欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

量子计算论文(合集7篇)

时间:2023-04-01 10:29:25
量子计算论文

量子计算论文第1篇

电子地图条件下的载负量计算与传统地图载负量是不同的,主要表现在两个方面。1)无须将面积载负量转换为数值载负量。传统制图条件下,通常将面积载负量转换为数值载负量,J.库曼斯坦建议用“点”作为数值载负量的评定指标。对于点状地物,一个独立地图即一个点;对于线状地物,图上1cm长的线状地物即一个点;对于面状地物,图上1cm2即一个点。利用该标准,可以很容易地统计出纸张地图上“点”的数量。而在电子地图条件下,所有类型地物要素都是通过像素来进行表达的,利用电子地图软件程序可以很方便地计算出点、线、面及注记要素所占的像素个数或区域面积。因此,电子地图条件下可以直接计算面积载负量。2)符号的最小尺寸。传统地图是目视图形,地图符号的形状与大小直接影响地图载负量的大小。一般规定,纸张地图中最细的线粗为0.1mm,最小的要素间距为0.2mm,这样才符合人眼的生理辨别能力。电子屏幕环境下,由于屏幕闪烁和光线的刺激,电子地图上符号最小尺寸要大于纸质地图上符号最小尺寸才能满足地图的清晰易读,文献[8]依据制图经验提出了电子屏幕下符号大小应为纸质环境的2.5~3倍。因此,基于上述不同及地图载负量的特点,在进行电子地图载负量计算时,应顾及以下条件。1)点要素面积载负量,由点要素符号面积和注记面积组成。2)线要素面积载负量,由线符号面积和注记面积组成。3)色彩填充的面要素,其面积载负量由边线面积和注记面积组成;图案填充面要素,其面积载负量即为其面积和注记面积之和。4)电子地图情况下,最细的线符号为0.3mm,最小的地物间距为0.6mm。5)所有要素的面积载负量最终应转换为要素所占屏幕像素个数与屏幕像素总和之比。1.点要素面积载负量计算依据点要素符号不重叠特征,将点要素的有效负载与符号空白位置再加上其注记面积,作为一个点要素的面积载负量。2.线要素面积载负量计算线状地物要素依据其符号特征可以分为:①基本线性符号表达的线要素,如折线;②基本线符号组合表达的线要素,如平行线、虚线符号;③基本线符号加图案配置型线要素,如河堤符号。式中,当线符号为基本线型符号或基本线型组合符号时,线的宽度为线符号规定的宽度;当线符号位基本线型符号加图案配置型线符号时,线的宽度应为线符号单元的整体宽度,见表2。3.面要素面积载负量计算电子地图中的面要素通常采用的是:①面要素具有边线或内部色彩填充;②面要素具有边线和内部图案填充;③点符号填充面符号。设某一电子图幅内(面积为S,单位为mm2)面要素集合为SAi(i=0,1,…,n),Ai为一面要素。则图幅内该面要素集合的面积载负量见表3。当面要素内部填充为图案时,注记在面内部的不计算注记载负量。4.模型应用流程上述电子地图载负量计算模型可以直接应用到电子地图制作软件或地理信息系统中,其应用过程如图1所示。在应用中,可以将载负量计算模型做成一个软件模块或软件包的形式,嵌入到系统软件中。利用系统软件的数据模型和空间数据库,在确定好图幅范围后,抽取图幅范围内的地理对象,这些地理对象也可能是经过裁剪后的对象的一部分。利用对象的属性获得对象的符号表达信息和属性,以及其他相关信息,利用这些信息可以确定载负量的计算方法,从而获得指定图幅内的载负量。利用计算出的载负量值,可以进行其他方面如制图综合、内容选取等的应用。

二、试验

该试验利用自主研发的“GIS综合试验系统”进行了载负量计算模型的嵌入实现。选择郑州地区的4个不同区域,在同一比例尺下进行电子地图的绘制(如图2所示),并实时利用载负量计算模型得出4个不同区域内电子地图载负量的值。为了对比,将试验区域内的4幅电子地图输出成为BMP格式的图像,并利用Photoshop软件进行色彩处理,获得每幅图像中非底色(白色)部分的像素个数(该部分为目标颜色值),除以图像像素总个数,从而获得每幅地图的载负量。上述获得的两组载负量的值见表4。从表4可以看出,在图2(a)中,模型计算方法获得的载负量比色差识别法获得的载负量要小,而图(c)中模型计算方法获得的载负量比色差识别方法计算的载负量要大。经过分析,由于图2(a)中含有面对象,而面的普染色在利用色差识别方法时将面要素的内部填充色也作为要素载负量进行了计算,但地图学理论[2]中一般不将面要素的色彩填充作为地图面积载负量,因此造成了图2(a)中载负量的差值;图2(c)中,由于没有面要素内部色彩被计算成载负量,而模型计算方法在计算过程中考虑了要素的空白位置,造成了模型计算方法计算的结果比色差识别法计算的结果值要略大,类似的情况在图2(c)中也出现了。图2(d)中由于面要素的区域稍大,而整体图面内要素数量较少,造成了利用色差识别法计算的载负量比模型计算方法计算的结果值稍大。

三、结束语

量子计算论文第2篇

在LED的PN结上施加正向电压时,PN结会有电流流过。电子和空穴在PN结过渡层中复合会产生光子,然而并不是每一对电子和空穴都会产生光子,由于 LED的PN结作为杂质半导体,存在着材料品质、位错因素以及工艺上的种种缺陷,会产生杂质电离、激发散射和晶格散射等问题,使电子从激发态跃迁到基态时与晶格原子或离子交换能量时发生无辐射跃迁,也就是不产生光子,这部分能量不转换成光能而转换成热能损耗在PN结内,于是就有一个复合载流子转换效率,并用符号nint表示。nint=(复合载流子产生的光子数/复合载流子总数)×100%当然,很难去计算复合载流子总数和产生的光子总数。一般是通过测量LED输出的光功率来评价这一效率,这个效率nint就称为内量子效率。提高内量子效率要从LED的制造材料、PN结外延生长工艺以及LED发光层的出光方式上加以研究才可能提高LED的nint,这方面经过科技界的不懈努力,已有显著提高,从早期的百分之几已提高到百分之几十,有了长足的进步,未来LED发展,还有提高nint的很大空间。假设LEDPN结中每个复合载流子都能产生一个光子,是不是可以说,LED的电一光转换效率就达到100%?回答是否定的。从半导体理论可以知道,由于不同的材料和外延生长工艺的不同,所制成的LED的发光波长是不同的。假设这些不同发光波长的LED其内量子效率均达到 100%,但由于一个电子N型层运动到PN结有源层和一个空穴从P型层运动到PN结有源层,产生复合载流子所需的能量E与不同波长的LED的能带位置相关都不一样。而不同波长的光子的能量E也是不同的,电能到光能的变换有必然的损耗,下面举例加以说明: | 中华励志网|zhlzw.com为您提供学习资料| 例如一个入D=630nm的GaInAlP四元橙色LED,其正向偏置为VF≈2.2V,于是意味着它的一个电子与一个空穴复合成一个载流子所需的电势能 ER=2.2Ev,而一个入D=630nm的光子的势能为E=hc/入D≈1240/630≈1.97eV,于是电能到光能的转换效率n(e- L)=1.97/2.2×100%≈90%,即有0。0.23eV的能量损失(eV为电子伏)。如果对一个GaN的蓝光470nm的LED,则VF≈3.4V,于是EB≈3.4EeV,而EB≈1240/470≈2.64eV,于是Nb=2.64 /3.4×100%≈78%,这是在假定nint=100%时。若nint=60%,则对于红色LED,n(e-L)=90%×60%=54%,而对于蓝色LED则有n(e-L)B=78%×60%=47s%。可见,这就是LED的光一电转换效率不是很高的原因。

