摘要:为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
计算机安全杂志, 月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:焦点视点、行业应用、技术、市场与管理、病毒、黑客、服务、动态等。于2001年经新闻总署批准的正规刊物。