欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

干细胞培养技术(合集7篇)

时间:2023-06-06 15:45:29
干细胞培养技术

干细胞培养技术第1篇

【关键词】 表皮干细胞; 细胞培养; 细胞传代

近年来,人类组织干细胞的研究已成为国内外学者关注的焦点,表皮干细胞即是其中之一。表皮干细胞是一种在成年期还能维持较高的自我更新能力的细胞群,在正常状态下维持表皮的自我更新,当受到损伤刺激时,表皮干细胞可以参与皮肤损伤的修复[1]。随着人口老龄化速度加快,慢性溃疡及皮肤病患者日益增多,加之烧伤及意外创伤造成的皮肤缺损,临床对皮肤移植的需求越来越大。由于表皮干细胞数量少,缺乏明确的特异性分子标志,体外培养很容易丢失其干细胞生物学特性,增加了分离培养的难度。获得大量高纯度的表皮干细胞成为该领域研究的关键技术。我们根据几年来在细胞培养方面的工作实践,将人表皮干细胞的培养技术总结如下。

1 人表皮干细胞的分离与培养

应用IV型胶原快速粘附法从手术切除的人包皮组织中分离表皮细胞中的快速粘附细胞,这一群细胞被认为是表皮干细胞,它具有快速粘附、缓慢生长的特点[2]。取年龄在5~25岁无泌尿系统感染患者的包皮皮片,无菌条件下去除皮下脂肪层,用含青霉素、链霉素的PBS反复冲洗皮片数次,修剪成大小约0.5 cm×0.5 cm的皮片,置于培养皿中,加入0.25%中性蛋白酶10 ml,4℃消化l4~16 h,吸弃上清,分离表皮和真皮层。剪碎表皮,用0.25%胰蛋白酶+0.02%乙二胺四乙酸(EDTA)消化,37℃,10 min,加入含有10%胎牛血清的DMEM终止消化,反复吹吸至细胞悬浮,200目筛网研磨过滤。滤液经1 000转/min离心10 min,弃上清,收集细胞。加入表皮干细胞培养基(每100 ml KSFM培养基加入0.05 mmol氯化钙100 μl、HKGS添加剂1 ml)并轻柔吹打制成单细胞悬液,接种于预先铺有Ⅳ型胶原的培养瓶中,37℃孵育15 min。倒置镜下观察,粘附在Ⅳ型胶原被膜上的细胞为表皮干细胞,吸出细胞悬液,用DHank’s液洗2次,加入表皮干细胞培养基,置于37℃、5% CO2培养箱中培养。2 d换液1次,显微镜下观察细胞生长,2~3 d内细胞开始分裂,4~5 d后会出现许多细胞克隆或集落。培养基中钙离子的浓度是保持人表皮干细胞既增殖又不分化的关键。钙离子浓度过低,会导致所培养的人表皮干细胞生长缓慢或不生长;若钙离子浓度过高,则加速了细胞分化。我们在实验中筛选出适合的培养基中钙离子浓度,可以保证有效的培养维持。在培养过程中,还要经常检查培养箱温度和CO2的浓度,过低或过高的温度和CO2含量都影响人表皮干细胞的生长,容易出现细胞老化和衰退现象。为了避免各种细菌、真菌污染培养箱,每周用75%的酒精擦洗箱内的托盘、格架、箱壁。托盘始终装有一定量的饱和浓度磷酸氢二钠(Na2HPO4)液体,细菌既不能在其中生长,也能提供合适的湿度[3]。

2 人表皮干细胞的传代

当原代细胞达到70%~80%融合时,需进行传代,否则细胞会没有足够的生长空间,也会因为营养耗竭而影响生长[4]。用0.25%胰蛋白酶+0.02%EDTA消化培养瓶内细胞,置37℃温育5 min,必须经常在显微镜下观察细胞被消化的情况,若细胞部分漂浮起来,即可终止消化。加入2 ml终止液,用吸管反复轻轻吹打贴壁细胞,使其形成细胞悬液,按1∶2传代。传代细胞接种于IV型胶原预铺的培养瓶中。

3 人表皮干细胞的冻存

细胞不用或保种时,可将细胞冷冻保存在液氮中。细胞在培养基中直接降温冷冻,可因细胞内、外环境中的水而形成冰晶,导致细胞内发生一系列变化,如机械损伤、渗透压改变、蛋白变性等,从而引起细胞死亡。因此,细胞培养基中要加入保护剂二甲基亚砜(DMSO)或甘油。为保持细胞最大存活率,冻存时要遵循“慢冻快融”的原则。一般用第2代人表皮干细胞培养至对数生长期时,用含胎牛血清的DMEM培养液将细胞配成5×106 /ml 的细胞悬液,1 000转/min,离心10 min,弃去上清,加入1~2 ml 含有10%DMSO的冻存液,用吸管小心吹打,重新悬浮细胞,分装于2 ml冻存管中,将盖拧紧,用记号笔记好细胞名称、细胞代数、冻存日期、操作人等。放入-70℃冰箱过夜后,再转入液氮罐中保存。注意:用于冻存的细胞应在光镜下观察生长状态良好,冻存细胞的体积不要超过冻存管体积的1/2。

4 人表皮干细胞的复苏

从液氮中取出冻存管后,迅速投入预先准备的40~42℃水中,并不时摇动,让细胞冻存液快速解冻1 min左右。取出冻存管,用75%酒精擦拭消毒外壁后,吸出细胞悬液,加至10 ml离心管中,补加含胎牛血清的DMEM培养液,小心吹打使细胞分散悬浮。1 000转/min,低速离心10 min,弃去上清,加入表皮干细胞用的条件培养基适当稀释后,转入IV型胶原预铺的培养瓶中,置37℃,5%CO2饱和水蒸汽培养箱中培养。复苏后要每天观察细胞状态,待细胞生长至适当密度时,及时分瓶培养或实验待用。

人表皮干细胞培养技术发展迅速,但诸如细胞在体外培养容易变形,多次传代后细胞克隆形成率明显下降,细胞逐渐分化难以保持原代细胞特性等问题,还有待更好地解决。

参考文献

1 Michel M,Torok N,Godbout MJ,et al.Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites,and their number varies with donor age and culture stage.J Cell Sci,1996,109 (Pt 5): 10171028.

2 Kim DS,Cho HJ,Choi HR,et al.Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents.Cell Mol Life Sci,2004,61(21): 27742781.

干细胞培养技术第2篇

关键词:植物;干细胞;培养;生长特性

中图分类号:R282.2/R282.71 文献标识码:A 文章编号:1672-979X(2012)01-0052-04

植物来源的天然产物作为先导化合物和药物的主要来源,曾在制药业的发展中发挥过非常重要的作用。近年其地位日渐衰落,主要是因天然植物生长缓慢、活性成分含量低,致使此类化合物的来源难以保障,难以适应现代制药业工业化大生产的需求。

鉴于天然化合物具有重要的药用潜力和经济价值,随着现代科学的发展,各领域的学者为解决其来源给出了自己的答案,较有成效的研究主要集中在以下几方面:(1)在微生物中表达天然产物的合成途径,采用转基因工程菌发酵方式生产某些活性成分,如紫杉醇等;(2)以容易获得的化工原料或天然前体为基础,半合成某些结构复杂的化合物,例如:青蒿素等;(3)植物组织培养,定向生产目标成分,如紫草素等。然而,由于很多天然产物化学结构非常复杂和独特,涉及的生物合成途径也非常多,例如紫杉醇(20步反应)、喜树碱(11步反应)、长春新碱(18步反应)等化合物的生物合成均涉及一系列繁杂的酶促反应,要化学合成需要多达数十步反应。这样的天然产物在很长一段时间内是难以依靠化学合成或者合成途径表达的方法实现原料供应的。而植物培养技术,以生源植物细胞或组织固有的生物合成途径为基础,利用内源的相关酶系统,结合诱导子和生物反应器技术,定向生产目标成分,经过多年研究,已经有成功工业化的案例(表1)。如日本Mitsui Petrochemical Industries采用人工培养紫草细胞方法获得紫草素,实现了该成分的工业化生产。所得的紫草素不仅用以生产抗炎药,制成唇膏,在本国高科技绿色产品的概念推动下,当年销售量达到200万支,获得了良好的市场效益。美国Phyton Biotech公司利用红豆杉细胞培养技术,结合大量的诱导子实验,创立了紫杉醇高产的方法,其专利中披露的最高产量达902 mg/L。该公司目前已经获得FDA批准,以此专利技术为施贵宝公司供应紫杉醇。

1.植物培养技术面临的挑战

尽管已有许多成功的案例,植物培养技术在适应工业化生产过程中,仍要面临着很多问题需要解决。(1)很多活性成分在生源植物中的分布,呈现组织特异性。某些特定的组织培养物(如:茎、根、芽、毛状根等),可以表现出与生源植物类似的代谢产物谱,但脱分化细胞中的二次代谢产物丰度非常低,甚至根本没有。例如:喜树碱在脱分化细胞中含量非常低,或者根本检测不到,但在喜树的根培养物中,其含量则与原植物不相上下。与此类似的是,在黄花蒿的脱分化细胞中,也没能检测到其抗疟成分――青蒿素。虽然,培养特定组织容易获得较高产率,但是,该类培养物在常用的生物反应器中难以生长,甚至不能存活,需要开发定制特殊的反应器,难以适应现阶段工业化生产的需要。脱分化细胞在该方面具有明显的优势,能够很好的适应商业化生产的需要。因此,如何提高脱分化细胞中目标成分的含量及产量,已成为目前植物组织培养研究的热点。现阶段采用的方法有:细胞系优选、培养条件优化、诱导子的使用、前体饲喂、阶段培养、灌注培养、细胞固定化等。根据具体情况选择不同的方法,可以获得较理想的结果。(2)植物细胞长期培养时,由于细胞不均一、基因突变、环境因素影响等原因,其生理、生化以及遗传性状逐渐发生变化,成为其商业化的另一大障碍。含量低和易变性作为植物细胞培养商业化的两大阻碍。迄今的研究多集中在前者上,经过多年努力,已建立了一系列卓有成效的实验技术和解决方案。相对而言,控制可变性的研究尚处于较浅水平,鲜有确实可行的方法。近年,在长期培养的细胞系中,随着培养时间延长,代谢产物含量普遍降低,使研究者日益关注植物细胞培养中可变性的机制以及控制方法。由于植物的种间差异和多样性,使此问题异常复杂,传统的研究方法和角度难以对此问题做出全面解答。由韩国和英国学者开发的植物干细胞培养技术,利用干细胞生长和遗传特性方面的优势,为解决上述问题提供了一个全新的方案。