量子计算论文第3篇

[关键词]物理学理论 计算机技术 量子计算机

中图分类号:O4-39 文献标识码:A 文章编号:1009-914X(2016)27-0198-01

一、近代物理学理论的发展与现代物理学理论

现代物理学的发展即为19世纪至今,是现代物理学理论发展不断壮大的时期。

当力学,热力学,统计学,电磁学都发展的很完善时,有“两个不稳定因素”打破了物理界的当时的境况,推动了物理学的变革。第一个是迈克尔逊-莫雷实验,即在实验中没测到“以太风”,也就是说不存在真正的参考系,光速与光源运动无关,光速各向同性。第二个是黑体辐射实验,用经典物理学理论无法解释实验结果。

20世纪初,爱因斯坦打破了传统的物理学理论,提出了侠义相对论,彻底了之前牛顿提出的绝对时空观的理论。十年后又创立了广义相对论,阐述了万有引力的实质。

物理学界的第二个稳定因素――黑体辐射实验,通过普朗克,爱因斯坦,玻尔等一大批物理学家的努力下,量子力学应时诞生了。随着薛定谔波动方程解释物质与波的关系,量子力学愈来愈趋于完善。

量子力学与相对论力学在现代物理学理论发展中是不可忽略的伟大成就。这两个的研究的对象也发生了改变,由低速到高速,宏观到微观等,物理学理论也日趋成熟。

二物理学理论是计算机诞生的基础

物理学作为理论基础:随着微积分、力学三大定律、万有引力定律,经典光学理论的建立,总所周知的一位伟大的物理学家――牛顿的整个力学的体系也完美的呈现于人们眼中。一对天才数学家布尔和德莫根历经无数次的推演证明,挖掘出了数理逻辑中那闪耀着最亮的光辉――布尔代数:电磁理论则是伟大的物理学家法拉第和麦克斯文创立的!而微观领域上的量子力学经由多位物理学家――德布罗意、玻尔、爱因斯坦、海森伯、薛定谔建立;还有电子三极管经过无数次实验也被德弗雷斯发明出来了。

上世纪40年代,200多位的专家研制小组由美国国防部任命的莫奇利和埃克特领导着并且克服了无数困难,两年中坚持的开发创新,人类第一台计算机――ENIAC(1946)在宾夕法尼亚大学研制成功!这不仅是第一台电子管数字积分计算机更是人类文明进步的一大步。

随着第一台计算机的成功研制的第二年,一种不仅小而且安全可靠,又不会变热,结构也什么简单的晶体管在美国的科学家巴丁等人研制出来。德克萨斯一器和仙童公司也紧跟着飞速发展的科技的步伐,在1953年成功的生产出了首个集成电路。次年,得克萨斯仪器公司首先的宣布他们拥有了集成电路的生产线,这意味着集成电路可以大量的投入生产和使用,然后TRADIC――首台晶体管计算机诞生了,这个在体积上要小很多的计算机就诞生了。

伴随着集成电路的出现,第三代计算机则是诞生在60年代中期。同样是由IBM公司生产出的IBN600系列计算机成为了第三代计算机的代表产品。早一些的INTEL8080CPU的晶体管集成度超过5000管/片,1977年在一个小小的硅片上就可包含几万个管子。

随着时间的推移,以大比例的集成电路当作逻辑元件和存储器的第四代计算机也向着微型或巨型改。计算机的处理器也由8086不停地在转化,到了我们熟知的奔腾系列。

不管是计算机的理论基础还是硬件设施,其实都是以物理学理论为根本的。物理学理论与计算机技术在未来的日子里互相补益,会不断的推动科学向前飞速发展的。

三、计算机零件应用的物理学理论

液晶屏,一听名字就可以想象得到它是以液晶材料为基本组件的。实际上液晶屏就是把液晶材料填充于两块平行板之间,并且利用电压来改变其材料内部的分子排列情况,控制遮光与透光以显示明暗不同,鳞次栉比的图案。如果想要显示彩色的图案时,只要把带着三元色的滤光层加入到两块平行板之间就可以了。液晶屏的广泛应用还因为其功耗十分的低,应用电池的电子产品都可以配置液晶屏。由于液晶介于固态与液态之间,那么就可以既体现固态晶体所有的光学特性,还可以表现出液态的流动特性。总结液晶的物理特性可归纳为:粘性、弹性和其极化性。

目前的CPU一般就是包括三个部分:基板、核心、针脚。大家都知道有一种电脑的硬件的组成的基本单位十分的重要,就是晶体管,而CPU的主要的组成也是晶体管。AMD主流CPU内核在早期的Palomino核心和Thoroughbred-B核心的配备,通常采用3750万个晶体管,而Barton核心使用了5400万个晶体管,核心Opteron处理器使用多达1.06亿个晶体管;。因此,实际上说的CPU核心构成的最基本单位就是晶体管的的芯数,针脚。所说的基板通常是印刷电路板,它承载着核心与针脚。然后该晶体管通过电路连接,成为一个不可或缺的整体,然后可以去分成不同的执行单元,每个单元又可以去处理不同的数据,这样有秩序的完成每个任务,才会准确而快速,这也是CPU为何拥有如此强大的处理能力的原因。

其实还有很多的零件都运用了大量的物理学理论。下面向大家介绍一下比较先进的计算机――量子计算机。

四、简介量子计算机

从物理观点看,计算机是一个物理系统.计算过程是一个物理过程。量子计算机是一个量子力学系统,量子计算过程就是这个量子力学系统内量子态的演化过程。

量子计算机以量子力学建立逻辑体系,与量子计算机有关的量子力学的原理,即量子状态的主要性质包括:状态叠加、干涉性、状态变化、纠缠、不可复制性与不确定性。

量子计算机具有学术价值和产业价值不可估量。对人类的文明,它实际上是一个很大的进步,我认为最主要的方面则是它的工业价值。最直接的应用各种各样的量子算法,他就可以用于商用化。

可以回想机器在20年前的悲惨境况和现在的春分得意,利用机器学习是很难在工业部门查找数值,因为计算能力的时候真的很烂。然后还要测试几个月,谁还有时间来调整参数啊。而这两十年间,计算机体系结构不断的优化下,机器学习强大了好多倍。想想看,如果我们比今天的计算能力更强大,我们无法想象一个强大的AI强量子任务不是指日可待?而当每家每户都有一个量子计算机,互联网将演变成什么形式?总之,商业量子计算机将是未来科技的发动机,就像蒸汽机是工业文明的象征,量子计算机的前景值得我们期待!

我国科技飞速发展的今天,我们不难发现现代生活已经步入了一个电子的天堂,计算机将会发挥它不可估量的价值,而作文计算机技术的支架――物理学理论也在不断的发展着,这就要求我们在紧跟着的脚步,努力研究,发现问题、认识问题、解决问题,逐渐的将我们国力壮大,2020年全面建成小康社会。

参考文献

[1] 王炳根.百年物理学发展的回顾与未来的展望[J].南平师专学报. 1997,04:11-14.

