欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

天线技术论文(合集7篇)

时间:2022-11-27 20:32:52
天线技术论文

天线技术论文第1篇

摘要:近年发展起来的CDMA移动通信系统技术相对于FDMA、TDMA系统具有较大的容量,但由于多径干扰、多址干扰的存在,其容量优势并没有得到充分的发挥,如果在基站上采用智能天线可以降低这些干扰的影响,提高系统的性能。本文通过对智能天线的认识、优势的阐述,从而引发智能天线在现代移动通信中的重要性。

一、引言

我们知道,天线有很多种,但大体上可分为三大类:“线天线”、“面天线”及“阵列天线”。阵列天线最初用于雷达、声纳以及军事通信中,完成空间滤波和参数估计两大任务。当阵列天线应用到移动通信领域时,通信工程师喜欢用“智能天线”来称谓之。智能天线根据方向图形成(或称为波束形成)的方式又可分为两类:第一类,采用固定形状方向图的智能天线,且不需要参考信号;第二类,采用自适应算法形成方向图的智能天线,需要参考信号。

本文在以下提到的智能天线都是指第二类,即(自适应)智能天线,这也是目前智能天线研究的主流。

二、智能天线的技术现状

在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。

(1)在美国

在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。

(2)在欧洲

欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。

(3)在日本

ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。

我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。

三、智能天线的优势

智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。

(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。

(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。

(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。

(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。

(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。

(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

四、智能天线与若干空域处理技术的比较

为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。

(1)智能天线与自适应天线的比较

智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。

(2)智能天线与空间分集技术的比较

空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。

但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。

(3)智能天线与小区扇区化的比较

小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。

五、智能天线的未来展望

(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。

(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。

(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。

(4)在移动台中(如手机)采用智能天线技术。

(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。

(6)目前,智能天线技术的研究已不是单一地研究智能天线本身,应与CDMA的一些关键技术(如多用户检测技术、多用户接收技术、功率控制等)结合在一起研究。

天线技术论文第2篇

广播电视天线是无线电和电磁波之间进行转换的一个转换器,影响发射天线性能的主要参数有其极化方式、输入阻抗、增益和方向图等。如果天线的各项参数设置不合理,在信号传输过程中图像就有可能出现线性和非线性失真两种情况,声音也会夹杂各种噪声,下面我们就对上述几个参数进行简单介绍。

(1)极化方式。按照天线辐射电磁波的方式不同可以将其分成线极化、椭圆极化和圆极化三种。极化是指天线发射信号过程中其电场矢量端点随着时间变化其运动轨迹的形状、取向和旋转方向。在进行信号发射过程中,天线采用的计划方式不同,其接收的信号功率损失也不同。

(2)输入阻抗。输入阻抗是指天线在信号接收过程中其馈电端输入电压和电流的比值。当天线的输入阻抗等于馈线的特性阻抗时,信号在馈线终端不会产生功率反射现象,天线上的输入阻抗受输入信号频率变化的影响较小。为了提高天线接收到信号的质量,我们要尽可能地采用各种方法消除天线中电抗分量的大小,使其尽可能地接近馈线的特性阻抗。一般情况下,我们选择发射天线的输入阻抗为50Ω。

(3)增益和方向图。增益是指天线对一个特定方向上信号的接收能力,是广播电视中天线选择中的重要参数。相同条件下,天线的增益越高,信号能够传播的距离也就越远。方向图则是描述信号在不同空间方位下变化的图形,一般用场强和功率两种方式进行表达。通常情况下,广播电视天线以E面和H面描述其天线的方向性,其中E面指的是和天线极化方向和传播方向平行的平面,H面则是指和E面垂直的平面。

二、广播电视发射天线技术的特点

广播电视信号可以按照其发射功率的大小分成中波、短波和超短波三种。如果信号传播过程中采用中波频段,那么电磁波在发射过程中具有较强的稳定性,能够保证信号发射功率的平稳性。另外信号在传播过程中,如果能够以沿着地面的形式进行传播,信号在传播过程中具有较强的抗干扰性,用户能够获得比较高的信号质量。目前我国广播电视信号的传播普遍采用短波频段,能够支持120个不同频率的波段,信号在传播过程中会受到大气中电离层的发射,增大广播电视信号传播的距离。另外,我国广播电视信号在传输过程中采用直线形式,沿着地面进行传播,信号在传播过程中受到其他信号的干扰性较小。为了提高接收广播电视信号的质量,大部分天线都被安放在较高的地方,如屋顶或者塔尖,提高了信号接收质量。同时还要加强天线防风雨和避雷的特性,因为广播电视信号采用无线传播方式,信号受天气的影响较大,严重的甚至会失去信号的接收功能。这就要求在进行天线设计过程中,充分考虑信号接收的各个因素和方面。

