建设、资源规划和建设、供应链开发和管理。这四个水平的功能过程分组为战略与基础设施模块的垂直过程分组提供支持。如图4所示。(1)营销和定价。该部分包含制定和实施营销和定价策略、开发新的服务和产品、管理已有的产品等所有必须的功能。在竞争越来越激烈的卫星运营市场,革新的速度和品牌的认同决定了企业的成功,因此营销和定价管理是很重要的业务过程。(2)业务规划和建设。为运营过程提供支持,强调业务的计划、开发和交付。它包括制定业务生成和设计的策略;管理和评估现有业务的性能、确保有相应的能力以满足未来业务发展的需要。(3)资源规划和建设。为运营过程提供支持,强调卫星资源等基础设施的规划、建造和交付。主要包括卫星资源建造、知识共享库建设和基础设施配套互联互通,管理和评估现有资源的性能,确保拥有可满足未来业务发展需要的资源能力。(4)供应链开发和管理。强调企业与供应商及合作伙伴的交互,负责建立和维护企业与供应商及合作伙伴之间的所有信息流和资金流,确保企业能够选择最好的供应商和合作伙伴;确保企业有相应的能力与它的供应商和合作伙伴进行交互;确保供应商和合作伙伴能够及时地交付所需要的产品,并且供应商和合作伙伴对企业的整体的性能和贡献优于垂直集成的企业。

4企业管理模块分组细化设计

企业管理模块是为完成卫星通信企业所进行的任何商业运行所必须的基本的业务过程,我们将卫星运营企业管理划分为若干功能部分,主要包括企业发展规划,品牌管理、市场调研和广告,财务和资产管理,人力资源管理、利益相关者和外部关系管理,企业质量管理、流程、IT规划和架构,知识管理和党群纪检管理,如图5所示。

5卫星通信业务基本框架的系统集成

卫星通信业务基本框架通过自顶向下和分层分级分解方法,描述了整个卫星通信业务运行过程,涵盖了卫星通信企业的完整业务链,包括卫星基础设施、运营服务、卫星建造商、卫星应用供应商和合作伙伴等部分,形成了一个全方位的卫星通信业务框架模型,如图6所示。同时,我们可通过分层分级分解方法,根据任务需要,对卫星通信业务基础框架模型各个过程开展更进一步细化和发展,形成更为详细的卫星通信业务基本框架第二层级视图,如图7所示。此外,在基础框架的一、二级视图基础上,我们可以进一步细化和描述业务关键环节,很简便的绘制出各关键环节的直观流程图。综合以上研究成果,我们认为,卫星通信业务基本框架提供了一个企业内部整体活动图景的全方位描述,可结合运用钱学森综合集成思想,以基本框架为指导,利用信息网络技术,以人机集合的方式,开展卫星通信业务的运营管理平台建设、企业知识共享库建设、流程重组、机构优化调整等现实工作,助力企业实现运营管理的流程化和智能化,进一步提高运营效益和服务水平。本文所建立的卫星通信业务基本框架强调以客户为中心,面向外部客户提供业务交付。可为卫星通信企业的高层决策者提供了一个便利的评估工具,可以用于评估、指导整个企业的业务活动,使得企业中的所有组织都能够识别企业职责范围内的重要生产管理过程;为卫星通信运营服务的规范标准化、流程化、高效化服务提供思路;并能够以一种低成本高效率的方式实现企业自动化,增强服务提供商的企业管理能力,为企业提质增效打下坚实的基础。卫星通信业务基本框架的主要优点和功能还体现在:一是在战略方面体现了对卫星和其他软硬件基础设施资源的全生命周期管理和一体化管理的理念。二是在运营方面体现了面向客户关系管理、对客户提供端到端的快速的服务交付和营销理念。三是在企业管理流程方面明确标识了企业管理流程,把企业管理流程和运营、战略作为一个整体,以便企业中的每个人都能够确定其关键流程,从而使整个企业在流程框架中高效运行。

6结束语

卫星通信论文第6篇

半物理仿真平台的建立采用.NET环境下应用C#编程语言设计具有Windows风格的人机交互半物理仿真平台。通过各个模块的点击模拟操作,可以很好地实现用户对仿真模型的智能化运动控制,并且在完成仿真运动后,读取并记录显示卫星通信机动站运动过程的所有状态位置信息以及虚拟传感器的测距数据,最后生成仿真动画,达到直观的效果,虚拟场景测得的数据最终和真实环境中的实物所得数据进行比较,从而验证智能化控制算法的合理性、适用性。上位机用户平台包括虚拟现实展示、DLL调用测试、卫星通信机动站控制器半物理仿真通讯平台、状态信息的记录与读取、传感器测距信息的记录与读取,状态信号实现卫星通信机动站的虚拟现实运动动画的展示,人机交互半物理仿真平台,如图2所示。