量子计算论文第4篇

关键词: 信息安全;密码学;量子计算;抗量子计算密码

中图分类号:TP 183 文献标志码:A 文章编号:1672-8513(2011)05-0388-08

The Challenge of Quantum Computing to Information Security and Our Countermeasures

ZHANG Huanguo, GUAN Haiming, WANG Houzheng

(Key Lab of Aerospace Information Security and Trusted Computing of Ministry of Education, Computer School, Whan University, Wuhan 430072, China)

Abstract: What cryptosystem to use is a severe challenge that we face in the quantum computing era. It is the only correct choice to research and establish an independent resistant quantum computing cryptosystem. This paper introduces to the research and development of resistant quantum computing cryptography, especially the signature scheme based on HASH function,lattice-based public key cryptosystem,MQ public key cryptosystem and public key cryptosystem based on error correcting codes. Also the paper gives some suggestions for further research on the quantum information theory,the complexity theory of quantum computing,design and analysis of resistant quantum computing cryptosystems .

Key words: information security; cryptography; quantum computing; resistant quantum computing cryptography

1 量子信息时代

量子信息技术的研究对象是实现量子态的相干叠加并对其进行有效处理、传输和存储,以创建新一代高性能的、安全的计算机和通信系统.量子通信和量子计算的理论基础是量子物理学.量子信息科学技术是在20世纪末期发展起来的新学科,预计在21世纪将有大的发展[1].

量子有许多经典物理所没有的奇妙特性.量子的纠缠态就是其中突出的一个.原来存在相互作用、以后不再有相互作用的2个量子系统之间存在瞬时的超距量子关联,这种状态被称为量子纠缠态[1].

量子的另一个奇妙特性是量子通信具有保密特性.这是因为量子态具有测不准和不可克隆的属性,根据这种属性除了合法的收发信人之外的任何人窃取信息,都将破坏量子的状态.这样,窃取者不仅得不到信息,而且窃取行为还会被发现,从而使量子通信具有保密的特性.目前,量子保密通信比较成熟的技术是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按传统的“一次一密”方式加密.量子纠缠态的超距作用预示,如果能够利用量子纠缠态进行通信,将获得超距和超高速通信.

量子计算机是一种以量子物理实现信息处理的新型计算机.奇妙的是量子计算具有天然的并行性.n量子位的量子计算机的一个操作能够处理2n个状态,具有指数级的处理能力,所以可以用多项式时间解决一些指数复杂度的问题.这就使得一些原来在电子计算机上无法解决的困难问题,在量子计算机上却是可以解决的.

2 量子计算机对现有密码提出严重挑战

针对密码破译的量子计算机算法主要有以下2种.

第1种量子破译算法叫做Grover算法[3].这是贝尔实验室的Grover在1996年提出的一种通用的搜索破译算法,其计算复杂度为O(N).对于密码破译来说,这一算法的作用相当于把密码的密钥长度减少到原来的一半.这已经对现有密码构成很大的威胁,但是并未构成本质的威胁,因为只要把密钥加长1倍就可以了.

第2种量子破译算法叫做Shor算法[4].这是贝尔实验室的Shor在1997年提出的在量子计算机上求解离散对数和因子分解问题的多项式时间算法.利用这种算法能够对目前广泛使用的RSA、ECC公钥密码和DH密钥协商体制进行有效攻击.对于椭圆曲线离散对数问题,Proos和Zalka指出:在N量子位(qbit)的量子计算机上可以容易地求解k比特的椭圆曲线离散对数问题[7],其中N≈5k+8(k)1/2+5log 2k.对于整数的因子分解问题,Beauregard指出:在N量子位的量子计算机上可以容易地分解k比特的整数[5],其中N≈2k.根据这种分析,利用1448qbit的计算机可以求解256位的椭圆曲线离散对数,因此也就可以破译256位的椭圆曲线密码,这可能威胁到我国第2代身份证的安全.利用2048qbit的计算机可以分解1024位的整数,因此也就可以破译1024位的RSA密码,这就可能威胁到我们电子商务的安全

Shor算法的攻击能力还在进一步扩展,已从求广义解离散傅里叶变换问题扩展到求解隐藏子群问题(HSP),凡是能归结为HSP的公钥密码将不再安全.所以,一旦量子计算机能够走向实用,现在广泛应用的许多公钥密码将不再安全,量子计算机对我们的密码提出了严重的挑战.

3 抗量子计算密码的发展现状

抗量子计算密码(Resistant Quantum Computing Cryptography)主要包括以下3类:

第1类,量子密码;第2类,DNA密码;第3类是基于量子计算不擅长计算的那些数学问题所构建的密码.

量子保密的安全性建立在量子态的测不准与不可克隆属性之上,而不是基于计算的[1,6].类似地,DNA密码的安全性建立在一些生物困难问题之上,也不是基于计算的[7-8].因此,它们都是抗量子计算的.由于技术的复杂性,目前量子密码和DNA密码尚不成熟.

第3类抗量子计算密码是基于量子计算机不擅长的数学问题构建的密码.基于量子计算机不擅长计算的那些数学问题构建密码,就可以抵御量子计算机的攻击.本文主要讨论这一类抗量子计算密码[9].

所有量子计算机不能攻破的密码都是抗量子计算的密码.国际上关于抗量子计算密码的研究主要集中在以下4个方面.

3.1 基于HASH函数的数字签名

1989年Merkle提出了认证树签名方案(MSS)[10]. Merkle 签名树方案的安全性仅仅依赖于Hash函数的安全性.目前量子计算机还没有对一般Hash函数的有效攻击方法, 因此Merkle签名方案具有抗量子计算性质.与基于数学困难性问题的公钥密码相比,Merkle签名方案不需要构造单向陷门函数,给定1个单向函数(通常采用Hash函数)便能造1个Merkle签名方案.在密码学上构造1个单向函数要比构造1个单向陷门函数要容易的多,因为设计单向函数不必考虑隐藏求逆的思路, 从而可以不受限制地运用置换、迭代、移位、反馈等简单编码技巧的巧妙组合,以简单的计算机指令或廉价的逻辑电路达到高度复杂的数学效果.新的Hash标准SHA-3[11]的征集过程中,涌现出了许多新的安全的Hash函数,利用这些新的Hash算法可以构造出一批新的实用Merkle签名算法.

Merkle 签名树方案的优点是签名和验证签名效率较高,缺点是签名和密钥较长,签名次数受限.在最初的Merkle签名方案中, 签名的次数与需要构造的二叉树紧密相关.签名的次数越多,所需要构造的二叉树越大,同时消耗的时间和空间代价也就越大.因此该方案的签名次数是受限制的.近年来,许多学者对此作了广泛的研究,提出了一些修改方案,大大地增加了签名的次数, 如CMSS方案[12]、GMSS方案[13]、DMSS方案等[14].Buchmann, Dahmen 等提出了XOR树算法[12,15],只需要采用抗原像攻击和抗第2原像攻击的Hash函数,便能构造出安全的签名方案.而在以往的Merkle签名树方案中,则要求Hash函数必须是抗强碰撞的.这是对原始Merkle签名方案的有益改进.上述这些成果,在理论上已基本成熟,在技术上已基本满足工程应用要求, 一些成果已经应用到了Microsoft Outlook 以及移动路由协议中[16].

虽然基于Hash函数的数字签名方案已经开始应用,但是还有许多问题需要深入研究.如增加签名的次数、减小签名和密钥的尺寸、优化认证树的遍历方案以及如何实现加密和基于身份的认证等功能,均值得进一步研究.