2.植物干细胞培养基本方法

2010年11月,韩国Unhwa公司和英国爱丁堡大学的研究者将以红豆杉干细胞培养为主体的研究成果,以“Cultured cambial meristematic cells as a source of plantnatural products”为题在Nature的子刊Nature Biotechnology上发表。该刊同期还发表了对此成果进行报道评论的综述“Plant natural products from cultured multipotentcells”。以红豆杉体系为代表的植物干细胞培养技术,吸引了全世界的关注。

植物干细胞培养技术,是在传统组培技术的基础上,改进了现有方法,以植物干细胞为目标,诱导、分离和培养外植体,建立相应的干细胞培养体系。植物干细胞培养技术,不仅丰富了植物培养技术,而且为天然产物的商业化生产,乃至植物生物技术的发展,提供了新的研究方向和契机。

根据目标干细胞的不同,目前较为成功的植物干细胞培养方法主要有以下几种。

木本植物维管形成层分生(以红豆杉为例):采取野生红豆杉的新生枝条,表面灭菌后切开;将含有形成层、韧皮部、皮质和表皮的组织轻轻地从木质部剥离;将获得的组织在分离培养基上培养30d后,新生的形成层细胞和其他脱分化细胞(愈伤组织)因组织现状的差异自然分离――形成层细胞为均一生长的平板状组织,愈伤组织则为不规则的聚集生长物;将获得形成层细胞转移到生长培养基上培养。目前报道该方法成功的案例仅限于红豆杉属。

草本植物储藏根的维管形成层(以人参为例):取户外培育、平滑无伤口的人参,表面灭菌;将主根削成薄片,再切成长5~7 mm,宽5~7 mm,高2~5 mm,使每片都含有形成层;将制备好的外植体用蔗糖高渗透液处理,使分化的组织――皮层、韧皮部、木质部、髓部等失去活力,仅形成层能保留生命力;将渗透液处理过的的外植体转移到诱导培养基,培养3-7 d后,外植体的形成层变成淡黄色;再过7~14 d后,淡黄色部分有一圈细胞生长出;将外植体继代到生长培养基,培养10-20 d后,即可分离得形成层细胞,所得细胞继续在同样的培养基上培养。目前,仅有人参属确实报道成功建立了该类干细胞培养体系。

静止中心(以水稻为例):将稻谷剥皮,表面灭菌,干燥至水分完全去除;将干种子种入培养基,25℃下培养5 d,使其发芽;种子发芽5-6 d后,收集含有静止中心的根组织,去掉根端的根冠,从切口开始截取1 mm长作为外植体;将外植体放入诱导培养基,30 d后观察到细胞被

诱导出:所得静止中心干细胞为白色,均一,且周围环绕着黏性物质(黏原蛋白),而一般根组织得到的细胞不均一,黄色,无黏性物质,这些差异使干细胞可以和其它细胞自然分离;将分离得到的静止中心干细胞转移到生长培养基。目前,利用该方法可以获得水稻、玉米等植物的干细胞培养体系。

3.植物干细胞培养体系的特性研究

不同来源的植物干细胞培养体系,有着不同的生长特性(表2),这些特性决定了其各自的用途。这些方法由韩国Unhwa公司开发,现已申请了一系列相关专利。

所有的研究中,考察红豆杉干细胞培养体系的生长特性最为深入和全面。在完成了培养体系的初步建立工作后,研究者首先考察了获得细胞的形态、遗传学特征和基因组学方面的考察,以验证培养的细胞确为维管形成层细胞。另一方面,对培养体系的生长特性进行了研究,主要考察了细胞生长速度、长期培养稳定性(时长22个月)以及对生物反应器的适应性,并与脱分化得到的愈伤组织进行对比。红豆杉干细胞培养体系不仅生长速度快,性状稳定,而且由于细胞具有游离生长、液泡分散的特性,培养体系对各种类型(气升式、搅拌桨式)、各种规格(3L、10L、20L、3吨)的生物反应器均具有良好的适应性,具备了商业化生产的基本条件。为开发培养体系的实用价值,研究者诱导了所得培养体系活性成分,使其中紫杉醇含量提高了数十倍,并进一步进行灌注培养,促使更多的紫杉醇分泌到培养基中[含量268 mg/kg(细胞鲜重),分泌率74%]。此外,研究者还系列测试了红豆杉干细胞提取物的抗癌活性,在抑制HHC-95肺癌细胞、PC-3前列腺癌等瘤株的实验中,提取物均显示了可与紫杉醇媲美的抗癌效果(该实验所用的培养体系未经诱导,经检测基本不含紫杉醇)。以上工作,从各方面为该技术的商业化提供了有力的技术支持。

对于水稻等干细胞的研究,主要目的是建立植物细胞银行。建立细胞银行可使植物细胞采用类似动物细胞冻存一复苏的培养方法,彻底解决植物细胞培养过程中的变异问题。该策略虽简单可行,但是一般的植物细胞却难以在冻存后顺利复苏,其存活率非常低,且回复生长能力的延迟期漫长。因此,该方面的研究一直停滞不前。如表2所示,以上各种干细胞的一个共同特征就是可在冻存条件下保持良好的生命力,这使植物细胞银行的建立具备了良好的前提。此外,植物干细胞培养体系建立方法的多样性使该技术具有普遍推广的潜力,因而可以预见,植物细胞银行中能够容纳的植物种类将非常丰富。作者相信,随着植物细胞银行的建立,不仅可以为植物细胞培养的稳定性提供一个切实有效的解决方法,而且将在植物种质资源的保存方面发挥关键作用。

目前,人参干细胞的研究成果,主要用于保健品和化妆品的开发,除了相关专利和文章外,已有相关产品面世。相信在植物干细胞这个高科技和全天然概念推动下,该类产品将会很快地在高端市场占有一席之地。

4.植物干细胞培养体系的应用展望

干细胞培养技术第3篇

细胞工程课程在生物科学专业的设置

本课程自从2007年在我校新办生物技术专业开设以来,根据学校对本科生物技术专业的培养计划,细胞工程是生物技术专业的主干课程,并于2009-2010学年第二学期开始开设。通过对该课程的教学,使学生掌握细胞工程所涉及的基本概念、原理、技术方法、应用基础等内容。通过近三年的教学实践,不断加强课程建设与发展,理论教学体系已经基本完善,实验教学平台基本建立。通过全面进行教学改革,已逐渐形成本校建设的特色课程。21世纪,生命科学全面快速发展。根据学科发展和社会需求趋势,在新办生物技术专业基础之上,2009年我校新办生物科学专业。然而,新办生物科学专业的困境是专业范围宽泛;如何在有限的时间内,全面、高效地培养适应社会需求的合格人才,是每位任课教师和教学管理者必须认清的首要问题。为了充分发挥我们医学院校的资源优势,在培养学生方向定位上,以健康教育为主要方向,兼顾生物制药等,但又与生物技术的培养方式不同。由于细胞工程是由细胞生物学、分子生物学、基因工程、工程学等学科理论技术有机结合的一门崭新学科,因而被设定为新办生物科学专业本科生培养计划的必修课程。

细胞工程课程在生物科学中的开设,是以普通生物学、生物化学、医学遗传学、细胞生物学、分子生物学、微生物学、免疫学等先修课程为基础。同时,将本课程的学习与基因工程、生物技术等课程的学习互相补充和相互促进,为将来从事生命科学基础理论研究、生物制品的开发和应用、疾病诊断技术的开发与应用等领域的工作打下必要的基础。在教材方面,以李志勇编著《细胞工程》(高等教育出版社)为基本教材,以杨吉成编著《细胞工程》(化学工业出版社)、安利国编著《细胞工程》(第二版,科学出版社)等为主要参考教材。在教师队伍配置方面,既有细胞生物学领域教学经验丰富的教授,也有年富力强的专业知识扎实的中青年骨干教师。细胞工程的理论教学和实验教学全部由既具有扎实生物工程学相关知识背景,又有基础细胞理论与实验技术背景的骨干教师承担。

细胞工程教学内容的设定与改革

细胞工程课程的特色,是以细胞工程技术方法的基本原理为课程教学切入点。在教学内容上,基本理论的讲授与技术方法过程的介绍并重;在本学科知识的系统性方面,既有本学科理论的系统性,又加强与其他相关学科的相互渗透交叉,尤其是以细胞生物学、生物工程的基础知识背景,为本学科的理论教学奠定基础;通过将现有技术的原理、应用归纳,与本学科相关技术的发展趋势讲解相结合;从内容上,客观系统地反映本学科相关领域应用前景、重点研究方向和尚待解决的科学问题;在理论上自成体系。根据教学计划,细胞工程在我校总学时设定为80学时,其中理论50学时,实验30学时。本课程的开设,一般在第三学年的第二学期,在普通生物学、生物化学、医学遗传学、细胞生物学、组织胚胎学等课程修完之后进行。细胞工程在教学内容、教学方法上又与以上学科大不相同,本课程教学是以技术方法的原理为基础理论的学科,因此实验与理论教学并重。细胞工程课程的理论课程内容,根据研究对象一般分为三大部分内容,分别为:细胞工程概论与基本技术、植物细胞工程、动物细胞工程。根据我校的教学实际情况和培养计划,我们对教学内容进行了适当的改革与调整。课程的内容重点在第一部分细胞工程概论与基本技术和第三部分动物细胞工程[1-4]。

干细胞培养技术第4篇

结合有丝分裂的内容,引导学生看课本插图P117图6-8红细胞和心肌细胞、P117图6-9各种植物细胞、P117图6-10分化的细胞可形成不同的组织和器官。

在学生看图的过程中展示图1。

引出细胞分化的概念,得出细胞分化的意义。

在个体发育中,相同细胞的后代,在形态、结构和功能上发生稳定性差异的过程。细胞分化是生物个体发育的基础。细胞分化过程中遗传物质没有变化,是基因选择性表达的结果。需要提醒的是细胞分化贯穿在整个生命周期中,不只出现在胚胎时期,为干细胞做铺垫。