三、广播电视发射天线的应用

随着科技的不断发展和人们生活水平的不断提高,人们对精神文化的需求越来越高,广播电视在人们生活中的地位也越来越重要。人们每天通过广播和电视了解各种信息,及时收听和收看国内外新闻事件,提高对当今社会的认识,与社会保持密切联系。进入21世纪后,随着网络技术的不断发展,广播电视发射天线技术也面临着巨大的挑战和机遇,通过不断的技术改进,现阶段广播电视发射天线也获得了较大的发展,实现了跟卫星信号的连接。为用户提供了更高质量的信号,收到了清楚和清晰的收听和收看效果,彻底解决了以前广播电视发射天线技术中常见的图像不清和声音嘈杂的问题。但是由于电磁波信号会对人们的身体健康产生一定程度的危害,所以在使用过程中必须给予足够的重视。目前我国已经建立了相关的法律条例,实现了对广播电视发射天线场区的保护。

四、结论

天线技术论文第3篇

摘要:主要介绍了智能天线的提出背景、基本概念、关键技术、优点以及国外的研究进展情况,最后指出了智能天线的发展方向。

一、前言

随着蜂窝移动用户的不断增长,如何解决频谱资源紧张、抑制各种干扰、提高通信服务质量成为一个亟待解决的问题。为此,人们提出了一系列的解决方案,例如,在通信密集的地方引入微蜂窝技术、频率跳变技术、高效的编码技术以及进行功率控制等。而智能天线为这一切问题的解决提供了一条新思路。智能天线能够成倍地提高通信系统的容量,有效地抑制复杂电磁环境下的各种干扰,并且还能与各种通信系统和其他多址方式兼容,从而以较小的代价获取较大的性能提高。目前,国内外有许多大学和公司致力于智能天线的研究。欧洲电信委员会(ETSI)明确提出智能天线是第三代移动通信系统必不可少的关键技术之一,并制定了相应的开发计划。

二、智能天线的基本概念

智能天线综合了自适应天线和阵列天线的优点,以自适应信号处理算法为基础,并引入了人工智能的处理方法。智能天线不再是一个简单的单元,它已成为一个具有智能的系统。其具体定义为:智能天线以天线阵列为基础,在取得电磁信息之后,使用人工智能的方法进行处理,对电磁环境做出分析、判断,并自动调整本身的工作状态使之达到最佳。依据天线的智能化程度可将天线分成可变波束天线、动态相控阵列和自适应阵列3类。可变波束天线依据接收功率最大原则,在几个预设阵列波束中进行切换;动态相控阵列使用测向算法,能够连续追踪用户的方向而改变天线的波束,使接收功率达到最大;自适应阵列既对用户进行测向,又对各种干扰源进行测向,在形成波束时,不仅使接收功率最大,而且使噪声降到最低,从而使接收信噪比最高。

智能天线的发展可分成3个阶段:第1阶段是应用于上行链路,通过使用智能天线增加基站的接收增益,从而使接收机的灵敏度和接收距离大大增加;第2阶段是将智能天线技术同时应用于下行链路,在智能天线应用于下行链路后,能够控制波束的发射方向,从而有助于频率的复用,提高系统的容量;最后一个阶段是完全的空分多址,此时在一个蜂窝系统中,可以将同一个物理信道分配给不同的用户,例如,在TDMA中,可以将同一小区内同一时隙同一载波同时分配给两个用户。

三、智能天线的组成和关键技术

智能天线主要分为天线阵列、接收通道及数据采集、信息处理3部分。在移动通信系统中,天线阵列通常采用直线阵列和平面阵列两种方式。在确定天线阵列的形式后,天线单元的选择就十分关键。天线单元不仅要达到本身的性能指标,还必须具有单元之间的互耦小、一致性好以及加工方便的特点。目前微带天线使用较多。

接收通道及数据采集部分主要完成信号的高频放大、变频和A/D转换,以形成数字信号。目前,受A/D器件抽样速率的限制,不能直接对高射频信号和微波信号进行采样,必须对信号进行下变频处理,降低采样速率。