3.2 基于纠错码的公钥密码

基于纠错码的公钥密码的基本思想是: 把纠错的方法作为私钥, 加密时对明文进行纠错编码,并主动加入一定数量的错误, 解密时运用私钥纠正错误, 恢复出明文.

McEliece利用Goppa码有快速译码算法的特点, 提出了第1个基于纠错编码的McEliece公钥密码体制[17].该体制描述如下, 设G是二元Goppa码[n;k;d]的生成矩阵,其中n=2h;d=2t+1;k=n-ht,明密文集合分别为GF(2)k和GF(2)n.随机选取有限域GF(2)上的k阶可逆矩阵S和n阶置换矩阵P,并设G′=SGP,则私钥为,公钥为G′.如果要加密一个明文m∈GF(2)k,则计算c=mG′+z,这里z∈GF(2)n是重量为t的随机向量.要解密密文c, 首先计算cP-1=mSGPP-1+zP-1=mSG+zP-1,由于P是置换矩阵, 显然z与zP-1的重量相等且为t,于是可利用Goppa的快速译码算法将cP-1译码成m′= mS,则相应明文m= m′S-1.

1978年Berlekamp等证明了一般线性码的译码问题是NPC问题[18],McEliece密码的安全性就建立在这一基础上.McEliece密码已经经受了30多年来的广泛密码分析,被认为是目前安全性最高的公钥密码体制之一.虽然McEliece 公钥密码的安全性高且加解密运算比较快, 但该方案也有它的弱点, 一是它的公钥尺寸太大,二是只能加密不能签名.

1986年Niederreiter提出了另一个基于纠错码的公钥密码体制[19]. 与McEliece密码不同的是它隐藏的是Goppa码的校验矩阵.该系统的私钥包括二元Goppa码[n;k;d]的校验矩阵H以及GF(2)上的可逆矩阵M和置换矩阵P.公钥为错误图样的重量t和矩阵H′=MHP.假如明文为重量为t 的n 维向量m, 则密文为c=mH′T .解密时,首先根据加密表达式可推导出z(MT )-1=mPTHT,然后通过Goppa码的快速译码算法得到mPT,从而可求出明文m .1994年我国学者李元兴、王新梅等[20]证明了Niederreiter密码与McEliece密码在安全性上是等价的.

McEliece密码和Niederreiter密码方案不能用于签名的主要原由是,用Hash算法所提取的待签消息摘要向量能正确解码的概率极低.2001年Courtois等提出了基于纠错码的CFS签名方案[21].CFS 签名方案能做到可证明安全, 短签名性质是它的最大优点. 其缺点是密钥量大、签名效率低,影响了其实用性.

因此, 如何用纠错码构造一个既能加密又签名的密码, 是一个相当困难但却非常有价值的开放课题.

3.3 基于格的公钥密码

近年来,基于格理论的公钥密码体制引起了国内外学者的广泛关注.格上的一些难解问题已被证明是NP难的,如最短向量问题(SVP)、最近向量问题(CVP)等.基于格问题建立公钥密码方案具有如下优势:①由于格上的一些困难性问题还未发现量子多项式破译算法,因此我们认为基于格上困难问题的密码具有抗量子计算的性质.②格上的运算大多为线性运算,较RSA等数论密码实现效率高,特别适合智能卡等计算能力有限的设备.③根据计算复杂性理论,问题类的复杂性是指该问题类在最坏情况下的复杂度.为了确保基于该类困难问题的密码是安全的,我们希望该问题类的平均复杂性是困难的,而不仅仅在最坏情况下是困难的.Ajtai在文献[22]中开创性地证明了:格中一些问题类的平均复杂度等于其最坏情况下的复杂度.Ajtai和Dwork利用这一结论设计了AD公钥密码方案[23].这是公钥密码中第1个能被证明其任一随机实例与最坏情况相当.尽管AD公钥方案具有良好的安全性, 但它的密钥量过大以及实现效率太低、而缺乏实用性.

1996年Hoffstein、Pipher和Silverman提出NTRU(Number Theory Research Unit)公钥密码[24]. 这是目前基于格的公钥密码中最具影响的密码方案.NTRU的安全性建立在在一个大维数的格中寻找最短向量的困难性之上.NTRU 密码的优点是运算速度快,存储空间小.然而, 基于NTRU的数字签名方案却并不成功.

2000年Hoffstein等利用NTRU格提出了NSS签名体制[25], 这个体制在签名时泄露了私钥信息,导致了一类统计攻击,后来被证明是不安全的.2001年设计者改进了NSS 体制,提出了R-NSS 签名体制[26],不幸的是它的签名仍然泄露部分私钥信息.Gentry 和Szydlo 结合最大公因子方法和统计方法,对R-NSS 作了有效的攻击.2003年Hoffstein等提出了NTRUSign数字签名体制[27].NTRUSign 签名算法较NSS与R-NSS两个签名方案做了很大的改进,在签名过程中增加了对消息的扰动, 大大减少签名中对私钥信息的泄露, 但却极大地降低了签名的效率, 且密钥生成过于复杂.但这些签名方案都不是零知识的,也就是说,签名值会泄露私钥的部分相关信息.以NTRUSign 方案为例,其推荐参数为(N;q;df;dg;B;t;N)= (251;128;73;71;1;"transpose";310),设计值保守推荐该方案每个密钥对最多只能签署107 次,实际中一般认为最多可签署230次.因此,如何避免这种信息泄露缺陷值得我们深入研究.2008 年我国学者胡予濮提出了一种新的NTRU 签名方案[28],其特点是无限制泄露的最终形式只是关于私钥的一组复杂的非线性方程组,从而提高了安全性.总体上这些签名方案出现的时间都还较短,还需要经历一段时间的安全分析和完善.

由上可知,进一步研究格上的困难问题,基于格的困难问题设计构造既能安全加密又能安全签名的密码,都是值得研究的重要问题.

3.4 MQ公钥密码

MQ公钥密码体制, 即多变量二次多项式公钥密码体制(Multivariate Quadratic Polynomials Public Key Cryptosystems).以下简称为MQ密码.它最早出现于上世纪80年代,由于早期的一些MQ密码均被破译,加之经典公钥密码如RSA算法的广泛应用,使得MQ公钥算法一度遭受冷落.但近10年来MQ密码的研究重新受到重视,成为密码学界的研究热点之一.其主要有3个原因:一是量子计算对经典公钥密码的挑战;二是MQ密码孕育了代数攻击的出现[29-31],许多密码(如AES)的安全性均可转化为MQ问题,人们试图借鉴MQ密码的攻击方法来分析这些密码,反过来代数攻击的兴起又带动了MQ密码的蓬勃发展;三是MQ密码的实现效率比经典公钥密码快得多.在目前已经构造出的MQ密码中, 有一些非常适用于智能卡、RFID、移动电话、无线传感器网络等计算能力有限的设备, 这是RSA等经典公钥密码所不具备的优势.

MQ密码的安全性基于有限域上的多变量二次方程组的难解性.这是目前抗量子密码学领域中论文数量最多、最活跃的研究分支.

设U、T 是GF(q)上可逆线性变换(也叫做仿射双射变换),而F 是GF(q)上多元二次非线性可逆变换函数,称为MQ密码的中心映射.MQ密码的公钥P为T 、F 和U 的复合所构成的单向陷门函数,即P = T•F•U,而私钥D 由U、T 及F 的逆映射组成,即D = {U -1; F -1; T -1}.如何构造具有良好密码性质的非线性可逆变换F是MQ密码设计的核心.根据中心映射的类型划分,目前MQ密码体制主要有:Matsumoto-Imai体制、隐藏域方程(HFE) 体制、油醋(OV)体制及三角形(STS)体制[32].