分析得出细胞分化的特点:普遍性、持久性、稳定性、不可逆性。

接着,引导学生比较细胞分化与细胞分裂的区别。

通过对插图和表格的分析,使学生分清了细胞分化与细胞分裂的区别;了解了细胞分化的过程和特点;知道了细胞分化的生物学意义。

二、利用科学发展史了解科学的发展,正确看待科学技术对社会的影响

1.从科学发展史中学习科学与技术的关系

结合课本插图P118图6-12植物组织培养过程。通过对植物组织培养研究的历史发展过程的分析来总结科学发展的历史经验并揭示其规律。

1902年德国植物学家哈伯兰特(Haberlandt)提出细胞全能性概念,并用叶肉和其他多种细胞进行离体培养。在自制的营养物质中培养,仅出现一些细胞增大,未出现增殖和分化现象。

1934年荷兰植物学家(温特)F.W.Went发现了吲哚乙酸(IAA),随后又有人相继发现了IBA,NAA和2.4-D人工合成的生长素。

1934年怀特(White)用无机盐、糖类和酵母提取物配制成怀特培养基,用番茄根进行离体培养形成愈伤组织。其后证明了生长素和维生素对组培的作用,提出了细胞全能性学说。

20世纪40-50年代,斯库格(Skoog)和崔等人利用添加了腺嘌呤和生长素的培养基进行烟草培养,诱导根、芽等器官,并确定腺嘌呤和生长素诱导根和芽生长的作用。

1958年美国斯图尔德(Steward)等和德国赖纳(Reinert)等分别将培养的胡萝卜根细胞诱导形成了胚状体,形成新植株。用实验证明了植物细胞的全能性。

从以上植物细胞全能性的研究历史,我们可知培养基是影响成功的重要的因素,正是因为科学和技术的相互支持,才使组织培养技术能够获得成功和完善。

通过植物组织培养,我们可以获得大量的克隆体,保持优良特性,缩短生产周期。为我们的生活提供丰富的物质保障,如花卉和蔬菜培育。

2.科学与技术对社会的影响

植物细胞的全能性,引发了人们对于动物细胞是否具有全能性的猜想,经过许多科学家的努力,动物细胞的体外培育不能实现细胞的全能性。几经周折后,科学家终于通过细胞重组技术证明出了动物细胞核具全能性。因为细胞核具有生物体的绝大部分遗传物质。

证明动物细胞核具全能性的就是克隆技术,也称核移植。

1996年7月5日,世界上第一只克隆羊多利(Dolly)由英国爱丁堡大学的伊恩・维尔穆特博士培育成功,但这成功并不是利用一个细胞就实验成功了,而是利用了上千个卵细胞才成功一个,其中过程也是很复杂的,是科学理论的指导下进行的。

克隆可以用于造福人类,比如说治疗性克隆,利用胚胎干细胞进行器官移植。要是被别有用心的人利用,克隆也可以影响人类的正常秩序,那后果将不堪设想。比如说克隆优等人种组成军队统治世界。

所以,科学是技术发展的理论基础,技术是科学发展的手段。科学技术是社会进步的动力,然而科学技术的也会给人类带来负效应,应正确处理好科学技术和社会的关系。

三、与现实生活的联系,进行STS教育

本节课有个探究模块,就是干细胞的知识。课标要求学生能自主搜集资料,并与同学分享成果。通过查找资料让学生及时理解关注对科学、技术和社会发展具有重大影响的生物学新进展,激发学生学习生物学的积极性。

学生分享:移植弟弟脐带血治好血癌,3岁女童健康成长;姚明加入中华骨髓库等案例。

引导学生通过讨论得出:白血病就是骨髓中的造血干细胞在分化的过程当中出现问题,导致不能正常增殖、分化出血红细胞。我们可以用正常的造血干细胞替代有问题的细胞,达到治疗的目的。脐带血里含有造血干细胞,通过移植造血干细胞就可以慢慢恢复造血功能。

干细胞可以分为三大类:全能干细胞、多能干细胞,专能干细胞

这里的脐带血就是专能干细胞,可以分化成红细胞、白细胞等各类血细胞。

引导到目前人类遇到的重大科学难题――器官移植。器官移植需要先配型,后移植,移植成功后还需要终生服用抗免疫排斥的药。有没有能绕过免疫排斥的方法呢?那就是利用自身的干细胞培育出所需要的器官移植是最好的选择,它不会产生免疫排斥反应。

干细胞培育的方法还有望用于拯救珍稀、濒危动物。适当的介绍干细胞新进展,诱导多功能干细胞(iPS)的研究在生物和医学领域具有广阔的应用前景,有望成为实施再生医学和细胞治疗的重要细胞来源。

上述实例的介绍,让学生深刻体会到科学与技术对社会的影响力,从而激发学生强烈的好奇心和学习生物科学的兴趣。

四、课堂教学渗透STS教育的效果

我们将STS教育思想实施在具体教学的过程中,概念性的知识可以通过插图、绘图等手段,使学生更容易理解、掌握;技术性的知识通过科学发展史的学习,了解科学发展对人类的生活的作用,进而对科学萌生浓厚的兴趣;对于科学前沿知识应充分发挥学生的动手能力,查找相关的知识,讨论得出结果,再结合社会实际和学生的生活经验事例,将学习联系到现实生活中来,从而对内容进行加深巩固。

干细胞培养技术第5篇

【关键词】 角膜缘干细胞;回顾性研究;进展

【中图分类号】R4 【文献标识码】A 【文章编号】1004-4949(2013)06-35-02

干细胞研究被誉为新世纪生物和医学技术领域可能取得革命性突破的项目,20世纪80年代角膜缘干细胞理论确立,在角膜缘干细胞研究中产生了一些新概念,角膜缘干细胞广泛应用于眼表疾病的治疗,角膜缘干细胞研究成为眼科界近年来发展较快的领域之一。本文对近年来在角膜缘干细胞研究方面的新进展进行综述。

1 角膜缘干细胞治疗眼表疾病的机制

角膜缘干细胞是位于角膜缘基底上皮层的特殊细胞。角膜缘干细胞的高增殖潜力在角膜上皮的修复中具有重要作用,角膜缘干细胞为角膜上皮更新和修复之来源,角膜上皮有由周边向中心移动的特性。角膜上皮的更新是通过一种从角膜缘向角膜中央的向心性运动来完成的,上皮再生的源头位于角膜缘,角膜上皮的更新和创伤修复来源于角膜缘基底层的干细胞增生和分化。角膜缘有丰富的Ⅳ型胶原纤维,该纤维仅存在于结膜和角膜缘基底膜,是构成干细胞增生分化局部微环境的重要组成部分。

2 角膜缘干细胞移植

2.1 自体角膜缘干细胞移植: 随着人们对角膜缘及其干细胞研究的进展,实验表明在促进眼表面愈合、减少角膜新生血管长入和假性胬肉形成方面,角膜缘移植明显优于球结膜移植,这进一步证明角膜缘移植的有效性。该手术多是将自体健眼角膜缘部组织片移植到患眼角膜缘部受损区,自体角膜缘上皮移植不仅能为病变区角膜缘提供健康的上皮来源,使角膜恢复正常透明性,而且可为病变区结膜和巩膜组织提供正常的角膜缘干细胞,有效的阻止异常结膜源性组织增生,达到重建正常组织和牢固的角膜上皮层之目的,减少并发症,提高视功能,自体移植不存在免疫排斥,成功率高[1]。

2.2 同种异体角膜缘干细胞移植: 自体角膜缘干细胞移植只对单侧眼表疾病者适用,而对那些双眼眼疾者不适用,角膜缘丰富的血管和淋巴细胞,使角膜缘不再是免疫赦免区,成人角膜HLA-DR抗原主要分布于角膜下及其基质深层,且HLA-DR抗原在角膜移植排斥反应中起主要作用,角膜缘为免疫排斥的高危区域。Tan等[2]在异体角膜缘移植术前术后使用了免疫抑制剂同种异体角膜缘移植获得成功。近年来不断有新的免疫抑制药物出现,免疫排斥仍是异体角膜缘移植面临的最大难题。

2.3 培养角膜缘干细胞移植

2.3.1 自体角膜缘干细胞培养后移植。

近年来,随着角膜缘干细胞培养技术的成熟,将角膜缘干细胞体外培养后异体移植成为另一研究热点。Lindberg等[3]体外培养角膜缘干细胞,并成功地移植到裸鼠皮下,并牢固地粘附在植床上;Pellaegrini等[4]用自体健眼1mm×1mm×1mm角膜缘干细胞组织块经体外培养扩增后,借助软性角膜接触镜的辅助,移植到患眼上,成功地实现了眼表重建。自体角膜缘干细胞培养后移植不仅解决了自体干细胞来源不足的问题,而且避免了同种异体间移植后的排斥反应。被认为是目前最有前途的治疗方法。除此之外,有专家用人羊膜为支架,成功进行了人自体培养的角膜缘干细胞移植,治疗干细胞缺乏的眼表疾病;还有专家行角膜缘干细胞羊膜片移植治疗角膜缘功能障碍。这些研究证实,培养自体角膜缘干细胞移植提供了一种极好的技术来重建眼表,没有排异反应,供体眼角膜缘少量取材,不损伤干细胞群及角膜,细胞体外培养和扩增技术提供供体细胞来源。

2.3.2 异体角膜缘干细胞培养后移植。

潘志强等[5]以人羊膜为载体,分别将原代培养的人角膜缘干细胞接种在羊膜上面,然后把含有干细胞的羊膜片分别移植到化学烧伤或热烧伤后有角膜新生血管形成的人眼角膜上,角膜干细胞羊膜移植术后,移植片在受体植床上能够存在并与巩膜和结膜完全融合为一体,羊膜逐渐被受体组织吸收,角膜透明度增加,基质炎性浸润减轻,上皮光滑,角膜新生血管减少,视力不同程度的提高,这说明移植的角膜干细胞在受体角膜中存活并进行正常增殖和分化形成角膜上皮细胞。临床观察中未发现明显的排斥反应,异体角膜缘干细胞培养后移植目前已取得了一定的效果,它给临床上双眼角膜缘干细胞不同程度功能障碍病人带来曙光。至于植后是否会出现排斥反应等一系列问题都有待于进一步的研究。

4 角膜缘干细胞移植进展与发展趋势

角膜缘干细胞移植已成为目前眼科研究一大热点,随着多学科交叉、现代生物技术的发展,角膜缘干细胞的定位、分离、培养问题已经得到解决,人工角膜的研究已经取得了实质性进展。在国外已有多型人工角膜应用于临床,在治疗难治性角膜病变方面显示出越来越多的优越性。虽然还有相当多的问题亟待解决。一旦培养的角膜干细胞移植术成功,就不仅解决了角膜缘移植材料供应不足的问题,而且用自体组织来源的角膜缘干细胞进行移植可以消除移植排斥反应的发生。可以预见在不久的将来,离体培养的角膜缘干细胞将为那些角膜缘功能衰竭患者带来希望,并且为临床眼用药物筛选提供细胞模型,具有广阔的应用前景。

参考文献

[1]黄胜,张娅萍,丁田等.自体角膜缘干细胞移植治疗角膜缘功能衰竭症[J].眼科新进展,2004.