信息处理部分是智能天线的核心部分,主要完成超分辨率阵列处理和数字波束形成两方面的功能。进行超分辨率阵列处理的目的是获得空间信号的参数,这些参数主要包括信号的数目、信号的来向、信号的调制方式及射频频率等,其中信号的来向对于实现空分多址和自适应抑制干扰有着重要作用。在众多的超分辨率测向算法中,MUSIC算法及其改进算法一直占据主导地位,它不受天线阵排阵方式的影响,只需经过一维搜索就能实现对信号来向的无偏估计,并且估计的方差接近CRLB。此外,使用ESPRIT算法来解决移动通信中的测向问题也得到了广泛的研究。数字波束形成主要通过调整加权系数来达到增强有用信号和抑制干扰的作用,它需要收敛速度快、精度高的算法支持。根据所需先验知识的不同,目前的波束形成算法主要有3类:以信号来向为先验知识,如LCMV算法;以参考信号为先验知识,包括LMS算法及其改进算法NLMS、RLS等;不需要任何先验知识,如CMA算法。由于移动通信环境复杂,各种算法也有各自的优缺点,因此系统中必须对多种算法取长补短,才能达到最佳效果。

四、智能天线的特点和优势

(1)提高系统容量

在蜂窝系统中,用户的干扰主要来自其他用户,而智能天线将波束零点对准其他用户,从而减少了干扰的影响。由于系统提高了接收信噪比,因此减少了频谱资源的复用距离,从而获得了更大的系统容量。

(2)扩大小区覆盖距离和范围

使用智能天线可以提高用户和基站的功率接收效率,进一步扩大基站的通信距离,减少功率损失,从而延长电池的寿命,减小用户的终端。

(3)减少多径干扰影响

智能天线使用阵列天线,通过利用多个天线单元的接收信息和分集技术,可以将多径衰落和其他多径效应最小化。

(4)降低蜂窝系统的成本

智能天线利用多种技术优化了信号的接收,从而能够显著降低放大器成本和功率损耗,提高系统的可靠性,实现系统的低成本。

(5)提供新服务

智能天线在使用过程中必须对用户进行测向,以确定用户的位置,从而为用户提供基于位置信息的服务,如紧急呼叫等。目前,美国联邦通信委员会已准备实施用户定位服务。

(6)更好的安全性

使用智能天线后,窃听用户的通话将会更加困难,因为此时盗听者必须和用户处于相同的通信方向上。

(7)增强网络管理能力

利用智能天线可以实时检测电磁环境和用户情况,从而为实施更有效的网络管理提供条件。

(8)解决远近效应问题和越区切换问题

智能天线可自适应地调节天线增益,较好地解决了远近效应问题,为移动台的进一步简化提供了条件。在蜂窝系统中,越区切换是根据基站接收的移动台的功率电平来判断的。由于阴影效应和多径衰落的影响常常导致越区转接,增加了网络管理的负荷和用户呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

五、智能天线的技术现状

在分析智能天线理论的同时,国内外一些大学、公司和研究所分别建立了实验平台,将智能天线应用于实践中,并取得了一些成果。

(1)美国

在智能天线技术方面,美国较其他国家更加成熟,已开始投入实际应用中。美国的ArrayComm公司发展了针对GSM标准和日本PHS标准的智能天线系统。该公司已将智能天线应用于基于PHS标准的无线本地环路中,并投入了商业运行。该方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同的环境选用,现场实验表明,在PHS基站采用智能天线技术可使系统容量增加4倍。

(2)欧洲

欧洲通信委员会在RACE计划中实施了第一阶段的智能天线技术研究,称为TSUNAMI,由德国、英国、丹麦和西班牙共同合作完成。它采用DECT标准,射频频率为1.89GHz,天线由8个微带贴片组成。阵元距离可调、组阵方式可变,有直线型、圆环型和平面型3种形式。数字波束形成的硬件主要包括2片DBF1108芯片,它在软件上分别由MUSIC算法、NLMS、RLS完成测向和求得最佳的加权系数。在典型的市区环境下进行实验表明,该智能天线能有效跟踪的方向分辨率大约为15°,BER优于10-3。

(3)日本

ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率为1.545GHz。阵元组件接收信号在A/D变换后,进行快速傅氏变换,形成正交波束后分别采用恒模算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成。ATR研究人员提出了智能天线的软件天线概念。

(4)其他国家

我国的信威公司也将智能天线应用于TDD方式的WLL系统中。该智能天线采用8阵元的环形自适应阵列,射频工作于1785~1805MHz,采用TDD工作方式,收发间隔为10ms,接收机灵敏度最大可提高9dB。此外,爱立信公司与德国运营商也将智能天线应用于GSM基站上,但该天线的智能化程度不高。韩国、加拿大等国也开展了智能天线方面的研究。