1988年日本的Matsumoto和Imai运用"大域-小域"的原理设计出第1个MQ方案,即著名的MI算法[33].该方案受到了日本政府的高度重视,被确定为日本密码标准的候选方案.1995年Patarin利用线性化方程方法成功攻破了原始的MI算法[34].然而,MI密码是多变量公钥密码发展的一个里程碑,为该领域带来了一种全新的设计思想,并且得到了广泛地研究和推广.改进MI算法最著名的是SFLASH签名体制[35],它在2003年被欧洲NESSIE 项目收录,用于智能卡的签名标准算法.该标准签名算法在2007年美密会上被Dubois、Fouque、Shamir等彻底攻破[36].2008年丁津泰等结合内部扰动和加模式方法给出了MI的改进方案[37-38].2010年本文作者王后珍、张焕国也给出了一种SFLASH的改进方案[39-40],改进后的方案可以抵抗文献[36]的攻击.但这些改进方案的安全性还需进一步研究.

1996年Patarin针对MI算法的弱点提出了隐藏域方程HFE(Hidden Field Equations)方案[41].HFE可看作为是对MI的实质性改进.2003 年Faugere利用F5算法成功破解了HFE体制的Challenge-1[42].HFE主要有2种改进算法.一是HFEv-体制,它是结合了醋变量方法和减方法改进而成,特殊参数化HFEv-体制的Quartz签名算法[43].二是IPHFE体制[44],这是丁津泰等结合内部扰动方法对HFE的改进.这2种MQ密码至今还未发现有效的攻击方法.

油醋(OilVinegar)体制[45]是Patarin在1997年利用线性化方程的原理,构造的一种MQ公钥密码体制.签名时只需随机选择一组醋变量代入油醋多项式,然后结合要签名的文件,解一个关于油变量的线性方程组.油醋签名体制主要分为3类:1997年Patarin提出的平衡油醋(OilVinegar)体制, 1999年欧密会上Kipnis、Patarin 和Goubin 提出的不平衡油醋(Unbalanced Oil and Vinegar)体制[46]以及丁津泰在ACNS2005会议上提出的彩虹(Rainbow)体制[47].平衡的油醋体制中,油变量和醋变量的个数相等,但平衡的油醋体制并不安全.彩虹体制是一种多层的油醋体制,即每一层都是油醋多项式,而且该层的所有变量都是下一层的醋变量,它也是目前被认为是相对安全的MQ密码之一.

三角形体制是现有MQ密码中较为特殊的一类,它的签名效率比MI和HFE还快,而且均是在较小的有限域上进行.1999年Moh基于Tame变换提出了TTM 密码体制[48],并在美国申请了专利.丁津泰等指出当时所有的TTM实例均满足线性化方程.Moh等随后又提出了一个新的TTM 实例,这个新的实例被我国学者胡磊、聂旭云等利用高阶线性化方程成功攻破[49].目前三角形体制的设计主要是围绕锁多项式的构造、结合其它增强多变量密码安全性的方法如加减(plus-minus) 模式以及其它的代数结构如有理映射等.

我国学者也对MQ密码做了大量研究,取得了一些有影响的研究成果.2007年管海明引入单向函数链对MQ密码进行扩展,提出了有理分式公钥密码系统[50].胡磊、聂旭云等利用高阶线性化方程成功攻破了Moh提出的一个TTM新实例[51].2010年本文作者王后珍、张焕国给出了一种SFLASH的改进方案[39-40].2010年王后珍、张焕国基于扩展MQ,设计了一种Hash函数[52-53],该Hash函数具有一些明显的特点.同年,王后珍、张焕国借鉴有理分式密码单向函数链的思想[52],对MQ密码进行了扩展,设计了一种新的抗量子计算扩展MQ密码[54].这些研究对于扩展MQ密码结构,做了有益的探索.但是这些方案提出的时间较短,其安全性有待进一步分析.

根据上面的介绍,目前还没有一种公认安全的MQ公钥密码体制.目前MQ公钥密码的主要缺点是:只能签名,不能安全加密(加密时安全性降低),公钥大小较长,很难设计出既安全又高效的MQ公钥密码体制.

3.5 小结

无论是量子密码、DNA密码,还是基于量子计算不擅长计算的那些数学问题所构建的密码,都还存在许多不完善之处,都还需要深入研究.

量子保密通信比较成熟的是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按“一次一密”方式加密.在这里,量子的作用主要是密钥产生和密钥分配,而加密还是采用的传统密码.因此,严格说这只能叫量子保密,尚不能叫量子密码.另外,目前的量子数字签名和认证方面还存在一些困难.

对于DNA密码,目前虽然已经提出了DNA传统密码和DNA公钥密码的概念和方案,但是理论和技术都还不成熟[9-10].

对于基于量子计算不擅长计算的那些数学问题所构建的密码,现有的密码方案也有许多不足.如,Merkle树签名可以签名,不能加密;基于纠错码的密码可以加密,签名不理想;NTRU密码可以加密,签名不理想;MQ密码可以签名,加密不理想.这说明目前尚没有形成的理想的密码体制.而且这些密码的安全性还缺少严格的理论分析.

总之,目前尚未形成理想的抗量子密码.

4 我们的研究工作

我们的研究小组从2007年开始研究抗量子计算密码.目前获得了国家自然科学基金等项目的支持,并取得了以下2个阶段性研究成果.

4.1 利用多变量问题,设计了一种新的Hash函数

Hash 函数在数字签名、完整性校验等信息安全技术中被广泛应用.目前 Hash 函数的设计主要有3类方法:①直接构造法.它采用大量的逻辑运算来确保Hash函数的安全性. MD系列和SHA系列的Hash函数均是采用这种方法设计的.②基于分组密码的Hash 函数,其安全性依赖于分组密码的安全性.③基于难解性问题的构造法.利用一些难解性问题诸如离散对数、因子分解等来构造Hash 函数.在合理的假设下,这种Hash函数是可证明安全的,但一般来讲其效率较低.

我们基于多变量非线性多项式方程组的难解性问题,构造了一种新的Hash 函数[54-55].它的安全性建立在多变量非线性多项式方程组的求解困难性之上.方程组的次数越高就越安全,但是效率就越低.它的效率主要取决多变量方程组的稀疏程度,方程组越稀疏效率就越高,但安全性就越低.我们可以权衡安全性和效率来控制多变量多项式方程组的次数和稠密度,以构造出满足用户需求的多变量Hash 函数.

4.2 对MQ密码进行了扩展,把Hash认证技术引入MQ密码,得到一种新的扩展MQ密码

扩展MQ密码的基本思想是对传统MQ密码的算法空间进行拓展. 如图1所示, 我们通过秘密变换L将传统MQ密码的公钥映G:GF(q)nGF(q)n, 拓展隐藏到更大算法空间中得到新的公钥映射G′:GF(q)n+δGF(q)n+μ, 且G′的输入输出空间是不对称的, 原像空间大于像空间(δ>|μ|), 即具有压缩性, 但却并未改变映射G的可逆性质. 同时, 算法空间的拓展破坏了传统MQ密码的一些特殊代数结构性质, 从攻击者的角度, 由于无法从G′中成功分解出原公钥映射G, 因此必须在拓展空间中求解更大规模的非线性方程组G′, 另外, 新方案中引入Hash认证技术, 攻击者伪造签名时, 伪造的签名不仅要满足公钥方程G′、 还要通过Hash函数认证, 双重安全性保护极大地提升了传统MQ公钥密码系统的安全性. 底层MQ体制及Hash函数可灵活选取, 由此可构造出一类新的抗量子计算公钥密码体制.这种扩展MQ密码的特点是,既可安全签名,又可安全加密[56].