[2]Tan DT,Ficker LA,Buckley RJ.Limbal transplantation[J].Ophthalmology,1996;103(1):29-36.

[3]Lindberg K,Brown ME,Chaves HV,Kenyon KR,Rheinwald JG.In vitro propagation of human ocular surface epithelial cells for transplantation[J].Invest ophthalmol Vis sci,1993;34(9):2672.

干细胞培养技术第6篇

健康网讯:

吕广秀 201314上海市第85医院儿科  1998年11月,美国James和John Gearhart领导的2个科学小组分别阐述如何利用囊胚和原始的胚胎生殖细胞培养出可能的人全能型胚胎干细胞(ES cells)和胚胎生殖细胞系(EG cells) [1,2] 。ES细胞最引人关注的2条特征是:ES细胞能在体外条件下生长,在原始的去分化条件下能够无限地分裂;同时在体外培养的所有时间内都能保持胚胎来源细胞的一个关键性特征—全能性,即发育成成体中各种细胞的能力。

ES细胞的应用前景十分令人鼓舞。胚胎干细胞可以作为研究人类胚胎发育、出生缺陷及胚胎瘤等疾病的新的手段;可以用于至今为止尚未进行的关于的方法;制造人类疾病模型以利用于基础研究、药物开发和毒理学研究,如果克隆技术可以从患者自体组织中获得干细胞,则它们可解决用于治疗退行性疾病的组织短缺以及结束在移植治疗中使用免疫抑制剂;另外干细胞还可以用来作为基因治疗的一种新的基因运载系统。总之,其前景十分广泛。

1 胚胎干细胞的一般定义特征

考虑到ES或EG细胞的特性,可以认为有一些表型是所有的ES细胞都应该具有的,其他一些特点可能是属于从不同种属或不同组织中分离出来的某种特定全能性细胞所特有,或表现出在胚胎发育过程中某个特定阶段所具有的特征。一般认为全能性干细胞所应具有的特征如下:(1)来源于一个全能性的细胞群体;(2)具有正常的细胞核型;(3)具永生性,在胚胎状态下能无限制的分裂;(4)培养的细胞株在体外或在畸胎瘤中能自发分化成胚胎外组织(extraembryonic tissues)和分属所有3种胚层的体细胞。但到目前为止,所有已培养成功的哺乳动物细胞中,除小鼠外,灵长类动物ES细胞只满足上述4条标准的前3条。一些研究人员将ES细胞的定义限定为那些能分化成包括生殖细胞在内的所有的细胞。但出于伦理上的原因,来源于人的ES细胞不可能进行试验以验证是否满足这一标准。因此,如果来源于人的细胞能满足其他3条关于ES细胞的一般定义,我们就认为它属于ES细胞。需要指出的是,要从体外培养或畸胎瘤试验验证一个ES细胞能否分化成所有组织类型的细胞是十分困难的,因为不论在体外培养条件下或畸胎瘤中,一些组织都是十分罕见的。

2 胚胎干细胞的最新研究

James Thomson和同事于1998年报道利用治疗不孕症所遗弃的囊胚分离出ES细胞。他们所使用的技术与分离小鼠ES细胞相似:将可能抑制ES细胞培养的滋养外胚层去除,内层细胞团移植到小鼠胚胎来源的成纤维细胞饲细胞层上,经过短暂的粘附和展开的过程,将细胞重新分散(disaggregated)并转移到另外的饲细胞层,在培养基和培养系统与方面,培养人ES细胞与小鼠ES细胞并没有太大的不同,而且人ES细胞的成功率相对还要高一些。Thomson等人培养猴ES细胞的工作无疑对他们首先成功培养人ES细胞是有很大帮助的。灵长类的全能性干细胞在很多方面与小鼠ES细胞是不同的,特别是在外形上,且灵长类全能性干细胞不容易分散成单个的细胞。因此,要正确辨认出所需的ES细胞并在传代过程中做到正确处理是十分重要的。但还有一个重要的条件,即人胚胎培养过程的改进,其包括不同发育阶段使用不同的培养基的两步培养系统,这使得能高效地得到高质量的人囊胚 [4] 。

Shamblott和同事 [2] 在《美国科学院论文集》上,报道从受精5~9周的胚胎和胎儿性腺中分离出全能性细胞。尽管人们对人体中原始生殖细胞的成熟过程的小细节知之甚少,但科学家们确实知道这个过程包括生殖母细胞迁移至性腺并开始扩增,随后性腺出现明显的性别分化。在这个阶段的胚胎和胎儿性腺中已经可以发现有表达生殖母细胞标志性分子的细胞 [5] 。Shamblott小组所使用的培养系统利用了已知能支持小鼠生殖母细胞在体外存活和有丝分裂的一些因子,即STO成纤维细胞饲细胞层、成纤维细胞生长因子、白血病抑制因子(LIF)和forskolin [6] 。由以上2种方法培养出的细胞在多大程度上能符合ES或EG细胞的一般标准?2种培养物都来源于全能性的细胞群,都能在体外培养过程中保持有正常的细胞核型。Thomson小组培养出的细胞株已经传代许多次,且细胞含有端粒酶活性,这2点都提示这个细胞株是永生的。Shamblott的EG细胞虽没有培养那么久,但也没有迹象显示这些细胞将会死亡。从囊胚中分离出的细胞能形成包含所有3个胚层组织的畸胎瘤,且个别组织表现为高级的组织结构性(例如可以形成神经管)。但是在体外情况下,细胞分化的证据只能限定于能表达一些滋养层和内皮层形成的某些标志性分子(如人绒毛膜促性腺激素和α-甲胎蛋白);从生殖细胞来源的细胞株中没有能在体内形成畸胎瘤的证据,但是作者确实观察到了在胚状体(embryoid bodies)中存在细胞进行分化的情况。胚状体是一种在不适宜干细胞生长的条件下,由全能性干细胞在三维方向上生长所形成的一种结构。小鼠中胚状体包括两层,一层是胚胎外的内皮层,一层是外胚层。两种细胞之间的联接可能使外胚层细胞分化成多种细胞类型,这种现象类似于体内情况下胚胎培植早期的状况 [2] 。Shamblott将培养出来的胚状体切片,用免疫化学方法研究,发现不同细胞类型表达分别代表中胚层、内胚层和外胚层的单个标志分子。

人的干细胞的表型,即外形、抗原表达及培养条件等方面与其他种类的全能型细胞如小鼠的ES细胞或EC细胞相比有自己的特点。人EC细胞,猴和人的ES细胞在表型上十分相似,与小鼠细胞或人EG细胞极易区分开来。灵长类动物细胞在单层培养条件下呈扁平的克隆,细胞边界较清显;而小鼠ES细胞成堆生长,细胞更圆,细胞边界不清。灵长类动物全能型干细胞表达一系列特异性的表面抗原。小鼠ES细胞的自我更新可以被白血病抑制因子(LIF)或相关的细胞因子促进 [7] 但对人的ES细胞却没有这种作用 [1,2] 。

在Thomson和Shamblott这2个小组的成功带动下,目前对人ES细胞的研究出现一股热潮。如果成功,将给人类带来福音。倘若科学家最终能够成功诱导和调控体外培养的胚胎干细胞正常地分化,这将对基础研究和临床应用产生巨大的影响。有可能在以下领域发挥作用:体外研究人胚胎的正常发生发育,非正常发育(通过改变细胞系的靶基因),新的人类基因的发现,药物筛选和致畸实验,以及作为组织移植、细胞治疗和基因治疗的细胞源等。

3 胚胎干细胞应用前景探讨

人胚胎干细胞提供了在细胞和分子水平上研究人体发育过程中的及早期时期的良好条件,这种研究不会引起与胚胎实验相关的伦理问题。采用基因 芯片等技术,比较人胚胎干细胞以及不同发育阶段的干细胞和分化细胞的基因转录和表达,可以确定胚胎发育及细胞分化的分子机制,发现新的人类基因。结合基因打靶技术,可发现不同基因在生命活动中的功能等。该应用有利于新药的发现及筛选,人胚胎干细胞使新药的药理、药效、毒理及药代等研究达到了细胞水平,极大减少了药物实验所需的动物数量。目前药物实验使用的细胞系基本上来自其他的种属,其结果常不能真正代表正常的人体细胞对药物的反应。人胚胎干细胞还可用来研究人类疾病的发病机制和进展结果,从而可找到特效和永久的治疗方法。

人胚胎干细胞最有价值的应用是用来修复甚至替换已丧失功能的组织和器官,因为它具有发育分化成所有类型组织细胞的能力。任何导致丧失正常细胞的疾病都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗,如用神经细胞治疗神经变性疾病(帕金森综合征、