(5)用于卫星移动通信的智能天线

上文主要介绍了基于蜂窝系统的智能天线,另外还有一种用于L卫星移动通信的智能天线。该天线采用了由16个环形微带贴片天线组成的一个4×4的方形平面阵,它的射频频率为1.542GHz,左旋圆极化,中频频率为32kHz,A/D变换器的采样速率和分辨率分别为128kHz和8位。在数字信号处理部分,选用了10个FPGA芯片,其中8个用于16个天线支路的准相干检测和快速傅里叶变换,另外2片则起到波束选择、控制和接口的作用;自适应算法则选择了CMA。系统的外场测试表明,它能产生16个波束来覆盖整个上半空间,并且不需要借助于任何传感器,就能用最高增益的波束来自动捕获和跟踪卫星信号,从而在各种复杂的环境下均能提供比采用其他天线要高得多的通信质量。

六、智能天线面临的挑战和发展方向

智能天线系统在改善性能的同时,也增加了收发机的复杂度。因为要对每个用户进行定位,并且波束形成的计算量很大,所以智能天线系统中有多个计算单元和控制单元。在实施SMDA时,资源管理也成为一个必须关注的问题。作为一种新的多址方式,在频谱分配和移动性管理上也提出了新的问题,将会对网络管理提出更多的需求。此外,目前智能天线的物理尺寸较大,不利于构建更小的基站。

天线技术论文第4篇

2.1系统硬件设计

系统硬件主要由传感器节点、协调器、控制开关器和上位机组成。传感器节点由传感器、处理芯片、及通信模块组成,主要有温湿度传感器、H2S气体传感器、NH3气体传感器等;控制开关器主要是由主芯片、继电器电路、接收通信模块组成,主要用于控制通风设备的工作状态;协调器负责网络的建立维护和数据的中转,主要任务是为各个传感器分配地址,建立和维护网络;上位机负责数据的接收、存储,并能根据设置的参数进行预警作用。传感器节点由MSP430系列处理器模块、无线通信模块、串口通信模块、传感器模块、电源模块和其它扩展模块组成。选取MSP430系列处理器主要考虑低功耗。为了提高节点间的通信距离,需要在发射器的输出端和发射天线之间增加一个功率放大器,并且采用定向传输技术。各种传感器模块、控制开关器和协调器都是独立设计的,利于节点的重复使用,提高灵活度。

2.2定向天线技术

定向天线(Directionalantenna)是指在某一个或某几个特定方向上发射及接收电磁波特别强,而在其他的方向上发射及接收电磁波则为零或极小的一种天线。定向天线具有增益高、方向性好等特点,能够有效抑制干扰信号,大大减少节点之间的信号干扰,增大了数据的传输距离和数据传送效率,降低信号传输的时延和节点的功耗、提高空间复用度,能够使多个节点同时传输,空间复用率高。并且通过定向天线传输增加额外增益能够实现WSN节点的远距离通信,协议可靠性高,时延小,有效提高了WSN网络吞吐量。

2.3节点软件系统的组成

软件的设计主要由传感器节点软件、控制开关器软件、监测软件组成,除监测软件外,所有程序采用C语言编程实现,监控软件采用eclipse软件结合an-droid-sdk完成。各个应用程序主要由各个传感器硬件模块的驱动、数据采集和通信协议。

2.4通信协议

2.4.1通信算法

针对养殖环境参数监测过程中存在有障碍物影响,会导致传输距离受限制、监测精度不高等结果,因此设计了传输通信协调。通信协议算法主要包含四个阶段:初始化阶段、路由发现阶段、数据传输阶段、路由重发现。

1)初始化阶段

当系统启动时,设置一个启动定时器tt1时间,当tt1时间到达后,节点就定期时间(tt2时间内)向周围节点发送信号HELLO信息,发送HEL-LO信息后就等待回复号RET信息,如果在tt2时间内收到周围节点的RET信息,标注节点已被发现。同时,周围节点在收到HELLO信息后,就会把此节点作为邻节点保存在临时列表中,在tt3时间内向发送节点发送RET信息。如果此节点在自己的通信范围内,就作为自己的邻节点保存在正式邻点列表中,否则抛弃此节点。