我们提出的基于多变量问题的Hash函数和扩展MQ密码,具有自己的优点,也有自己的缺点.其安全性还需要经过广泛的分析与实践检验才能被实际证明.

5 今后的研究工作

5.1 量子信息论

量子信息建立在量子的物理属性之上,由于量子的物理属性较之电子的物理属性有许多特殊的性质,据此我们估计量子的信息特征也会有一些特殊的性质.这些特殊性质将会使量子信息论对经典信息论有一些新的扩展.但是,具体有哪些扩展,以及这些新扩展的理论体系和应用价值体现在哪里?我们尚不清楚.这是值得我们研究的重要问题.

5.2 量子计算理论

这里主要讨论量子可计算性理论和量子计算复杂性理论.

可计算性理论是研究计算的一般性质的数学理论.它通过建立计算的数学模型,精确区分哪些是可计算的,哪些是不可计算的.如果我们研究清楚量子可计算性理论,将有可能构造出量子计算环境下的绝对安全密码.但是我们目前对量子可计算性理论尚不清楚,迫切需要开展研究.

计算复杂性理论使用数学方法对计算中所需的各种资源的耗费作定量的分析,并研究各类问题之间在计算复杂程度上的相互关系和基本性质.它是密码学的理论基础之一,公钥密码的安全性建立在计算复杂性理论之上.因此,抗量子计算密码应当建立在量子计算复杂性理论之上.为此,应当研究以下问题.

1) 量子计算的问题求解方法和特点.量子计算复杂性建立在量子图灵机模型之上,问题的计算是并行的.但是目前我们对量子图灵机的计算特点及其问题求解方法还不十分清楚,因此必须首先研究量子计算问题求解的方法和特点.

2) 量子计算复杂性与传统计算复杂性之间的关系.与电子计算机环境的P问题、NP问题相对应, 我们记量子计算环境的可解问题为QP问题, 难解问题为QNP问题.目前人们对量子计算复杂性与传统计算复杂性的关系还不够清楚,还有许多问题需要研究.如NP与QNP之间的关系是怎样的? NPC与QP的关系是怎样的?NPC与QNP的关系是怎样的?能否定义QNPC问题?这些问题关系到我们应基于哪些问题构造密码以及所构造的密码是否具有抗量子计算攻击的能力.

3) 典型难计算问题的量子计算复杂度分析.我们需要研究传统计算环境下的一些NP难问题和NPC问题,是属于QP还是属于QNP问题?

5.3 量子计算环境下的密码安全性理论

在分析一个密码的安全性时,应首先分析它在电子计算环境下的安全性,如果它是安全的,再进一步分析它在量子计算环境下的安全性.如果它在电子计算环境下是不安全的,则可肯定它在量子计算环境下是不安全的.

1) 现有量子计算攻击算法的攻击能力分析.我们现在需要研究的是Shor算法除了攻击广义离散傅里叶变换以及HSP问题外,还能攻击哪些其它问题?如果能攻击,攻击复杂度是多大?

2) 寻找新的量子计算攻击算法.因为密码的安全性依赖于新攻击算法的发现.为了确保我们所构造的密码在相对长时间内是安全的,必须寻找新的量子计算攻击算法.

3) 密码在量子计算环境下的安全性分析.目前普遍认为, 基于格问题、MQ问题、纠错码的译码问题设计的公钥密码是抗量子计算的.但是,这种认识尚未经过量子计算复杂性理论的严格的论证.这些密码所依赖的困难问题是否真正属于QNP问题?这些密码在量子计算环境下的实际安全性如何?只有经过了严格的安全性分析,我们才能相信这些密码.

5.4 抗量子计算密码的构造理论与关键技术

通过量子计算复杂性理论和密码在量子计算环境下的安全性分析的研究,为设计抗量子计算密码奠定了理论基础,并得到了一些可构造抗量子计算的实际困难问题.但要实际设计出安全的密码,还要研究抗量子计算密码的构造理论与关键技术.

1) 量子计算环境下的单向陷门设计理论与方法.理论上,公钥密码的理论模型是单向陷门函数.要构造一个抗量子计算公钥密码首先就要设计一个量子计算环境下的单向陷门函数.单向陷门函数的概念是简单的,但是单向陷门函数的设计是困难的.在传统计算复杂性下单向陷门函数的设计已经十分困难,我们估计在量子计算复杂性下单向陷门函数的设计将更加困难.

2) 抗量子计算密码的算法设计与实现技术.有了单向陷门函数,还要进一步设计出密码算法.有了密码算法,还要有高效的实现技术.这些都是十分重要的问题.都需要认真研究才能做好.

6 结语

量子计算时代我们使用什么密码,是摆在我们面前的重大战略问题.研究并建立我国独立自主的抗量子计算密码是我们的唯一正确的选择.本文主要讨论了基于量子计算机不擅长计算的数学问题所构建的一类抗量子计算的密码,介绍了其发展现状,并给出了进一步研究的建议.

参考文献:

[1]张镇九,张昭理,李爱民.量子计算与通信保密[M].武汉:华中师范大学出版社,2002.

[2]管海明. 国外量子计算机进展、对信息安全的挑战与对策[J].计算机安全,2009(4):1-5.

[3]GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing. New York: ACM Press, 1996.

[4]SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM J Computer, 1997(26) :1484-1509.

[5]HANKERSON D, MENEZES A, VANSTONE S. 椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.

[6]曾贵华. 量子密码学[M].北京:科学出版社,2006.

[7]来学嘉, 卢明欣, 秦磊, 等. 基于DNA 技术的非对称加密与签名方法[J]. 中国科学E辑:信息科学, 2010, 40(2): 240-248.

[8]卢明欣,来学嘉,肖国镇,等. 基于DNA技术的对称加密方法[J]. 中国科学E辑:信息科学, 2007(2): 175-182.

[9]BERNSTEIN D J, BUCHMANN J A, DAHMEN E. Post-quantum cryptography [M]. Berlin:Springer, 2009.

[10]MERKLE R C. A certified digital signature[C]//Advances in Cryptology-CRYPTO 1989 Proceedings, LNCS. Berlin:Springer, 1989,435:218-238.

[11]NIST. Plan for new cryptographic hash functions[EB/OL]. [2010-12-30]..

[49]DING J, HU L, NIE X Y, et al. High order linearization equation (HOLE) attack on multivariate public key cryptosystems[C]//Proceedings of PKC 2007. Berlin: Springer-Verlag, 2007: 233-248.

[50]管海明.有理分式公钥密码体制[C]//第五届中国信息与通信安全学术会议(CCICS’2007)论文集.科学出版社,2007:135-141.

[51]胡磊,聂旭云.多变量公钥密码的研究进展[C]//中国密码学发展报告.北京:电子工业出版社, 2007: 235-254.

[52]王后珍,张焕国.多变量Hash函数的构造理论与方法[J].中国科学:信息科学版,2010,40(10):1299-1311.

[53]WANG H Z, ZHANG H G. Design theory and method of multivariate hash function[J].SCIENCE CHINA:Information Sciences, 2010, 53(10):1 917-2 158.