亨廷顿舞蹈症、阿尔茨海默病等),用造血干细胞重建造血功能,用胰岛细胞治疗糖尿病,用心肌细胞修复已坏死的心肌等。尤其是对于后2项,胚胎干细胞可能会有特别疗效,至今认为成年人的心脏和胰岛几乎没有干细胞,自身无法得到修复。用于基因治疗和防止免疫排异反应,还可以对胚胎干细胞的基因做适当的修改。干细胞是基因治疗较理想的靶细胞,因为它可以自我复制更新,治疗基因通过它带入人体中,能够持久地发挥作用,而不象分化的细胞那样,在细胞更新中可能丢失治疗基因的结果。通过胚胎干细胞和基因治疗技术,可以矫正缺陷基因。例如,如果发现早期胚胎有某种基因缺陷而会患基因病如囊性纤维化—一种30岁以前便会致人死亡的疾病,可以收集部分或全部胚胎干细胞,通过基因工程技术将正常的基因替代干细胞中的缺陷基因,再将修复后的胚胎干细胞嵌入胚胎中,将会出生一个健康的婴儿。由于伦理和某些技术问题,现在还未开展此类实验。改变胚胎干细胞的某些基因的另一目的是创建“万能供者细胞”,即破坏细胞中表达组织相容性复合物的基因,躲避受者免疫系统的监视,从而达到防止免疫排异反应的发生。但这种方法需要破坏和改变细胞中许多基因,而且这种细胞发育成的组织和器官是否有生理缺陷?如免疫能力状况还不得而知。

另一种克服移植免疫排异的途径就是结合克隆技术创建患者特异性的胚胎干细胞。为避免患者自身对外源细胞的免疫排异反应,ES细胞的获得还有另一种方法,即从患者自身成熟细胞中取出细胞核,移植入去核的卵细胞中(即体细胞核转移技术SCˉNT),经过一系列的培养在体外分化成患者所需要的细胞或组织类型。这种包含与患者完全相同的遗传物质的杂合卵细胞在体外培养发育成囊胚,若将囊胚植入假孕妇女的子宫中,将会克隆出与提供体细胞的人基因相同的个体,即所谓的“克隆人”。但是如果从获得的囊胚中分离并扩增所谓的“人胚胎干细胞(ES)”,并体外诱导它们分化成胰岛细胞、神经元、心肌细胞等,将这些细胞移植至发病部位,则能够修复患者的组织或器官,从而使患者得到康复。用这种胚胎干细胞培养获得的细胞、组织或器官,其基因和细胞膜表面的主要组织相容性复合体与提供体细胞的患者完全一致,不会导致任何免疫排异反应。如果能成为现实,这将是人类医学史上一项划时代的成就,它将使器官培养专业化,全面解决供体器官来源不足的问题;并达到器官供应专一化,提供给患者相应性器官。人体中的任何器官和组织一旦出现异常,则医生可给予更换和修复。

利用核转移克隆技术以获取ES细胞,人卵子来源不足是目前的主要难题。至今为止,非人类哺乳动物的克隆效率非常低,大约100个以上的卵细胞才能得到1个有活力的克隆 [8,9] 。要解决这个问题,一是尽快找出卵细胞中使体细胞去分化的因子;二是寻找其他来源的卵细胞如尸体或废弃的胎儿,但这需要发展卵细胞在体外成熟的技术。曾经有人提出将人细胞核转入去核的牛卵子以获取胚胎干细胞,这项技术基于一种假设,即牛细胞质中的蛋白很快被人类的蛋白所取代,从而不会形成杂种细胞。

4 面对的挑战

要使上述设想变为现实,还需要对人胚胎干细胞做深入研究,还需要解决许多技术上的因素,这些问题包括:(1)人胚胎干细胞极易分化成其他细胞。如何维持体外扩增时不细胞异化?虽然在防止体外培养时干细胞分化方面已取得了很大成绩,如在培养基中加入白血病抑制因子等可抑制干细胞分化,但仍需进一步研究干细胞的培养条件。(2)如何定向诱导干细胞分化 [10] ?细胞分化是多种细胞因子互相作用引起细胞一系列复杂的生理生化变化的过程。要诱导产生某种特异类型的组织,就需要了解各种因子在何时何地开始作用,以及何时何地停止作用。但是科学家相信只要将胚胎干细胞诱导分化为所需组织细胞的前提(祖细胞),将祖细胞移植到适当的环境中就能够产生所需的组织,因为机体能够分泌所有指导细胞正确分化的因子;并且不必在体外形成结构精确的多细胞组织后再移植,只需要将已诱导的分散的胚胎细胞或细胞悬液注射到发病部位就可发挥作用,这些移植的细胞与周围细胞及胞外基质相互作用便可有机地整合至受体组织中 [11] 。(3)要使胚胎干细胞在体外发育成一完整的器官尤其是像心、肝、肾、肺等大型精细复杂的器官,这一目标还需要技术上的突破。因为器官的形成是一个非常复杂的三维过程。很多器官是两个不同胚层的组织相互作用而形成的。例如,肺中的肌组织、血管和结缔组织来源于中胚层,而上皮组织源自内胚层。每个细胞要获得营养和排泄代谢产物,分化的组织中需要产生血管,组织血管化目前还处于起步研究阶段。就目前的水平来说对来自自然机体的器官要离体培养并维持其正常的生理功能还无法做到。器官的体外保存和维持仍是器官移植中的难题。一种可能的方法是将干细胞注射到重度免疫缺陷动物的脏器中,让移植的人干细胞逐步替代动物细胞,使其脏器人源化,成为可供人体的器官移植。(4)如何克服移植后的问题?前面提到的改变基因创建“万能供者细胞”的方法是否可行还不清楚。核移植后的卵细胞能否激活沉默基因,启动DNA的合成,会不会改变染色体的结构等等问题,还有待进一步研究。而且,胚胎干细胞有形成畸胎瘤的倾向,必须对胚胎干细胞及其衍生细胞的移植的安全性做一全面、客观、深入的评价,极需人们对此作更深入的研究。

5 其他替代胚胎干细胞应用的技术

由于目前胚胎干细胞的研究存在伦理与法律上的部分难点无法解决,因此人们正在积极寻找替代胚胎干细胞的细胞的来源和技术。例如,根据现阶段的研究可以认为只有很少的几个信号途径参与控制细胞更新和维持其全能性,那么在只有有限分化能力的成体干细胞中激活这些途径是否能使它们保持在全能性的状态?在一些早期胚胎的已分化细胞可以看到这种去分化的现象,例如,小鼠和大鼠卵黄囊的内皮层细胞可以在invivo由异体分化(transdifˉferentiate)状态转变成全能性细胞 [12] ,将小鼠和人的生殖母细胞用一些信号分子处理可以转变成可自我更新的全能性细胞 [1~3] 。但目前主要的研究仍集中在将成体干细胞(adult stem cells)替代胚胎干细胞的研究上。成体干细胞是指从成熟机体组织中分离出来的干细胞,能在体外长期培养,在一定条件下能产生与所来源组织类型相同的细胞。至今为止已在多种组织中发现并分离出干细胞,甚至在像脑、肝脏这些更新较慢的组织中同样存在干细胞。在大部分组织中,必须通过特定的分子标志才能将干细胞与周围无关的细胞区分开来。这些分子标志物也能为如何控制干细胞的表型提供重要的线索。例如,表皮干细胞表达高水平的β 1 -integrins,而β 1 -integrins介导的细胞与胞外基质的粘附可以抑制干细胞终末分化的发生 [13~16] 。据原先的推测,成体干细胞只能分化为与来源组织类型相同的细胞,即血液干细胞只能分化出各种血液细胞,而神经干细胞只能分化出神经细胞。但是最近的一系列研究发现说明:通过控制周围环境,成体干细胞也能够分化成多种不同类型的细胞,表现出一定的多能性 [17~20] 。

Bjornson等人报道,将从小鼠前脑中的神经干细胞移植到用放射线照射处理后的小鼠的循环系统中,可以产生出包括骨髓细胞和淋巴细胞在内的多种血液细胞,这个结果说明神经干细胞具有比最初预想的更大的分化潜力 [21] 。Margaret A.Goodell领导的小组从小鼠骨骼肌中分离出一种干细胞,它能够分化成几乎所有种类的血液细胞,而且效力比完全的骨髓成分高10~14倍 [22] 。此外,陆续还有一些发现如大鼠肝脏中的干细胞可以在体内分化成心肌细胞 [23] ;小鼠血液干细胞分化成心肌细胞和血管内皮细胞 [24] ;人和小鼠神经干细胞分化成骨骼肌细胞 [25] ;人骨髓基质干细胞分化成多种非血液型细胞 [26] ;人体血液干细胞转化成肝脏细胞 [27] ;人神经干细胞可以转化成血液细胞和骨骼肌细胞 [28] 。目前笔者尚不明白在这个发生过程中的机制。笔者注意到在血液系统中的两个例子:在进行促分化处理前在单个的干细胞或前提细胞中能同时检测出多种细胞类型特有的相关基因的表达 [29~30] ,以及当B淋巴细胞细胞的正常分化由于Pax5的缺失被阻断后,B细胞前体细胞可以分化成多种其他类型的血液细胞 [31] 。这说明干细胞在分化成某个特定细胞类型之前存在一个相对混乱的状态,在这个状态下细胞中多种细胞类型相关的基因都会被激活。

以 上的发现要应用于临床还存在操作上的困难,必须寻找一种更容易得到,更容易控制分化的成体干细胞。目前比较理想的有人间质干细胞,这种细胞可以从成人骨髓中分离得到,能在去分化的状态下稳定复制,并能分化成多种间质组织包括骨、软骨、脂肪、腱、肌肉和骨髓基质等 [32~33] 。最近,从脂肪组织中分离出干细胞,它能分化成脂肪、软骨、肌 肉和骨组织 [34] ;另外从啮齿动物真皮中得到的干细胞可以产生出神经元、神经胶质、平滑肌细胞和脂肪细胞,可能可以作为未来理想的干细胞来源 [35] 。但到目前为止,成体干细胞能转化的细胞类型还十分有限,因此只能作为胚胎干细胞研究的一个备用方案。总之,胚胎干细胞的研究及应用,将使笔者们更加深入了解人类自身形成的过程,给人类带来全新的医疗方法。随着研究的深入,许多目前还无法治愈的疾病有可能借助胚胎干细胞及其相关技术而被治愈。

参考文献

1 Thomson J A,Itskovrtz-Eldior J,Shapiro S S,et al.Embryonic stem cell lines derived from human blastocysts.Sciencem,1998,282:1145.

