欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

监控系统设计论文(合集7篇)

时间:2022-02-26 23:21:41
监控系统设计论文

监控系统设计论文第1篇

1.1通过对网络服务软件适当修改实现监控功能

网络服务软件具有修改服务器软件与程序功能。当在其中嵌入特殊信息则具有过滤功能,从而可以对设定信息内容进行监测与过滤。

1.2通过服务器技术实现信息监控与过滤

服务器集群的监控与过滤,属于规则过滤技术。许多网络交换机使用这一技术充当防火墙。当信息流进入proxy后,需要过滤器过滤才能转发;依照服务器集群中的规则要求过滤“非法”信息,将合法信息转发至用户。

1.3通过Sniffer实现路由器报文捕获功能

与前两种监控技术相比,Sniffer信息监控技术最大的优点就是对网络性能不产生任何影响。只需在边界路由器上设置一至多个监听端口,就能捕获所有途经报文。目前许多网络设备支持此类功能,通过端口映射获取交换机上的数据。

2、网络在线文化信息监控平台设计的思路

设计思路从3个层面进行:一是在采用探针技术或sniffer技术,对链路层、途经边界路由器上的所有报文数据进行捕获。二是使用TCP/IP协议软件方式,在网络层实现数据包处理。

(1)对分片报文数据进行IP重组,使其成为完整的IP报文;

(2)对TCP层报文进行数据还原,使其成为传输原始内容数据;

(3)根据应用层协议进行具体还原数据分析。三是对还原数据进行特征关键字匹配过滤。

3、网络在线文化信息监控平台数据采集的结构

数据采集结构有两种:一种是类似防火墙功能的边界路由器与内网间的监控主机,由其检测、拦截所有进出数据包,但此类采集方法容易影响网速、带宽等性能;另一种是Sniffer监听方式,该方式有传统、现代方式两种。传统方式将主机网卡设置成了接收局域网报文的混杂模式,现代方式是对网络原有设置不做任何变动,使用支持探针技术的交换机端口映射技术实施监听,这样对网络带宽无影响,即使在监控主机出现故障不能正常工作时,对网络正常活动也无影响。如图1(网络信息监控系统结构图)所示,系统为支持探针技术的Sniffer监听方式。它采用交换机映射端口转发途经数据包,主机网卡为混杂模式,专门用于接收被转发数据。但由于在高速环境下主机对数据包重组、监测,负载过重,数据丢失率较高。所以在数据处理与信息监测模块设计上,需采用分布式集群结构以达到均衡负载的目的。交换机转发的数据由数据接收机负责接收,接收后转发给集群中各机器进行数据处理与信息监测。这种分布式集群结构与传统结构相比较,具有系统可扩充性等优点,更能满足多协议信息监控的需要。

4、网络在线文化信息监控平台模块功能的实现

网络在线文化信息监控的本质是对网络数据实施监查与对比,实现监控的目的。要使每个数据包都接受监查,就必须将流经数据截留下来,因此,怎样快速、高效地截获数据包是实现系统功能的关键。截获后,还要对数据进行分离,应用还原技术进行比对,只有通过信息监控策略与模式匹配算法,最后才能实现信息有效监控。系统监控功能由以下模块实现。

4.1网络数据捕获的实现

对网络底层信息实施监听,一是利用以太网络系统的广播特性来实现,二是通过设置路由器监听端口来实现,两种方式(方法)分别应用于不同的工作情况。

4.2网络协议分析与实现

进行网络协议分析,先应将符合截获要求的数据截获,并滤掉有关不需要的数据报本机,后应在与其连接源端及目的端均无TCP连接的情况下,实现简化的TCP/IP协议组。这实际上是数据链路层数据帧的问题。因为一个完整的物理层以太帧的组成有4部分:一是头部,是以太网原始MAC地址头;二是IP数据报头;三是TCP/UDP数据报头,四是实际数据。

4.3网络TCP还原的实现

实现TCP还原的方法与IP重组的方法类似,即对接受的数据报进行分析处理,如属同一TCP连接,则要先用同一排序树按数据报的Sequence排序起来,而后遍历这一排序树就能实现TCP还原。实现TCP还原的过程,即是对iptree遍历,对IP数据报文内容进行还原的过程。通过报文分析,从还原结果中可监测到在进行数据捕获时,客户端、服务端之间命令的使用情况。