[54]王后珍, 张焕国.一种新的轻量数字签名方法[J].通信学报,2010(11):25-29.

收稿日期:2011-04-20.

量子计算论文第5篇

本文基于密度泛函第一性原理方法,在广义梯度近似计算条件下获得了多种典型超硬材料晶体的晶体结构和弹性参数,以A.Šimůnek理论小组的硬度计算模型基础,着重分析了晶体硬度与体弹模量B和剪切模量G之间的关系,澄清了难压缩与超硬之间的关系;通过晶体的键密度和键布居等信息,提出了理论硬度计算模型中的一个改进,并定性预测了化合物成为超硬材料的基本特征,为今后新型超硬材料的理论预测和实验合成提供了重要的参考信息和依据。

关键词:硬度;键合性质;电子结构;力学性质

中图分类号:TB39文献标识码:A

1.引言

超硬材料被定义为维氏硬度测量值大于40GPa的材料[1]。超硬材料因其具有高硬度、耐磨、热稳定性好以及化学性质稳定等特殊的物理和化学性质,在工业及相关应用领域迅速发展成为一种新型的功能材料。作为理论研究和硬度预测也就提到了一个新的高度,捷克A.Šimůnek理论小组提出的材料硬度理论计算方法[7]成为当前材料硬度预测的代表之一,将帮助人们从原子和电子层次上去研究和认识材料硬度的本质,为探索新型超硬材料形成机制具有重要指导意义。

2. Šimůnek理论小组的理论硬度计算模型

在2006~2008年,Šimůnek小组结合半经验公式推出和完善了晶体材料的硬度与成键强度之间的计算关系式[2]:

(1)

,, (2)

其中,代表晶体键的种类数,代表晶体中某一类键的数目,而和分别代表原子和的配位数,能量,和分别是原子的价电子数和原子半径值,表示键体积。是原子和间的键长,常数和由实验获得。

3.化合物的键合性质和硬度之间的关系

第一性原理计算方法具有不依赖任何经验参数,又能提供晶体结构和电子结构等参数的特点,为分析材料硬度与键合性质的联系提供了便利。本文晶体结构和电子结构的获取采用著名的CASTEP第一性原理软件包计算完成。计算采用周期性边界条件,用广义梯度近似(GGA)的交换相关函数(PW91)来处理电子间的交换关联能,而电子波函数则通过平面波基矢组扩展,并且采用超软赝势(USP)来描述离子实与价电子之间的相互作用势。平面波的展开截断能量值设为, Brillouin区点的取值采用Monkhorst-Pack形式的特殊K点方法,倒空间的间隔小于0.04Å-1,自洽计算的收敛精度设为。对多种晶体结构和电子结构的计算结果如表1,并结合Šimůnek小组的理论硬度计算模型获得了相应的理论硬度值。表中,理论硬度的数值与实验数值基本是吻合的,表明Šimůnek理论小组的理论硬度计算模型具有较高的可靠性。

3.1 Šimůnek理论小组的理论硬度计算模型的一个改进

Mulliken重叠布居值可表明原子在成键过程中转移 (或产生偏移) 的电子数目情况,据此可用来确定成键原子的化合价态。这相对于Šimůnek理论小组用估算的方法来确定元素化合价要更加合理和准确。如文献[2]中,计算ReB2晶体的理论硬度时,Re的Mulliken重叠布居计算值为,就可以清楚知道Re原子在与B原子形成Re-B键的过程中转移走了0.66个电子,成键化合价就为6.34。因而采用Mulliken布居值表征化合物中元素的化合价将使计算结果更加可信。

3.2 材料的弹性参数与硬度之间的关系

将表1中各晶体的弹性参数与实验硬度作图,如图1所示。从图中可以看出各晶体的硬度与剪切模量或者弹性模量之间没有一一对应的关系。如WC具有比C-BN更高或体弹模量B及相当剪切模量G值,但其硬度却仅为后者的一半左右。故具有高体弹模量和剪切模量特征的材料不一定是高硬度材料。但从另外一个方面来看,具有较高硬度的材料却大多具有高体弹模量和剪切模量特征;低硬度材料的体弹模量和剪切模量也都较低,因而可以将高体弹模量和剪切模量特征作为高硬度材料筛选的充分而非必要条件,而最后能否成为超硬材料则可以通过实验验证或者用Šimůnek理论小组的理论硬度计算模型作进一步的推证。

4.结论

从以上分析表明,Šimůnek理论小组的理论硬度计算模型是一种可靠的理论硬度计算模型,借助于第一性原理的晶体结构参数计算结果可以快速地获取到晶体的理论硬度值。从本模型的计算结构表明,晶体的高体弹模量和剪切模量特征是成为一种超硬材料的充分而非必要条件。

参考文献

[1]J.Hanies, J. M. Léger, and G. Bocquillon. Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res., 2001, 31:1-23.

[2]Šimůnek A. . How to estimate Hardness of crystal on a pocket calculator. Phys. Rev. B. 2007, 75: 172108-4

[3]A. Szymanski and J. M. Szymanski, Hardness Estimation of Minerals Rocks and Ceramic Materials. Elsevier, Amsterdam,1989.

[4]D. M. Teter, MRS Bull. 1998, 23:22

[5]V. V. Brazhkin et al., Philos. Mag. A. 2002, (82):231

[6]C. A. Perottoni and J. A. H. da Jornada, Phys. Rev. B. 2002, 65: 224208

[7]J. Dong et al., Phys. Rev. B.2003, 67: 094104

量子计算论文第6篇

关键词 燃烧热;密度泛函(DFT) ;共振能;苯

中图分类号O64 文献标识码A 文章编号 1674—6708(2012)76—0109—02

“燃烧热测定”是物理化学中一个经典的实验,在实验室中一般测定固体物质萘或蔗糖等有机物固体的燃烧热[1—2]。本文通过热力学综合测定仪中的燃烧热测定装置,可以测量出液体苯、环己烷、环己烯的燃烧热,进行计算可得到苯的共振能。应用量子化学理论算方法亦可计算苯的共振能,通过计算方法的选择,并与文献值比较[3],可找到计算适合苯、环己烷、环己烯系列物质的最佳方法。

1 实验部分

1.1 实验仪器及药品

物理化学热力学综合实验装置RLXZH— ?(配计算机及相关软件),氧弹量热计,压片机,电子天平,氧气钢瓶;苯甲酸,苯(A.R),环己烯(A.R),环己烷(A.R),药用胶囊(本实验用的是重庆申高生化制药有限公司生产的氨咖黄敏胶囊,把药粉倒出,只用外包装的胶囊)。

1.2 空心胶囊燃烧热的测定

取6个空心胶囊,将其叠压在一起,量取约15cm的铁丝,在分析天平上准确称取铁丝的质量,然后把铁丝绑在胶囊上面,准确称量总质量。利用量热计测出空心胶囊的燃烧热。

1.3 测定试剂的燃烧热

选取一个密封完好的药用胶囊,在分析天平上准确称取它的质量,取适量铁丝,准确称取它的质量,放入胶囊中,用滴管小心加入苯,使其装满,再把胶囊套好,在分析天平上准确称取质量,算出苯的质量。再把装好的胶囊置于氧弹中,冲入氧气,利用氧弹量热计测出燃烧热,扣除胶囊的燃烧热,即得到苯的燃烧热,用同样的方法测出环己烷和环己烯的燃烧热。