2 Shamblott M J,Axelman J,Wanj S P,et al.Derivation of Pluripotent stem cells from cultured human primordial germ cells.Proc Nat Acad sci,1998,95:13726-13731.

3 Andrews PW.Human teratocarcinomas.Biochim Biophys Actam,1998,948:17-36.

4 Gardner D k.Decelopment of serum-free medium for the culture and transfer of human blastocysts.Human Reproduction,1998,13(Supplement4):218-225.

5 Jorgensen N,Meyts E R,Graem N,et al.Expression of immunohistocheˉmical markers for testicular carcinoma in situ by normal human fetal germ cells.Lab Invets,1995,72:223-231.

6 Donovan PJ.Growth-factor regulation of mouse primordial germ-cell development.Curr Top Dev Bio1,1994,292:154-156.

7 Niwa H,Burdon T,Chambers I,et al.Self-renewal of pluripotent embryˉonic stem cells is mediated via activation of STAT3.Genes Dev,1998,12:2048.

8 Lanza R.Extension of cell life-span andtelomere length in animals cloned from senescend somatic cells.Science,2000,288:666-669.

9 Solter D.Mammalian cloning advances and limitations.Nature Rev Genet,2000,1:199-207.

10 Reubinoff B E,Pear M F,Fong C Y,et al.Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro.Nature Biotechˉnol,2000,18:399-404.

11 Shamblott M J,Axelman J,Littlefield J M,et al.Human embryonic germ cell derivatives express abroad range of developmentally distinct markers and proliferate extensively in vitro.Proc Natl Acad Sci USA,2001,98(1):113-118.

12 Sobis H,Vandeputte.ransdifferentiation of embryonic cells into pluripoˉtent cells.Dev Biol,1982,92:553.

13 Jensen U B,Lowell S,Watt F M.The spatial relationship between stem cells and their progeny in the basal layer of human epidermis:a new view based on whole-mount labeling and lineage analysis.Developˉment,1999,126:2409.

14 Jones P H,Watt F M.Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression.Cell,1993,73:713.

15 Jones P H,Harper S,Watt F M.Stem cell patterning and fate in human epidermis.Cell,1995,80:83.

16 Zhu A J,Haase I,Watt F M.Signaling via betal integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro.Proc Natl Acad Sci USA,1999,96:6728.

17 Magli M C,Levantini E,Giorgetti A.Development potential of somatic stem cells in mammalian adults.J Hematother.Stem Cell Res,2000,9(6):961-969.

18 Vogel G.Stem cell policy.Canstem cells suffice?Science,2001,292(5523):1820-1822.

19 Clarke D,Frisen J.Differentiation potential ofstem cells.Curr Opin Genet Dev,2001,11(5):575-80.

20 Almeida-porada G,porada C,Zanjani ED.Adult stem cell plasticity and methods of detection.Rev Clin Exp Hematol,2001,5(1):26-41.

21 Bjornson C R R,Rietze R L,Reynolds B A,et al.Turning brain into blood:a hematopoietic fate adopted byneural stem cells in vivo.Science,1999,283:534.

22 Jackson K A,Mi T,Goodell MA.Hematopoietic potential of stem cells isolated from murine skeletal muscle.Proc Natl Acad Sci USA,1999,96(25):14482 -14486.

23 Malouf N N,Coleman W B,Madden V J,et al.Adult-derived stem cells form the liver become myocytes in the heart in vivo.AmJ Pathol,2001,158(6):1929-1935.

24 Jackson K A,Mjajka S M,Wang H,et al.Regeneration of ischemic carˉdiac muscle and vascular endothelium bystem cells.J Clin Invest,2001,107(11):1395-1402.

25 Galli R,Borello U,Gritti A,et al.Skeletal myogenic potential of human and mouse neural stem cells.Nat Neurosci,2000,3(10):986-991.

26 Colter D C,Sekiya I,Prockop D J.Identification of a subpopulation of rapidly self-renewing and multipotentialstem cells in colonies of human marrow stromal cells.Proc Natl Acad Sci USA,2001,98(14):7841-7845.

27 Alison MR,Poulsom R,Jacob J,et al.Hepatocytes from non-hepaticstem cells.Nature,2000,406(6793):257.

28 Vescovi A L,Galli A.The neural stem cells and their transdifferentiationcapacity.Biomed.Pharmacother,2001,55(4):201-205.

29 Cross M A,Enver T.The lineage commitment of haemopoietic progenitor cells.Curr Opin Genet,1997,Dev.7:609.

30 Enver T,Greaves.M.Loops,lineage,and leukemia.Cell,1998,94:9.

31 Nutt S L,Heavey B,Rolink A G,et mitment to the B-lymphoid lineage depends on the transcription factor pax5.Nature,1999,401:556.

32 Jaiswal R K,Jaiswal N,Bruder S P,et al.Adult human mesenchymall lstem cell differentiation to the osteogenic or adipogenic lineage is reguˉlated by mitogen-activated protein kinase.J Biol Chem,2000,275(13):9645-9652.

33 Pittenger M F,Mackay A M,Beck S C,et al.Multilineage potential ofhuman mesenchymal stem cells.Science,1999,284(5411):143-147.

干细胞培养技术第7篇

1998年11月,美国James和JohnGearhart领导的2个科学小组分别阐 述如何利用囊胚和原始的胚胎生殖细胞培养出可能的人全能型胚胎干细胞(ESce lls)和胚胎生殖细胞系(EGcells)[1,2]。ES细胞最引人关注的2条特征 是:ES细胞能在体外条件下生长,在原始的去分化条件下能够无限地分裂;同时在体 外培养的所有时间内都能保持胚胎来源细胞的一个关键性特征—全能性,即发育成 成体中各种细胞的能力。

ES细胞的应用前景十分令人鼓舞。胚胎干细胞可以作为研究人类胚胎发育、出 生缺陷及胚胎瘤等疾病的新的手段;可以用于至今为止尚未进行的关于的方法;制造 人类疾病模型以利用于基础研究、药物开发和毒理学研究,如果克隆技术可以从患 者自体组织中获得干细胞,则它们可解决用于治疗退行性疾病的组织短缺以及结束 在移植治疗中使用免疫抑制剂;另外干细胞还可以用来作为基因治疗的一种新的基 因运载系统。总之,其前景十分广泛。

1胚胎干细胞的一般定义特征

考虑到ES或EG细胞的特性,可以认为有一些表型是所有的ES细胞都应该具有的 ,其他一些特点可能是属于从不同种属或不同组织中分离出来的某种特定全能性细 胞所特有,或表现出在胚胎发育过程中某个特定阶段所具有的特征。一般认为全能 性干细胞所应具有的特征如下:(1)来源于一个全能性的细胞群体;(2)具有正常 的细胞核型;(3)具永生性,在胚胎状态下能无限制的分裂;(4)培养的细胞株在 体外或在畸胎瘤中能自发分化成胚胎外组织(extraembryonictissues)和分属所 有3种胚层的体细胞。但到目前为止,所有已培养成功的哺乳动物细胞中,除小鼠 外,灵长类动物ES细胞只满足上述4条标准的前3条。一些研究人员将ES细胞的定义 限定为那些能分化成包括生殖细胞在内的所有的细胞。但出于伦理上的原因,来源 于人的ES细胞不可能进行试验以验证是否满足这一标准。因此,如果来源于人的细 胞能满足其他3条关于ES细胞的一般定义,我们就认为它属于ES细胞。需要指出的 是,要从体外培养或畸胎瘤试验验证一个ES细胞能否分化成所有组织类型的细胞是 十分困难的,因为不论在体外培养条件下或畸胎瘤中,一些组织都是十分罕见的。

2胚胎干细胞的最新研究

JamesThomson和同事于1998年报道利用治疗不孕症所遗弃的囊胚分离出ES细 胞。他们所使用的技术与分离小鼠ES细胞相似:将可能抑制ES细胞培养的滋养外胚 层去除,内层细胞团移植到小鼠胚胎来源的成纤维细胞饲细胞层上,经过短暂的粘 附和展开的过程,将细胞重新分散(disaggregated)并转移到另外的饲细胞层, 在培养基和培养系统与方面,培养人ES细胞与小鼠ES细胞并没有太大的不同,而且 人ES细胞的成功率相对还要高一些。Thomson等人培养猴ES细胞的工作无疑对他们 首先成功培养人ES细胞是有很大帮助的。灵长类的全能性干细胞在很多方面与小鼠 ES细胞是不同的,特别是在外形上,且灵长类全能性干细胞不容易分散成单个的细 胞。因此,要正确辨认出所需的ES细胞并在传代过程中做到正确处理是十分重要的 。但还有一个重要的条件,即人胚胎培养过程的改进,其包括不同发育阶段使用不 同的培养基的两步培养系统,这使得能高效地得到高质量的人囊胚[4]。

Shamblott和同事[2]在《美国科学院论文集》上,报道从受精 5~9周的胚胎和胎儿性腺中分离出全能性细胞。尽管人们对人体中原始生殖细胞的 成熟过程的小细节知之甚少,但科学家们确实知道这个过程包括生殖母细胞迁移至 性腺并开始扩增,随后性腺出现明显的性别分化。在这个阶段的胚胎和胎儿性腺中 已经可以发现有表达生殖母细胞标志性分子的细胞[5]。Shamblott小组所使 用的培养系统利用了已知能支持小鼠生殖母细胞在体外存活和有丝分裂的一些因子 ,即STO成纤维细胞饲细胞层、成纤维细胞生长因子、白血病抑制因子(LIF)和f orskolin[6]。由以上2种方法培养出的细胞在多大程度上能符合ES或EG细胞 的一般标准?2种培养物都来源于全能性的细胞群,都能在体外培养过程中保持有正 常的细胞核型。Thomson小组培养出的细胞株已经传代许多次,且细胞含有端粒酶 活性,这2点都提示这个细胞株是永生的。Shamblott的EG细胞虽没有培养那么久, 但也没有迹象显示这些细胞将会死亡。从囊胚中分离出的细胞能形成包含所有3个 胚层组织的畸胎瘤,且个别组织表现为高级的组织结构性(例如可以形成神经管) 。但是在体外情况下,细胞分化的证据只能限定于能表达一些滋养层和内皮层形成 的某些标志性分子(如人绒毛膜促性腺激素和α-甲胎蛋白);从生殖细胞来源的细 胞株中没有能在体内形成畸胎瘤的证据,但是作者确实观察到了在胚状体(embry oidbodies)中存在细胞进行分化的情况。胚状体是一种在不适宜干细胞生长的条 件下,由全能性干细胞在三维方向上生长所形成的一种结构。小鼠中胚状体包括两 层,一层是胚胎外的内皮层,一层是外胚层。两种细胞之间的联接可能使外胚层细 胞分化成多种细胞类型,这种现象类似于体内情况下胚胎培植早期的状况[2] 。Shamblott将培养出来的胚状体切片,用免疫化学方法研究,发现不同细胞类型 表达分别代表中胚层、内胚层和外胚层的单个标志分子。