2卫星通信机动站动力学模型的建立

Maplesim是一个多领域物理建模和仿真工具,它提供了一个三维可视化的环境建模以及动画显示仿真结果,在这种环境下,可以通过简单且直观的方式搭建各种复杂系统的模型,还可以可视化分析仿真结果。在Maplesim中能将建立好的模型转换到C代码中,可以在其他应用程序和工具中使用此C代码。在3D可视化建模环境下可以快捷、方便且直观地创建所需要的动力学仿真模型,之后将模型转生成C代码,在VC++环境下编译C代码生成动力学模型的DLL文件,这样可以方便其他应用程序的调用仿真。本研究基于.NET开发平台采用C#语言编写上位机仿真用户界面,进而对生成的DLL文件进行调用。半物理仿真系统开始执行,给定一个初始时间t0(初始值),每次经过t时间后,对动力学模型DLL文件进行调用,从卫星通信机动站的动力学模型DLL中输出第一个状态信号,将这个状态参数传递给卫星通信机动站控制器实物,控制器中对输入的状态参数完成控制算法后将再次发出控制信号并传递给C#软件环境,再经过t时间,再次调用DLL中的动力学模型。此时卫星通信机动站动力学模型的DLL输出第二个状态信号。如此循环反复执行此过程,如图3所示,形成了一个闭环的半物理仿真系统。

3半物理仿真系统设计

卫星通信机动站半物理仿真系统主要由人机交互操作界面、STM32控制器、信号转换器、数据采集系统以及PC机中的卫星通信机动站动力学模型5部分组成。以STM32控制器为核心的卫星通信机动站半物理仿真系统本身是一个闭环系统,在仿真通讯过程中,由卫星通信机动站控制器实物发出控制信号,控制信号模拟量经过信号转换器转换成数字信号,再通过USB虚拟串口通讯传递给PC机,PC机则调用WindowsAPI(Windows系统中可用的核心应用程序编程接口)对数字信号进行接收。PC机将接收到的信号再调用C#软件环境的动力学仿真模型,最后输出一个状态信号。PC机再将输出的状态信号通过WindowsAPI接口发送出去,状态信号经过USB虚拟串口传递给信号转换器。信号转换器将状态信号数字量转换成模拟量后传给卫星通信机动站控制器,在控制器中完成控制算法后,重新输出新的控制信号。此控制信号再经信号转换器PC机动力学模型的DLL,最终返回状态信号,如此循环地执行就形成了一个闭环的半物理仿真系统[4-5],如图4所示为半物理仿真系统框图。

4硬件系统的构建

卫星通信机动站的智能化控制是一个复杂的运动控制系统,其具有多自由度、多传感器、多驱动器、多运动形态的特点,对卫星通信机动站在现实运动过程中的多个传感器的输出模拟量数据进行采集,同时采用SPI串口通讯、蓝牙无线通讯的方式将数据传递给PC机上位机软件用户界面,以数据和虚拟动画相结合的方式直观地显示卫星通信机动站的实时运行状态。采用ADAS3022数据采集系统采集传感器数据,经ADAS3022的数字接口SPI与MCU选用的STM32芯片内部自带的SPI通讯,并且可实现内部自带的ADC(模/数转换器)进行信号转换,再通过HC-05嵌入式蓝牙模块与PC机进行通讯,如图5所示为系统总体设计方案。硬件系统设计了一个完整的5V单电源、8通道、多路复用的数据采集系统,可以集成用于工业级信号的可编程增益仪表放大器(PGIA)[6]。如图6所示为数据采集系统电路原理图。数据采集系统主要是以ADAS3022芯片为核心设计的,ADAS3022芯片上具有完整的DAS,它可以以最高1MSPS转换速率进行转换,能够接受的最大输入信号范围最高可达±24.576V的差分模拟输入信号。与传统的数据采集相比,在标准的数据采集方案中都会涉及到信号缓冲、电平转换、放大、噪声抑制以及其它模拟信号调理等,但是在ADAS3022中则无需这些辅助调理电路。这样一种高性能的核心芯片的应用,简化了具有高精密16位数据采集系统的设计难点,降低了成本。此外,在外观上,它具有更小的外形尺寸(6mm×6mm),40引脚的LFCSP封装;在性能方面,它可以提供最佳的时序和噪声性能,工作温度跨度-40℃到+85℃的工业温度范围[7-8]。此电路系统采用ADAS3022、ADP1613、ADR434和AD8031精密器件的组合,可同时提供高精度和低噪声性能。

5结语

卫星通信论文第7篇

MAC层有MAC-Idle、MAC-Shared、MAC-DTM、MAC-Dedicated四个状态[4]。它们之间的转换图如下。

1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。

1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。

1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。

1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。

1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。

2MAC层PTT竞争随机接入回退策略

当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。

当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。

当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。

3结语