1.4 实验记录及其数据处理

根据所测的数据作图,并对各测定做温度雷诺校正图,直接通过南大万和综合热测定仪随即软件作图,求出每次实验时温度差T。之后再作雷诺校正图得到温差,图l是四个实验的雷诺校正图,温差T已标出;计算量热计的热容,计算结果可由南大万和物理化学热力学综合实验装置随机软件记录并处理数据。从量热计的热容、各液体样品燃烧时的水温升高值以及胶囊的燃烧热值,计算苯、环己烷和环己烯的恒容燃烧热,并由H=QP=QV+ nRT计算恒压反应热,结果见表1。

2 理论计算部分

2.1 计算方法

在ChemDraw程序中构建苯、环己烷和环己烯的分子结构模型,先用AM1半经验算法对分子模型进行初步的几何优化。之后分别用半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)进行优化构型的量子化学计算,整个计算过程使用Gaussian 03程序包完成。

2.2 计算结果

分别使用半经验AM1法,从头算方法HF(6—311+g*)、HF(6—311++g*)、B3lyp/6—31进行结构全优化计算。苯是一个完全对等的正六边形,6个C—C单键完全。由于苯环的共轭作用,使得苯环中C—C单键长度介于环己烷的C—C和环己烯的C=C双键之间。环己烷是较为稳定的椅式结构,6个C原子不在一个平面上。

3 结果与讨论

3.1 实验结果与计算结果对比

按照下列公式求得苯的共振能E[4],计算结果如表2所示。

3.2 误差分析

文献值是123.58kJ·mol—1[5],从实验测量与计算结果上分析,实验方法与文献值相差较大,测量了多次仍存在较大误差,主要原因:1)由于苯、环己烷和环己烯都具有强挥发性,在装入氧弹并排出氧弹中空气的过程中已有部分挥发所导致;2)用胶囊盛装液体,在高温时胶囊变软,从而导致液体挥发,使液体燃烧不完全引入误差。用量子化学理论计算方法,经过半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)4 种方法计算,密度泛函方法计算得到的结论与文献3值吻合较好,而且在用HF方法计算时,我们用了不同的基组,发现基组的改变对计算数值影响不大,所以用密度泛函方法使用较小的基组也能得到与文献值相符的结果。

4 结论

通过实验和量子化学理论计算均能得到苯的共振能,通过方法和误差分析也可比较两种方法的优点。从误差分析,实验方法得到的结果误差较大,经过多次改进仍不理想。量子化学理论计算方法中的密度泛函(DFT)方法得到的结果与文献值接近,是计算该类物质能量的较好的方法。

参考文献

[1]复旦大学.物理化学实验[M].北京:高等教育出版社,2002,6:24—26.

[2]孙尔康.物理化学实验[M].南京:南京大学出版社,2010,1:8—10.

[3]马沛生.有机化合物实验物性数据手册[M].北京:化学工业出版社,2006,8: 476—480.

量子计算论文第7篇

摘要:理论研究科学既有深厚的科学意义,又具备丰富的应用功能,是最基本的计算机科学的组成部分,在国际上一直很受重视,但在国内却是大家不太了解的领域。本文通过对计算机的发展历史和人类对计算本质认识的回顾,提出量子计算系统的发展和成熟,并且提出了人类认识未知世界的规律:“计算工具不断发展-整体思维能力的不断增强-公理系统的不断扩大-旧的神谕被解决-新的神谕不断产生”不断循环。

关键词:计算科学 计算机科研 计算工具

理论研究科学既有深厚的科学意义,又具备丰富的应用功能,是最基本的计算机科学的组成部分,在国际上一直很受重视,但在国内却是大家不太了解的领域。

据了解,从1998年成立至今,微软亚洲研究院已经确立了五大研究方向,涵盖多媒体、数字娱乐、用户界面、无线及网络技术和互联网搜索与挖掘等领域。本次成立的理论研究组将与原有的五个研究组平行运作,为他们提供理论方面的支持,帮助他们进一步拓展研究的深度和广度。

首先,先谈谈关于计算科学与计算机发展。

第一,计算的本质以及远古的计算工具。抽象地说, 所谓计算, 就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理, 那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子, 而g为含意相同的中文句子, 那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串) 开始, 一步一步地改变符号(串) , 经过有限步骤, 最后得到一个满足预先规定的符号(串) 的变换过程。

从类型上讲, 计算主要有两大类::数值计算和符号推导。随着数学的不断发展, 还可能出现新的计算类型。早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。同时还把算法口诀化,从而加快了计算速度。

第二,近代计算系统与电动计算机和电子计算机。近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器, 并风行全世界。

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

第三,摩尔定律与计算的极限。人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果――造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的, 因此, 传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米), 此时,导线内运动的电子将不再遵循经典物理规律――牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。所有的美妙都是彼此联系和有意义的

第四,量子计算系统。量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力。不仅如此, 量子计算系统会更加深刻的揭示计算的本质, 把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

再次,关于理论计算机科学研究提速

据了解,从1998年成立至今,微软亚洲研究院已经确立了五大研究方向,涵盖多媒体、数字娱乐、用户界面、无线及网络技术和互联网搜索与挖掘等领域。本次成立的理论研究组将与原有的五个研究组平行运作,为他们提供理论方面的支持,帮助他们进一步拓展研究的深度和广度。

第一,理论研究科学深厚的科学意义和具备丰富的应用功能。理论研究科学既有深厚的科学意义,又具备丰富的应用功能,是最基本的计算机科学的组成部分,在国际上一直很受重视,但在国内却是大家不太了解的领域。直到2004年,计算机理论学界大师姚期智从任教多年的普林斯顿大学回归清华大学时,才算刚刚起步。

微软亚洲研究院院长沈向洋认为,理论研究组的意义在于,从科研角度来讲,理论相当于底层的基础支撑,丰富的、有深度的、坚实的理论资源将使基础研发走得更快更远。他表示,对于微软亚洲研究院来说,促进地区整体科研实力的提高是其使命之一。理论研究组的成立,除了为研究院其他组的研究以及微软产品的研发做好坚实的理论储备,进一步促进研究院的发展和创新外,还希望能和清华大学等科研院所一道促进理论计算机科学在中国的研究与发展。

第二,理论计算机科学研究的机会与挑战。理论计算机科学怎样才能够做出一些突破性的研究,让中国信息科学的研究更上一层楼,姚期智院士举了两个例子:

其一点,有些问题是效率问题,譬如互联网的搜索就能得益于理论计算机科学的发展。互联网是一个很大的图形,在这个图形里面所做的事情,基本上是理论计算机科学里面所包含的问题,如果能在算法上进行改进的话,就能在科学、时间、商业上取得非常大的效果,从而发挥强大的效益。

另一点,有些问题,不单是效率问题,而是能不能够做到的问题。譬如安全,在过去30年的研究里,大家公认的在信息安全、网络安全方面,没有一个好的理论框架和基础,不可能做到绝对安全,完全避免黑客的攻击。因此,必须在理论发展的基础上去保证各种信息的安全。

未来可能会从两个方面解决摩尔定律的极限问题:一方面是计算机的硬件,譬如说量子计算机;另一方面是计算机的软件。

综上所述,如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:“计算工具不断发展-整体思维能力的不断增强-公理系统的不断扩大-旧的神谕被解决-新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。如果我们用最好的方法,写的软件程序能够比现在更有效率的话,计算能力本身就会帮我们做许多现在无法做到的事情。

参考文献:

[1]M.A.NielsenandI.L.Chuang,QuantumComputation and Quantum Information[M].Cambridge University Press.