人的干细胞的表型,即外形、抗原表达及培养条件等方面与其他种类的全能型 细胞如小鼠的ES细胞或EC细胞相比有自己的特点。人EC细胞,猴和人的ES细胞在表 型上十分相似,与小鼠细胞或人EG细胞极易区分开来。灵长类动物细胞在单层培养 条件下呈扁平的克隆,细胞边界较清显;而小鼠ES细胞成堆生长,细胞更圆,细胞 边界不清。灵长类动物全能型干细胞表达一系列特异性的表面抗原。小鼠ES细胞的 自我更新可以被白血病抑制因子(LIF)或相关的细胞因子促进[7]但对人的 ES细胞却没有这种作用[1,2]。

在Thomson和Shamblott这2个小组的成功带动下,目前对人ES细胞的研究出现 一股热潮。如果成功,将给人类带来福音。倘若科学家最终能够成功诱导和调控体 外培养的胚胎干细胞正常地分化,这将对基础研究和临床应用产生巨大的影响。有 可能在以下领域发挥作用:体外研究人胚胎的正常发生发育,非正常发育(通过改 变细胞系的靶基因),新的人类基因的发现,药物筛选和致畸实验,以及作为组织 移植、细胞治疗和基因治疗的细胞源等。

3胚胎干细胞应用前景探讨

人胚胎干细胞提供了在细胞和分子水平上研究人体发育过程中的及早期时期的 良好条件,这种研究不会引起与胚胎实验相关的伦理问题。采用基因芯片等技术 ,比较人胚胎干细胞以及不同发育阶段的干细胞和分化细胞的基因转录和表达,可 以确定胚胎发育及细胞分化的分子机制,发现新的人类基因。结合基因打靶技术, 可发现不同基因在生命活动中的功能等。该应用有利于新药的发现及筛选,人胚胎 干细胞使新药的药理、药效、毒理及药代等研究达到了细胞水平,极大减少了药物 实验所需的动物数量。目前药物实验使用的细胞系基本上来自其他的种属,其结果 常不能真正代表正常的人体细胞对药物的反应。人胚胎干细胞还可用来研究人类疾 病的发病机制和进展结果,从而可找到特效和永久的治疗方法。

人胚胎干细胞最有价值的应用是用来修复甚至替换已丧失功能的组织和器官, 因为它具有发育分化成所有类型组织细胞的能力。任何导致丧失正常细胞的疾病都 可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗,如用神经细胞治疗神 经变性疾病(帕金森综合征、亨廷顿舞蹈症、阿尔茨海默病等),用造血干细胞重 建造血功能,用胰岛细胞治疗糖尿病,用心肌细胞修复已坏死的心肌等。尤其是对 于后2项,胚胎干细胞可能会有特别疗效,至今认为成年人的心脏和胰岛几乎没有 干细胞,自身无法得到修复。用于基因治疗和防止免疫排异反应,还可以对胚胎干 细胞的基因做适当的修改。干细胞是基因治疗较理想的靶细胞,因为它可以自我复 制更新,治疗基因通过它带入人体中,能够持久地发挥作用,而不象分化的细胞那 样,在细胞更新中可能丢失治疗基因的结果。通过胚胎干细胞和基因治疗技术,可 以矫正缺陷基因。例如,如果发现早期胚胎有某种基因缺陷而会患基因病如囊性纤 维化—一种30岁以前便会致人死亡的疾病,可以收集部分或全部胚胎干细胞,通过 基因工程技术将正常的基因替代干细胞中的缺陷基因,再将修复后的胚胎干细胞嵌 入胚胎中,将会出生一个健康的婴儿。由于伦理和某些技术问题,现在还未开展此 类实验。改变胚胎干细胞的某些基因的另一目的是创建“万能供者细胞”,即破坏 细胞中表达组织相容性复合物的基因,躲避受者免疫系统的监视,从而达到防止免 疫排异反应的发生。但这种方法需要破坏和改变细胞中许多基因,而且这种细胞发 育成的组织和器官是否有生理缺陷?如免疫能力状况还不得而知。

另一种克服移植免疫排异的途径就是结合克隆技术创建患者特异性的胚胎干细 胞。为避免患者自身对外源细胞的免疫排异反应,ES细胞的获得还有另一种方法, 即从患者自身成熟细胞中取出细胞核,移植入去核的卵细胞中(即体细胞核转移技 术SCˉNT),经过一系列的培养在体外分化成患者所需要的细胞或组织类型。这种 包含与患者完全相同的遗传物质的杂合卵细胞在体外培养发育成囊胚,若将囊胚植 入假孕妇女的子宫中,将会克隆出与提供体细胞的人基因相同的个体,即所谓的“ 克隆人”。但是如果从获得的囊胚中分离并扩增所谓的“人胚胎干细胞(ES)”, 并体外诱导它们分化成胰岛细胞、神经元、心肌细胞等,将这些细胞移植至发病部 位,则能够修复患者的组织或器官,从而使患者得到康复。用这种胚胎干细胞培养 获得的细胞、组织或器官,其基因和细胞膜表面的主要组织相容性复合体与提供体 细胞的患者完全一致,不会导致任何免疫排异反应。如果能成为现实,这将是人类 医学史上一项划时代的成就,它将使器官培养专业化,全面解决供体器官来源不足 的问题;并达到器官供应专一化,提供给患者相应性器官。人体中的任何器官和组 织一旦出现异常,则医生可给予更换和修复。

利用核转移克隆技术以获取ES细胞,人卵子来源不足是目前的主要难题。至今 为止,非人类哺乳动物的克隆效率非常低,大约100个以上的卵细胞才能得到1个有 活力的克隆[8,9]。要解决这个问题,一是尽快找出卵细胞中使体细胞去分 化的因子;二是寻找其他来源的卵细胞如尸体或废弃的胎儿,但这需要发展卵细胞 在体外成熟的技术。曾经有人提出将人细胞核转入去核的牛卵子以获取胚胎干细胞 ,这项技术基于一种假设,即牛细胞质中的蛋白很快被人类的蛋白所取代,从而不 会形成杂种细胞。

4面对的挑战

要使上述设想变为现实,还需要对人胚胎干细胞做深入研究,还需要解决许多 技术上的因素,这些问题包括:(1)人胚胎干细胞极易分化成其他细胞。如何维持 体外扩增时不细胞异化?虽然在防止体外培养时干细胞分化方面已取得了很大成绩 ,如在培养基中加入白血病抑制因子等可抑制干细胞分化,但仍需进一步研究干细 胞的培养条件。(2)如何定向诱导干细胞分化[10]?细胞分化是多种细胞因 子互相作用引起细胞一系列复杂的生理生化变化的过程。要诱导产生某种特异类型 的组织,就需要了解各种因子在何时何地开始作用,以及何时何地停止作用。但是 科学家相信只要将胚胎干细胞诱导分化为所需组织细胞的前提(祖细胞),将祖细 胞移植到适当的环境中就能够产生所需的组织,因为机体能够分泌所有指导细胞正 确分化的因子;并且不必在体外形成结构精确的多细胞组织后再移植,只需要将已 诱导的分散的胚胎细胞或细胞悬液注射到发病部位就可发挥作用,这些移植的细胞 与周围细胞及胞外基质相互作用便可有机地整合至受体组织中[11]。(3)要 使胚胎干细胞在体外发育成一完整的器官尤其是像心、肝、肾、肺等大型精细复杂 的器官,这一目标还需要技术上的突破。因为器官的形成是一个非常复杂的三维过 程。很多器官是两个不同胚层的组织相互作用而形成的。例如,肺中的肌组织、血 管和结缔组织来源于中胚层,而上皮组织源自内胚层。每个细胞要获得营养和排泄 代谢产物,分化的组织中需要产生血管,组织血管化目前还处于起步研究阶段。就 目前的水平来说对来自自然机体的器官要离体培养并维持其正常的生理功能还无法 做到。器官的体外保存和维持仍是器官移植中的难题。一种可能的方法是将干细胞 注射到重度免疫缺陷动物的脏器中,让移植的人干细胞逐步替代动物细胞,使其脏 器人源化,成为可供人体的器官移植。(4)如何克服移植后的问题?前面提到的改 变基因创建“万能供者细胞”的方法是否可行还不清楚。核移植后的卵细胞能否激 活沉默基因,启动DNA的合成,会不会改变染色体的结构等等问题,还有待进一步 研究。而且,胚胎干细胞有形成畸胎瘤的倾向,必须对胚胎干细胞及其衍生细胞的 移植的安全性做一全面、客观、深入的评价,极需人们对此作更深入的研究。