4.4网络应用层协议的分析

4.4.1HTTP协议的分析设计与实现要对原始数据进行分析,就要浏览一个网页,建立多个连接。为此,选定哪个网页、哪些连接,传送哪些内容,就成了HTTP还原的核心。HTTP的分析设计如下:

(1)端口局部性与单调递增性。从客户端浏览器向Http服务器发出第一个请求指令开始,服务器为后续连接分配的端口号是单调递增的,且具有局部性,端口号相对连续,偶尔有跳跃。

(2)模块原始数据的组织方式。模块原始数据来源于TCP/IP协议模块的还原结果。为表示端口号,数据文件命名体现了源端口号、目的端口号、源IP地址、目的IP地址连接的四元组,这正是一个网页必备的基本信息。

(3)合成网页的处理时间窗口。在合成一个网页时,如遇无效文件存在,在一定时间内要删除以加快处理时间,这样不免形成一个处理时间的窗口。在时间窗口的一定时间内:一要确定哪些连接(传送的内容)可以合成;二要尽量还原网页所需全部资源;三要将还原网页尽快写入数据库管理。

4.4.2Smtp、Pop3协议分析

(1)Smtp协议分析。监听邮件时,需对邮件内容进行分析,当监测到Smtp的“Data”的命令报文时,对其后的数据就要进行捕获,从而获取发送邮件数据,进行数据语法分析、编码部分解码,以致获得整个邮件的相关信息。

(2)Pop3协议分析。在Pop3协议分析时,要重点考虑Retr命令,这是因为Retr命令的出现代表着协议状态阶段进入了数据传送阶段。接下来,对其后数据包分析,就可获得用户完整邮件数据。

5、网络在线文化信息监控服务机制的创新

网络在线文化信息监控平台建设除在系统设计上进行技术创新外,还应通过计算机科学、管理学、政治学、传播学、社会学等多学科交融理论推动服务机制的创新。

(1)以思想政治教育为先导,完善在线文化信息监控与引导工作机制,进一步提高在线文化信息监控服务的科学性和有效性,切实增强网络文化信息的“正能量”的辐射力、吸引力和感染力。首先要不断倡导网民积极传播健康信息,自觉抵制有害信息、网络滥用行为和低俗之风。其次要加强管控措施,发现有害信息及时报告、立即删除或围绕社会关注的热点、焦点问题,主动撰写贴文,吸引网民点击和跟贴,弘扬网络文化正气。再次要建设网络文化信息宣传与评论工作队伍,抢占网络文化信息阵地,针对各种危急情况,第一时间进行正确引导和疏通,最大程度地减少负面效力。

(2)以敏感信息和舆情疏导治理为抓手,建设网络在线文化信息分析与甄别工作机制,准确把握网络信息整体动态,敏锐捕捉倾向性、群体性的信息和舆情危机苗头,提高网络在线文化信息应对服务的及时性和针对性。首先,要加强IP地址管理,建立IP地址分配使用逐级责任制和用户实名信息登记制度,保证所有文化活动的信息能够实现“溯前追查”。其次,通过认真分析敏感和舆情信息产生的原因、发展趋势及对人们思想的影响,准确把握网群动态,敏锐捕捉危机苗头。第三,通过分析与甄别工作,加强对网络文化活动重点部位、重点人员、重点方向、重点领域的关注,提高网民思想政治教育工作的针对性和时效性。

(3)以开发应用网络技术统计工具为支撑,建立网络文化信息收集和反馈工作机制,实现收集工作的即时化、经常化和全面化,进一步提升网络在线文化信息监控服务机制的效能和水平。在创新网络文化信息监控机制过程中,应调查掌握现代网民从事网络文化活动的基本特点,实现信息收集工作的常态化。形成统一协调、反应灵敏、高效畅通的网络文化信息收集反馈机制,尤其在国内外发生重大事件的重要敏感时期,要做到不断线的网络文化信息搜集和管控工作,发现问题,及时应对。

6、结束语

监控系统设计论文第2篇

监控系统结构功能图如图2。对于储能监控系统,除了必要的数据采集分析等常见功能外,根据工程需求,还需要有相应定制化的功能,例如针对风电的平抑风功率波动优化控制等等。监控系统功能如下:

1.1基本功能(1)数据采集监控系统通过通信网络将电站中各设备的信息上送值,采集终端服务器或规约转换器,现场通过RS485/232、以太网等方式通信,将信号转换为网络信号传输给就地监控系统。交换机的功能为实现与储能电站网络设备或其他网络设备之间的通信。使用RS232方式传递信号的有PCS以及电能表等设备。使用以太网方式传递信号的有BMS等设备。网络接口有交换机和路由器。交换机的功能为实现与电站网络设备或其他网络设备之间的通信,如:变电站综合自动化系统等监控系统。(2)实时数据服务系统实时对大量数据进行读取和更新,要求对数据库的快速访问,因此实时数据库在系统的每台主机都运行一个备份,所有数据存放在内存中,各种操作在内存中完成,通过网络子系统实现全网实时数据库系统数据的一致,以及跨应用的数据访问。实时数据库管理生成、维护实时库,完成对数据库访问的控制。包括管理数据库数据字典,创建并初始化实时数据库系统控制区、创建并初始化实时数据库中的表、删除实时数据库中数据表、接收来自服务器的对实时数据库中的表内容的增加、删除及修改操作。(3)历史数据服务历史数据库采用商用数据库。商用数据库部署在数据服务器,一般选用Oracle为商用数据库管理系统,但可以根据用户的要求选用MicrosoftSQLServer、Sybase或Informix。采用双机配置时,两台数据库服务器通过数据库复制技术保持数据一致。商用数据库中存放以下信息:字典信息、SCADA的设备定义及描述信息、历史数据采样信息、各种告警操作记录信息等。系统商用数据库面向电力系统对象设计,以区别于传统的厂、点号设计。面向电力系统设备对象进行数据库设计,可以将SCADA应用,各高级应用有机地结合在一起,真正做到一体化实现,保证了系统功能的灵活扩展。系统提供了专门的历史数据库修改维护的工具,该工具可根据所授权限浏览、修改、管理数据。随时可以处理数据库中的数据,不影响系统的正常运行,也不影响已完成的报表、曲线、饼图显示。(4)图形显示图形显示部分是人机交互的界面,即传统的SCADA图形界面,包括显示功能模块划分、系统设备拓扑展示、告警界面。(5)报警报警是对测量值的范围、变化速度的预警。报警包括限值报警,变化率报警,偏差报警,异常报警等。复杂的报警可以通过对测量值进行数学运算,然后对运算结果进行报警检查而产生。发生报警后,操作员可以通过报警画面对报警进行“确认”。报警信息,报警确认信息,报警恢复(报警消除)等信息都可以被系统自动记录下来。

1.2应用功能(1)储能电站数据的采集和处理储能电站包含电气设备(开关、变压器、母线),储能变流器和电池堆,储能监控系统应能和上述设备的智能测控终端和智能二次部分进行通信,采集上述设备的运行参数,并进行预处理。(2)基本监控功能对采集的数据进行再处理,可以实现数据告警、曲线显示、报表功能,并通过图形系统及运行工具浏览储能电站的运行情况,对风储联合系统基本运行情况进行统计分析,并可对储能电站进行相关设置和控制操作。(3)优化控制优化控制即为风储联合运行控制策略。策略类型有:平抑波动[1]、储能系统计划调度、PCS跟踪计划、无功补偿控制、协调控制、顺序控制、自维护等等。按控制对象分类,可以分为储能电站优化控制、PCS优化控制、BMS实时监视。储能电站优化控制采用在闭环控制方式,不论控制目标为目标曲线还是目标值,系统定期更新,读取控制目标当前值,重新进行优化计算,根据当前系统实时运行信息,重新分解控制目标,下发至各就地设备执行。不管是处理来自界面程序的控制策略执行命令还是来自目标执行程序的重新执行请求,或者是自动按时执行既定的闭环控制策略,程序处理流程类似,大致分为执行条件判别,初始化,预处理,优化计算,结果分配、目标执行几个部分。(4)图形框架利用Qt技术构建图形框架。建立可视化设备树索引,以在不同设备的SCADA界面和应用监控对象之间进行切换。利用编写好的配置工具进行应用快捷方式等的配置,非常灵活便捷。(5)控制命令下发利用Qt库中的QThread、Qtimer、QVector等类,实现储能系统的功率值点和计划值曲线的下发、变更、删除、计划值队列管理、数值校验等。(6)信息模型修改利用Qt提供的库和ADO方法访问数据库,对历史数据库中的数据表表结构及内容,菜单结构及内容等进行维护,包括数据库的备份和还原。配合设备树及编写好的模型配置工具,对信息模型拓扑结构等进行修改。通过读写配置文件的方式,使配置手段更为灵活和便捷。