2)路由发现阶段

每个节点计算邻居节点的数量,并且根据本身的能量、与基站节点的距离、整个网络节点的均衡等因素,设置成为初始的簇头节点,各个簇头负责簇内数据的采集。除此,各个簇头之间,为了保证路由的可靠性和降低传输数据消耗的能量,采用单跳或多跳的传输方式传输数据。如果簇头节点在基站的接收范围内,就直接把数据传送给基站,如果不在基站接收范围内,就计算各个簇头离基站的位置、本身剩余的能量,保证传输消耗能量最低原则,采用多跳方式传输数据到基站。

3)数据传输阶段

当网络进入稳定状态,簇内成员节点将采集的数据传送给簇头节点,为了避免数据冗余,簇头节点进行数据融合后发送给基站。数据会按照设计的数据传送格式进行传输。

4)路由重发现阶段

由于能量的限制,如果一直保持原路由进行数据传输,就会导致节点能量过多而不能工作,从而破坏整个网络的正常运行。考虑到簇头在网络运行中承担更重任务,设计簇头更换策略。簇头更换策略主要取决于三个因素:选举系数、边缘位置、阈值能量。选举系数决定簇头选举的时间和更换的轮数,设置合理可行的选举系数保证整个网络性能;处于边缘位置的节点若成为簇头,会因传输距离太远,容易耗尽能量而死亡;阈值能量设置得太大,导致很多节点不能成为簇头,势必会因数据传输距离过远,导致网络的不稳定。所以,簇头更换策略是当簇头的满足选举系统时,进入到簇头更换,此时选取出簇内具有最大剩余能量的节点,判断此节点是否处于边缘位置,如果处于边缘位置,继续寻找簇内第二大剩余能量节点,一直到不处于边缘位置为此,然后判定其剩余能量是否大于阈值能量,如果满足则设置此节点为新一轮的新簇头,并向周围所有的节点发送成为簇头的标志信息,重新进行簇内成员的构建,再形成新的路由进行数据的传输。

2.4.2MAC协议

基于定向天线的MAC协议主要使用两种方式:使用RTS/CTS握手方式和不使用RTS/CTS握手方式。前者使用RTS获得邻节点的信息,RTS需要硬件设备获取邻节点的位置信息,后者则使用了音的信号帧,但是这两种方式会带来隐藏终端和聋节点等问题,从而降低了MAC的性能。为了解决这个问题,可以结合定向虚拟载波侦听(DVCS)机制、使用多跳、SDMA(空分多址)等的优点,充分利用定向天线的优势。

2.4.3数据通信格式

考虑到数据通信过程中的可靠性和安全性,设置了数据通信格式。1)传感器节点到协调器的数据格式。数据格式定义如:Head+len+data+stx。其中:Head(2byte),固定为0xFF,0XFE;Len(1byte),data的字节数;Data:数据域———2byte本机地址+2byte父节点地址+nbyte传感器数据(n大于等于2);stx(2byte),固定为0x0D,0X0A。具体发送命令如:FFFE0800010000031200000D0A。其中:FFFE为固定数据头;08为数据长度;0001为本机地址(子节点地址);0000为父节点地址;03为传感器类型;12为传感器数据,1Lsb=0.1,如0x10表示1.8;0D0A为数据的结束标志。2)协调器发往监测软件的数据格式。数据格式定义如:FFFD000430300000hhhhhh。其中:byte1byte2:传感器端数据发送的固定头,固定为FFFD;byte3:数据类型的标识,00为H2S传感器的数据,01为温湿度感测器的数据,02为NH3感测器的数据;byte4为传感数据长度(统一为04);byte4~byte7:为传感器数据;Byte9~byte10:保留;byte11:byte1—byte10校验值(相加取低8位)。

2.5网络构建系统上电后

协调器进行搜索并寻找合理的信道,完成系统初始化和建立网络的任务。各个传感器节点通电后,扫描信道,寻找协调器,并加入到网络中。加入网络后,则开始采集环境数据,传输给协调器,协调器接收各个节点的数据,判定其格式正确后,将其传输给监测软件。

2.6监控软件设计

以eclipse软件为开以平台,结合android-sdk完成监控软件的开发。Android系统是一个源码公开、开放和完整的软件,是由操作系统、用户界面中间件和重要应用程序组成,得到手机运营商的广泛使用。在系统的设计中,应用到了Activity、Intent、Service、An-droidUI、多线程等技术。本系统主要由以下几个方面组成:Android软件与硬件传感器通信的底层驱动,包括打开串口、关闭串口、发送串口信息、接收串口信息以及异步方式读取传感器数据等;主界面内容显示,包含各种传感器数据显示、控制开关器的控制等信息。监控软件接收到数据时首先要对数据的格式进行分析,判定数据格式正确后,确定是哪个传感器的数据,然后进行数据处理,计算结果,在相应界面位置显示数值;把结果与设定的数值进行比较,如果不在设置数值范围内,就进行报警,并把报警信息通过串口发送到协调器,协调器再转发到控制开关器,驱动通风设备工作。