5其他替代胚胎干细胞应用的技术

由于目前胚胎干细胞的研究存在伦理与法律上的部分难点无法解决,因此人们

正在积极寻找替代胚胎干细胞的细胞的来源和技术。例如,根据现阶段的研究可以

认为只有很少的几个信号途径参与控制细胞更新和维持其全能性,那么在只有有限

分化能力的成体干细胞中激活这些途径是否能使它们保持在全能性的状态?在一些

早期胚胎的已分化细胞可以看到这种去分化的现象,例如,小鼠和大鼠卵黄囊的内

皮层细胞可以在invivo由异体分化(transdifˉferentiate)状态转变成全能性细

胞[12],将小鼠和人的生殖母细胞用一些信号分子处理可以转变成可自我更

新的全能性细胞[1~3]。但目前主要的研究仍集中在将成体干细胞(adult

stemcells)替代胚胎干细胞的研究上。成体干细胞是指从成熟机体组织中分离出

来的干细胞,能在体外长期培养,在一定条件下能产生与所来源组织类型相同的细

胞。至今为止已在多种组织中发现并分离出干细胞,甚至在像脑、肝脏这些更新较

慢的组织中同样存在干细胞。在大部分组织中,必须通过特定的分子标志才能将干

细胞与周围无关的细胞区分开来。这些分子标志物也能为如何控制干细胞的表型提

供重要的线索。例如,表皮干细胞表达高水平的β1-integrins,而β1-inte

grins介导的细胞与胞外基质的粘附可以抑制干细胞终末分化的发生[13~16]

。据原先的推测,成体干细胞只能分化为与来源组织类型相同的细胞,即血液干

细胞只能分化出各种血液细胞,而神经干细胞只能分化出神经细胞。但是最近的一

系列研究发现说明:通过控制周围环境,成体干细胞也能够分化成多种不同类型的

细胞,表现出一定的多能性[17~20]。

Bjornson等人报道,将从小鼠前脑中的神经干细胞移植到用放射线照射处理后

的小鼠的循环系统中,可以产生出包括骨髓细胞和淋巴细胞在内的多种血液细胞,

这个结果说明神经干细胞具有比最初预想的更大的分化潜力[21]。Margaret

A.Goodell领导的小组从小鼠骨骼肌中分离出一种干细胞,它能够分化成几乎所有

种类的血液细胞,而且效力比完全的骨髓成分高10~14倍[22]。此外,陆续

还有一些发现如大鼠肝脏中的干细胞可以在体内分化成心肌细胞[23];小鼠血

液干细胞分化成心肌细胞和血管内皮细胞[24];人和小鼠神经干细胞分化成骨

骼肌细胞[25];人骨髓基质干细胞分化成多种非血液型细胞[26];人体血

液干细胞转化成肝脏细胞[27];人神经干细胞可以转化成血液细胞和骨骼肌细

胞[28]。目前笔者尚不明白在这个发生过程中的机制。笔者注意到在血液系

统中的两个例子:在进行促分化处理前在单个的干细胞或前提细胞中能同时检测出

多种细胞类型特有的相关基因的表达[29~30],以及当B淋巴细胞细胞的正常

分化由于Pax5的缺失被阻断后,B细胞前体细胞可以分化成多种其他类型的血液细

胞[31]。这说明干细胞在分化成某个特定细胞类型之前存在一个相对混乱的

状态,在这个状态下细胞中多种细胞类型相关的基因都会被激活。

以上的发现要应用于临床还存在操作上的困难,必须寻找一种更容易得到,更

容易控制分化的成体干细胞。目前比较理想的有人间质干细胞,这种细胞可以从成

人骨髓中分离得到,能在去分化的状态下稳定复制,并能分化成多种间质组织包括

骨、软骨、脂肪、腱、肌肉和骨髓基质等[32~33]。最近,从脂肪组织中分

离出干细胞,它能分化成脂肪、软骨、肌肉和骨组织[34];另外从啮齿动物

真皮中得到的干细胞可以产生出神经元、神经胶质、平滑肌细胞和脂肪细胞,可能

可以作为未来理想的干细胞来源[35]。但到目前为止,成体干细胞能转化的

细胞类型还十分有限,因此只能作为胚胎干细胞研究的一个备用方案。总之,胚胎

干细胞的研究及应用,将使笔者们更加深入了解人类自身形成的过程,给人类带来

全新的医疗方法。随着研究的深入,许多目前还无法治愈的疾病有可能借助胚胎干

细胞及其相关技术而被治愈。

参考文献

1ThomsonJA,Itskovrtz-EldiorJ,ShapiroSS,etal.Embryonicste

mcelllinesderivedfromhumanblastocysts.Sciencem,1998,282:1145.

2ShamblottMJ,AxelmanJ,WanjSP,etal.DerivationofPluripote

ntstemcellsfromculturedhumanprimordialgermcells.ProcNatAcads

ci,1998,95:13726-13731.

3AndrewsPW.Humanteratocarcinomas.BiochimBiophysActam,1998,94

8:17-36.

4GardnerDk.Decelopmentofserum-freemediumforthecultureand

transferofhumanblastocysts.HumanReproduction,1998,13(Supplement4

):218-225.

5JorgensenN,MeytsER,GraemN,etal.Expressionofimmunohistoc

heˉmicalmarkersfortesticularcarcinomainsitubynormalhumanfeta

lgermcells.LabInvets,1995,72:223-231.

6DonovanPJ.Growth-factorregulationofmouseprimordialgerm-cell

development.CurrTopDevBio1,1994,292:154-156.

7NiwaH,BurdonT,ChambersI,etal.Self-renewalofpluripotente

mbryˉonicstemcellsismediatedviaactivationofSTAT3.GenesDev,19

98,12:2048.

8LanzaR.Extensionofcelllife-spanandtelomerelengthinanimals

clonedfromsenescendsomaticcells.Science,2000,288:666-669.

9SolterD.Mammaliancloningadvancesandlimitations.NatureRevGe

net,2000,1:199-207.

10ReubinoffBE,PearMF,FongCY,etal.Embryonicstemcelllin

esfromhumanblastocysts:somaticdifferentiationinvitro.NatureBiote

chˉnol,2000,18:399-404.

11ShamblottMJ,AxelmanJ,LittlefieldJM,etal.Humanembryonic

germcellderivativesexpressabroadrangeofdevelopmentallydistinct

markersandproliferateextensivelyinvitro.ProcNatlAcadSciUSA,2

001,98(1):113-118.

12SobisH,Vandeputte.ransdifferentiationofembryoniccellsinto

pluripoˉtentcells.DevBiol,1982,92:553.

13JensenUB,LowellS,WattFM.Thespatialrelationshipbetween

stemcellsandtheirprogenyinthebasallayerofhumanepidermis:ane

wviewbasedonwhole-mountlabelingandlineageanalysis.Developˉment

,1999,126:2409.

14JonesPH,WattFM.Separationofhumanepidermalstemcellsfro

mtransitamplifyingcellsonthebasisofdifferencesinintegrinfunc

tionandexpression.Cell,1993,73:713.

15JonesPH,HarperS,WattFM.Stemcellpatterningandfateinh

umanepidermis.Cell,1995,80:83.

16ZhuAJ,HaaseI,WattFM.Signalingviabetalintegrinsandmit

ogen-activatedproteinkinasedetermineshumanepidermalstemcellfate

invitro.ProcNatlAcadSciUSA,1999,96:6728.

17MagliMC,LevantiniE,GiorgettiA.Developmentpotentialofsom

aticstemcellsinmammalianadults.JHematother.StemCellRes,2000,9

(6):961-969.

18VogelG.Stemcellpolicy.Canadultstemcellssuffice?Science,2

001,292(5523):1820-1822.

19ClarkeD,FrisenJ.Differentiationpotentialofadultstemcells

.CurrOpinGenetDev,2001,11(5):575-80.

20Almeida-poradaG,poradaC,ZanjaniED.Adultstemcellplasticit

yandmethodsofdetection.RevClinExpHematol,2001,5(1):26-41.

21BjornsonCRR,RietzeRL,ReynoldsBA,etal.Turningbrainin

toblood:ahematopoieticfateadoptedbyadultneuralstemcellsinviv

o.Science,1999,283:534.

22JacksonKA,MiT,GoodellMA.Hematopoieticpotentialofstemce

llsisolatedfrommurineskeletalmuscle.ProcNatlAcadSciUSA,1999,

96(25):14482-14486.

23MaloufNN,ColemanWB,MaddenVJ,etal.Adult-derivedstemce

llsformtheliverbecomemyocytesintheheartinvivo.AmJPathol,200

1,158(6):1929-1935.

24JacksonKA,MjajkaSM,WangH,etal.Regenerationofischemic

carˉdiacmuscleandvascularendotheliumbyadultstemcells.JClinIn

vest,2001,107(11):1395-1402.

25GalliR,BorelloU,GrittiA,etal.Skeletalmyogenicpotential

ofhumanandmouseneuralstemcells.NatNeurosci,2000,3(10):986-99

1.

26ColterDC,SekiyaI,ProckopDJ.Identificationofasubpopulat

ionofrapidlyself-renewingandmultipotentialadultstemcellsincol

oniesofhumanmarrowstromalcells.ProcNatlAcadSciUSA,2001,98(1

4):7841-7845.

27AlisonMR,PoulsomR,JacobJ,etal.Hepatocytesfromnon-hepati

cadultstemcells.Nature,2000,406(6793):257.

28VescoviAL,GalliA.Theneuralstemcellsandtheirtransdiffer

entiation

capacity.Biomed.Pharmacother,2001,55(4):201-205.

29CrossMA,EnverT.Thelineagecommitmentofhaemopoieticprogen

itorcells.CurrOpinGenet,1997,Dev.7:609.

30EnverT,Greaves.M.Loops,lineage,andleukemia.Cell,1998,94:9

.

31NuttSL,HeaveyB,RolinkAG,etal.CommitmenttotheB-lympho

idlineagedependsonthetranscriptionfactorpax5.Nature,1999,401:5

56.

32JaiswalRK,JaiswalN,BruderSP,etal.Adulthumanmesenchyma

lllstemcelldifferentiationtotheosteogenicoradipogeniclineagei

sreguˉlatedbymitogen-activatedproteinkinase.JBiolChem,2000,27

5(13):9645-9652.

33PittengerMF,MackayAM,BeckSC,etal.Multilineagepotentia

lofadulthumanmesenchymalstemcells.Science,1999,284(5411):143-

147.

34ZukPA,ZhuM,MizunoH,etal.Multilineagecellsfromhumanad

iposetissue:implicationsforcell-basedtherapies.TissueEng,2001,7(

2):211-228.

35TomaJG,AkhavanMFemandesKJ,etal.Isolationofmultipotent