2系统通信设计

2.1设备之间的通信(1)监控系统与PCS之间的通信通信方式为RS232串口,连接到终端服务器后再转接为以太网与监控系统进行通信。采用标准的莫迪康ModbusRTU协议,采用一主一从的通讯方式。监控为上位机,PCS控制板DSP为下位机,上位机主动向下位机发送消息;下位机为被动方式,接受上位机发送的指令,并根据信息内容进行响应回送。物理层通讯接口采用RS485,通信波特率选择9600bps,通信数据格式为8个数据位,1个停止位,无校验位,其中字符低位(LSB)在前,即先起始位,后d0-d7位,最后停止位。通信链路的建立与解除均由主站发出的信息帧来控制。每帧由目标地址、功能码、数据信息、校验码组成。报文格式如表1,其中数据位的长度取决于功能码:其中各位的含义如下:地址域用来区分通讯网络上的主机和各从机,一个通讯网络上的主机和各从机装置的地址不能重复,必须唯一。地址的范围是1~255,其中255被保留用做主机对所有从机的广播地址。其中监控主站做主机,PCS装置做从机,地址编码为0x16。功能码域用来告诉被寻址的从机装置要完成何种功能。数据域包含了主机执行特定功能所传下来的数据或从机响应查询时需上传的数据。其中数据可以是Modbus寄存器地址、数据量或数值,而数值可以是模拟量数值、开关量状态、定值、时间值等。CRC校验码采用标准ModiconModbus协议中的16位循环冗余校验码(CRC)算法,生成多项式为X15+X13+1,传输时低8位在前,高8位在后。从报文首字节(即地址域)到CRC码之前的所有报文字节都参与CRC码的计算。(2)监控系统与BMS之间的通信监控系统与BMS之间均直接通过以太网的方式连入交换机,也可以Modbus协议进行通信。

2.2监控系统内部通信监控系统内部采用以太网通信,通过交换机连接各个网络节点。监控系统内部各进程主要采用Socket和共享内存两种通信方式。对于不需要同步阻塞操作的对象,采用读写效率更高的共享内存方式,而对于不同工作站/服务器之间或者要求同步阻塞操作的对象之间,采用Socket的方式进行通信。另外值得一提的是,所有Windows下运行高级应用对历史数据库进行操作时,均采用ADO的方式;其余所有服务均直接调用相应数据的SDK进行访问。(1)共享内存共享内存是一种读写效率较高的方法,访问共享内存区域和访问进程独有的内存区域一样快,并不需要通过系统调用或者其它需要切入内核的过程来完成。同时它也避免了对数据的各种不必要的复制。在监控系统中主要应用于实时数据库及其服务和前置系统等之间的通信。从本质上来说,实时数据库就是一块大的共享内存加上对读写接口的封装等服务。对于Windows下的共享内存,可以采用CreateFileMap-ping创建一个内存文件映射对象,CreateFileMapping这个API将创建一个内核对象,用于映射文件到内存。HANDLECreateFileMapping(HANDLEhFile,......);这里,我们并不需要一个实际的文件,所以,hFile这个参数可以填写INVALID_HANDLE_VALUE。然后调用MapViewOfFile映射到当前进程的虚拟地址上即可。一旦用完共享内存,再调用UnmapViewOfFile回收内存地址空间。对于Linux下,进程通过调用shmget(SharedMemoryGET,获取共享内存)来分配一个共享内存块。然后,要让一个进程获取对一块共享内存的访问,这个进程必须先调用shmat(SHaredMemoryAttach,绑定到共享内存)。将shmget返回的共享内存标识符SHMID传递给这个函数作为第一个参数。该函数的第二个参数是一个指针,指向您希望用于映射该共享内存块的进程内存地址;如果您指定NULL则Linux会自动选择一个合适的地址用于映射。第三个参数是一个标志位。调用shmctl(″SharedMemoryControl″,控制共享内存)函数会返回一个共享内存块的相关信息,可以进行内存块的释放。(2)socket通信socket方式通信好处在于:socket适用于任何情况下的数据传输,信息交换通过报文。被接收方收到信息可以通过socket的recv函数触发,不像共享内存,一方将数据写入,另一方须要不停地进行扫描操作才知道有没有接收到信息。在监控系统中,socket的通信主要应用于除实时库和前置之前通信之外的所有通信,特别是不同高级应用间的通信,高级应用与系统进程间的通信等。Socket的通信模式为:打开-读/写-关闭。于此对应,socket提供了进行这几步操作的对应接口。通信流程如下:1)调用socket(),用于创建一个socket描述符(socketde-scriptor),它唯一标识一个socket。2)调用bind()函数把一个地址族中的特定地址赋给socket。3)如果作为一个服务器,在调用socket()、bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。4)TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。5)调用I/O函数,如read()/write(),recvmsg()/sendmsg()。6)调用close(),关闭。但是这里close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