3系统的应用

根据设计的要求,系统设计完成并搭建,在猪舍做了相应的实验和相关的测试,系统测试结果说明,系统实现相应功能,成功读取相应的环境数据。主界面运行显示图中是各个传感器终端节点采集发送回来的数值显示和通风设备工作状态情况。可以通过“菜单键”设置逻辑状态的“关闭”和“启动”在逻辑状态都已关闭情况下,只能显示所有传感器的数据和此时通风设备工作状态,不能达到超限预警的效果。为了能实现环境参数监测的自动控制,必须要开启所有的逻辑状态。通过“菜单键”设置温度、湿度、H2S气体和NH3气体的范围,当采集数据中任一参数超出范围,都可以自动开启和关闭通风设备,达到自动控制效果。H2S和NH3参数范围设置的标准是依据《农产品安全质量无公害畜禽产地环境要求(GB/T18407.3—2001)中的标准来设置,H2S和NH3应控制在10、25mg•m-3以下。根据相关研究表明,猪舍最适宜的温度为8℃~20℃,相对湿度根据猪体质量类型的不同一般为65%~85%。

4结论

天线技术论文第5篇

1安装指向测量技术

1.1方位角测量

采用GPS测量方法获取大地方位角[2]。在1#、2#和3#测量墩上分别架设GPS接收机,测量时段为2h,高度截止角为5°,采样间隔为5s,如图1所示。使用观测站精密星历解算得该1#墩的WGS84下笛卡尔坐标,平差得到各点在WGS-84坐标下的平面坐标。

1.2控制网布设

采用LeicaTDA5005全站仪对8个平面控制点进行边角网测量[3,4],如图2所示。1.3双经纬仪测量系统建站与传递因摄影测量坐标系为局部坐标系,需利用双经纬仪测量系统通过公共点将其转换至大地坐标系下[5,6]。在天线角点及边缘均匀选取8个位置,在背架上固定工装,粘贴8个测量标志点,作为连接经纬仪系统与摄影测量系统坐标系的公共点,如图3所示。利用双经纬仪系统测得公共点在控制网坐标系下坐标[1,7],即可将天线面测量点摄影测量坐标转换至控制网坐标系下。

2面型精度测量技术

采用VSTARS工业摄影测量系统、双经纬仪系统测量天线面型精度。在每块面板上粘贴9个测量标志点,如图4所示,共计1350个。每行间隔1块面板布设1个编码标志,共计16×5=80个。摄影距离约为6m。利用双经纬仪测量系统测量8个公共点在设计坐标系下的坐标;利用INCA3相机拍摄像片,单次测量拍摄约130张,导入V?STARS软件处理得到测量点和公共点三维坐标[8];利用8个公共点将测量点坐标转换至设计坐标系下;将测量点坐标与天线设计模型做比对得到天线面型精度。

3安装指向测量精度

天线指向精度依据方位角测量精度、控制网布设精度及双经纬仪测量系统建站与传递精度等多方面因素估算得出。

3.1方位角测量精度

采用GPS国家二等网的要求测量,单点解算精度±2mm以内,1-3测量墩距离为185.2m,1-2测量墩距离为166.8m,换算成角度1-2方向±2.5″(0.0007°),1-3方向±2.2″(0.0006°)。

3.2控制网

布设精度平面控制网测量,对8个平面控制点进行边角网测量,具体测量方案如图1所示。每设站观测2个测回,具体限差指标如表1所示。平差后最大点位误差为±0.442mm,最大点间误差为±0.442mm,最大边长比例误差为:1/212100,控制网最短边长为20.3m,按最大点位误差及最短边换算最大角度影响为±4.5″(0.001°)。

3.3双经纬仪测量

系统建站精度采用对8个公共点前后2次测量的重复精度计算双经纬仪系统的建站精度,该坐标差(RMS)为1??192mm,故单次测量精度为1.192/2=0.843mm。在9m范围内引起的角度偏差值约为:0.843×29000×1803.14=0.011。

3.4双经纬仪测量

系统与摄影测量系统传递精度对双经纬仪测量系统与摄影测量系统测得的8个公共点坐标进行公共点转换,转换后误差(RMS)为0.838mm。在9m范围内引起的角度偏差值约为:0.843×29000×1803.14=0.011°。综合上述角度误差,天线指向精度约为:0.00072+0.0012+0.0112+0.0112≈0.016。