3结束语

监控系统设计论文第3篇

关键词全球定位系统;地理信息系统;全球移动通信系统;地图匹配

1前言

建设较完善的智能交通系统(ITS)是当下人们研究的重点。车辆导航与监控系统是ITS的重要组成部分,它借助于电子地图为驾驶员实时提供车辆位置、速度、方向以及周围地理环境等信息,以指导驾驶员快速、安全、准确的到达目的地。本人及小组成员根据项目要求,设计并实现了基于GPS/GIS以及借助于计算机网络和现有的GSM网通信平台的车辆导航与监控系统。从而实现了在GSM网覆盖范围内车辆的定位导航监控及管理。

2系统总体设计

2.1设计思路及结构划分

系统的设计首先从车辆的定位着眼,进而完成对其进行监控导航等功能,因此需要结合当前应用广泛的GPS、GIS、GSM及计算机通信等方面的技术。在具体运行中设置在车辆上的终端部件将从GPS接收坐标数据,并结合速度等信息通过GSM系统以SMS方式发送到控制中心,控制中心则要结合其后台的GIS系统以图像方式表现在屏幕上,同时又要根据需要对车辆通过GSM系统以SMS方式发送控制指令。另外为了方便用户查询用户基本信息、交通信息、车辆行驶信息等,控制中心还要实时向WEBGIS服务器传送相关信息。由此,我们对该系统的设计主要分为了车载单元和监控中心两大部分。

2.2控制中心端设计

控制中心端是我们整个系统的核心部分,它既要接收来自移动端的GPS信息并结合数据库以图形方式反映在GIS平台上,同时又要根据监控信息给车辆以相应的信息反馈,以提供车辆的导航。其功能结构如图1。

(1)数据库设计。系统对数据的要求包括地理空间数据和非空间数据,非空间数据又包括基本的属性数据和GPS数据,因此建立了三个数据库分别是地理空间数据库、属性数据库和GPS消息数据库。其中地理空间数据库主要存储GIS方面的空间图形数据,此处以成都市电子交通地图为主要部分,包括道路交通网图形要素的空间位置、几何特征和拓扑关系以及其它一些附属地物,如机关单位、绿地广场、商店超市等。属性数据库主要包括车辆基本信息、用户信息、服务信息等。GPS消息数据库主要针对车辆位置信息的管理,以方便车辆导航及路径回放等。后两者均为结构化数据,采用一般的关系数据库以表、视图方式即可很好的表示。

(2)GPS分析管理模块。此模块主要从车辆的定位、跟踪方面进行处理,对被监控车辆接收移动端发来的位置、速度等信息以图形方式显示在地图上,并以文本方式做详细记录;依据记录的数据在需要时进行回放,回放功能的设计上包括开始、暂停、继续、结束四个状态。另外还包括基本的车辆信息查询处理功能,如车辆信息查询、驾驶员信息查询、车辆监控查询、车辆调度等。

(3)GIS分析管理模块。此模块主要在MapObject基础上集成二次开发,实现GIS的基本功能,如地图放大、缩小、漫游、查询、距离测量等。另外根据项目需要实现了路段及区域范围内车辆密度分析功能。

2.3移动端设计

移动端也就是我们的车载端系统,它包括GPS接收模块、DR传感器(DeadReckoning)、车载导航计算机、通信控制器及设备等组成,其结构如图2。

GPS接收机主要用于接收卫星信号,并解算出定位信息;DR传感器用于航位推算,它是为了解决GPS无法定位而导致导航软件无法工作的问题而特意在我们的系统中引入的;车载导航计算机用于数据采集和处理;通信控制器用于向GSM短信中心发送车辆位置等数据,并接收控制中心通过GSM网发来的监控指令等数据。其工作原理为:当GPS接收模块或DR传感器取得数据后,通过通信控制器把数据以短信息的形式传到GSM短信中心,再通过局域网或广域网把数据传到监控中心,车载终端系统以中断方式完成来自GPS模块和DR传感器的数据的接收,在硬件主程序中循环采集信号和控制其它设备。3系统关键技术与实现