4面型测量技术

精度采用公共点转换法将测量点坐标转换至设计坐标系下,与天线设计模型作比对得到面板各点位偏差以指导调整[9]。经4次测量、3次调整后,天线面型精度(RMS)为0.304mm,达到设计要求。各次测量天线面型精度如表2所示,测量点偏差分布如图5所示。

5结束语

天线技术论文第6篇

第四代移动通信技术中采用了智能天线技术,智能天线一般是指安装在基站的天线,主要是通过能够编程的电子相位关系来确定方向性。智能天线技术采用的是SDMA,而SDMA是卫星通信方式的一种,主要是利用天线的方向性来确定范围,也就是频域,从而减少了成本,增加了收益。SDMA是利用空间分割来划分信道,采用智能天线技术可以改善信号质量,4G移动通信技术广泛采用这一能够降低建设成本的技术。另外,为了提高移动通信系统的性能,4G移动移动技术还采用了无线链路增强技术,像分集技术和多输入多输出(MIMO)技术,为数据的高速传输提供了技术支持。

2、4G移动通信技术的安全缺陷继解决措施

病毒,一般来说,是有些计算机操作人员恶意制造的一些计算机操作指令,载入在一些人们常用的软件和网页当中传播,破坏计算机的信息安全。病毒对网络通信的破坏是猝不及防的,而且其传播速度很快,在很短的时间内能让成千上万的文件或者程序受到攻击。而且病毒自身繁殖性也很强,一旦遭到病毒侵害的程序就会自身复制,能够像生物病毒一样繁殖下去,对通信安全将造成巨大的危害。黑客,一般都拥有大量的计算机相关的技能,能够轻易侵入别人的电脑或者拿别人的电脑当跳板再入侵其他的电脑来窃取用户信息,或者破坏通信信息安全。黑客非法地对国家政府、军事情报机关的网络、军事指挥系统、公司企业的计算机系统进行窃听、篡改,以达到危害国家安全,破坏社会稳定,致使企业造成损失,这将对用户的通信安全产生巨大的威胁。网络服务器或者浏览器本身存在的安全缺陷,极易被一些恶意软件携带的病毒攻击,而这些病毒经常不容易被发现,最终对通信和信息交换造成破坏。科技不断地发展,我们有信心解决以上提出的安全问题,为了有效地解决,我们在4G移动通信技术研究和开发的过程中一定要严密把控各方面的环节,确保第四代移动通信技术对于用户数据的信息安全。采取增加网络防火墙,使用更加复杂的秘钥等措施,提高系统的抗攻击能力,在不影响数据安全和完整性的前提下,同时提高系统的恢复能力。同时,各国政府也要成立专门的机构,出台相关的法律法规,增加对网络安全管理人员的培养,普及安全知识,同时加大对安全保护措施的投资力度,对危害通信安全和网络安全的不法分子严惩不贷。

3、结语

天线技术论文第7篇

在隧道工程中,防排水施工技术可以分为防水施工技术和排水施工技术两方面,其中防水施工技术是指利用防水材料、二次衬砌防水混凝土、初衬喷射混凝土等将隧道周围的地下水隔离开来,避免地下水对隧道内部结构进行侵蚀;排水施工技术是指对隧道工程进行详细的分析,设计出合理的排水系统,从而将隧道中存在的地下水排除,从而为隧道的安全提供保障。在进行隧道工程防排水施工时,要坚持“安全第一、规避风险、全程监控、综合管理”的原则,严格的按照相关规定进行操作,从而为整个隧道工程的施工质量提供保障。

2工程概况

元坝气田17亿立方米/年滚动建产工程地面集输工程隧道三标建设地点位于四川省苍溪县境内。第三标段共有两条隧道:牛包山隧道和天坪梁隧道。牛包山隧道穿越地段的微地貌特征为缓坡、陡坡、陡崖、山脊、冲沟等。区内为单斜地层,其岩层产状为236°∠3°,地下水主要由南向北径流,岩体的风化裂隙及构造裂隙为地下水的主要贮存和富集空间。该隧道隧址区域内无大的地表水汇集区和流通区,只在隧道的进出洞口和洞身段发育多条小冲沟,入洞口冲沟内有地表水,水量较大,常年有水。天坪梁隧道隧址区内为单斜地层,其岩层产状为240~250°∠3~6°,地下水由西南向东北径流,其含水岩层为砂岩层,风化裂隙及基岩裂隙为地下水的主要贮存和富集空间。该隧道隧址区域地表水系主要为进洞口侧有一冲沟,进洞口侧冲沟内水流较小,由于冲沟上游有堰塘拦截,冲沟内水流在暴雨季节,洪水水位较小。

3隧道工程防排水施工技术的施工准备

在进行隧道工程防排水施工前,施工单位首先要做好施工准备工作,只有这样才能为施工的顺利进行提供保障,才能确保隧道工程的施工质量。在施工前,施工单位要安排测量人员深入施工现场,对各个桩位进行测量,确保各个桩位能满足施工需求,同时测量人员要根据施工现场的实际情况,设置好水准点和导线网,并对隧道进行测量、复测,确认无误后,进行二次衬砌放样。采购人员需要根据隧道防排水施工设计要求,购买合理的施工材料,采购人员在选购施工材料时,要对市场进行充分的调查,选择质量优越、价格便宜的施工材料。施工材料在进入施工现场前,施工单位要安排专门的质检人员对施工材料的质量进行检查,如果发现施工材料质量不合格,要及时将施工材料退回,重新选购,严禁质量不合格的施工材料进入施工现场。在正式施工前,施工单位还要对施工人员进行技术培训和安全培训,从而有效地提高施工人员的技术水平和安全意识,确保施工人员能严格的按照相关规范进行操作,只有这样才能为隧道工程的施工质量提供保障。在施工前,施工人员还要组织施工人员对施工使用的各种机械设备进行检查,确保施工机械设备能安全稳定的运行,从而为隧道工程施工的顺利进行提供保障。

4防排水施工技术的应用

4.1测量放样

在进行测量放样时,测量放样人员要利用全站仪将隧道的中心线准确的测量出来,然后沿着隧道中心线向两侧散开放样,在本工程中,每隔5m为一个放样点,水平方向放样结束后,测量放样人员要将纵向排水管道的中心线测量出来,然后每隔10m设置一个放样点,最后利用全站仪将排水管道底部的设计标高测量出来。测量人员还要将矮边墙的边线测量出来,每隔5m设置一个放样点,并将矮边墙的顶标高测量出来。

4.2进入隧道前的防排水处理

在进入隧道施工前,施工单位要对隧道内部的情况进行充分调查,了解隧道隧址区地表水、地下水的情况,并对地表水的补给方式进行分析,根据实际情况,制定相应的地表防排水工作,从而为隧道施工提供方便。在本次隧道工程施工中,施工单位采用浆砌片石截水沟、排水沟将隧址区地表水排入隧道地表外侧,并将其引入隧址区原排水系统中,从而有效地防止地表水渗漏对隧道工程施工造成影响。

4.3安装排水管

在本工程中,施工单位在安装排水管时,对于环向排水管的安装,施工单位首先沿着隧道内部,每隔1m设置一个混凝土悬挂锚钉,然后利用铁丝将排水管道固定在混凝土悬挂锚钉上,在施工过程中,施工人员要特别注意,锚钉需要牢固的地锚在混凝土表面,从而避免弹簧管坠落对隧道中的行人带来危害。弹簧管的端头需要预留出10cm,从而为弹簧管和纵向排水管的交接提供保障。在安装纵向排水管时,其安装工序与环向排水管的安装工序大致相同,施工人员首先要沿着隧道坡度,每隔1m设置一个混凝土悬挂锚钉,利用铁丝将排水管道固定在混凝土悬挂锚钉上,最后施工人员要纵向排水管道和环向排水管道交接处割破,将环向排水管道、纵向排水管道、横向排水管道连接好,最后对管道的接头进行密封处理,避免管道接头处发生漏水现象。

4.4防水板的安装

在进行防水板安装前,施工人员要对隧道初期施工的支护情况进行认真的检查,并对岩面的欠挖进行处理,避免衬砌台车进入施工现场后,因没有处理岩面欠挖,从而对隧道工程防排水施工进度造成影响。施工人员还要凿除凸出的岩石喷射混凝土,割掉凸出的钢筋头和锚杆,同时在铺设防水板前,施工人员要先将防水板拼好,然后利用装载机将防水板放在架子上。在安装塑料防水板时,施工单位可以采用无钉法,按照顺序逐环安装;在安装复合放水板时,施工人员首先要将锚钉钉入混凝土中,然后沿着纵向拉铁丝,从而对防水板进行保护。施工人员在安装复合防水板时,要从侧面开始,从上到下依次铺设,同时施工人员要在铺设过程,将吊带系在铁丝上。

5结语