3.1通信

车载设备与监控中心的通信方式采用GSM短信业务方式完成。发送端将数据加上目的地址按照通讯机协议进行编码发送给短消息服务中心,之后再由短消息服务中心发送给监控中心。监控中心收到信息后同样以相应的通讯协议进行解码后分解为可识别的车辆经纬度、状态等信息。他们之间是以RS232全双工串口来通信的,可以同时接受和发送数据。在此我们利用VC++6.0下的CserialPortEx串口通行类来实现串口通信。CserialPortEx声明如下

classCSerialPortEx

{

public:

BOOLInitPort(CWnd*pPortOwner,UINTportnr=1,UINTbaud=19200,charparity=''''N'''',UINTdatabits=8,UINTstopsbits=1,DWORDdwCommEvents=EV_RXCHAR|EV_CTS,UINTnBufferSize=512);

}

串口的配置对话框如图3。

3.2地图匹配

由于当前使用的GPS定位精度为数十米,且美国军方为限制其它国家将GPS系统用于军事领域,通过选择可用性(SA)技术,人为地在卫星信号中加入噪声干扰。另外由于城市地物特征复杂,在高密集的建筑物、隧道、立交桥等处行驶时又会受其反射和遮蔽影响,使得在某些区域内无法接收GPS信号而出现定位盲区。因此在GPS定位与航位推算的基础上要将定位点与地图道路进行匹配,这样才能真正实现车辆在地图上的实时定位。

地图匹配是通过车辆的GPS航迹与GIS地图数据库中的矢量化路段对象进行匹配,寻找车辆当前行使的实际道路,再将此定位点投影到道路上。根据车辆行驶的情况和地图匹配的需要,将匹配定位分成了3种不同状态,即道路搜索、直线行驶、转弯。针对每种状态的特点和定位要求,采取了不同的处理方法。

(1)道路搜索。当车辆启动时,道路匹配可能不正确,所以应先对起始时刻进行道路匹配,以便建立正确的投影点,这就需要先进行道路搜索。在进行道路搜索时我们将道路连通性作为考虑要素,如图4所示:p0是前一时刻匹配的位置点,p1是当前时刻的GPS定位点,L1、L2、L3是待搜索的范围内的三条道路。虚线箭头是p0时刻车辆行使方向。根据前一时刻匹配结果认为车辆在道路L1上,由于道路L1与L2是连通的,所以车辆不可能直接进入L3,只可能是在L1和L2中进行搜索。

(2)直线行驶。在没有接近道路交叉点时,可以一直认为车辆是在此道路上行驶,可将定位点全部投影在此路段上,如图5。

(3)转弯。当接近交叉点时进行转弯处理。此时可认为是新一次的道路搜索,采用道路搜索的算法处理即可。

4结束语

基于GPS/GIS/GSP车辆实时监控导航管理系统涉及GPS技术、通信技术、地理信息学、数据库、软件工程等多个技术领域,系统较为复杂,本文从系统的整体结构、原理、功能、关键技术算法等方面对车辆导航监控系统做了一定分析研究。具体论述应对车辆定位、导航、监控等领域具有实用价值。

参考文献

1谭国真,赵亦林.车辆定位与导航系统[M]北京:电子工业出版社,1999.

2刘光.地理信息系统二次开发教程(组件篇)[M].北京:清华大学出版社,2003.

3吴信才.地理信息系统的设计与实现[M]北京:电子下业出版社,2002.

监控系统设计论文第4篇

1.1远程监控需求分析

1)具有远程控制休眠、唤醒地震仪功能。地震仪在放炮之前唤醒,在停止施工期间休眠,地震仪可有选择的进行采集工作,这样大大节省了数据存储空间,降低了采集系统的功耗,延长了仪器的待机时间。

2)可查询如CF卡剩余空间,内置电池电量,位置经纬度,采集站状态等信息。对剩余空间、电池电量不足,采集站状态错误且不能远程修复的采集站及时安排工作人员更换。提高野外勘探作业的工作效率和灵活性,增强采集系统数据的可靠性。对读取回来的地震仪经纬度信息在上位机端进一步处理,可用于研发地震仪排列位置监测及远程防盗系统,保障野外勘探仪器的安全性。

3)远程控制地震仪自检功能,并能回收自检数据。地震仪系统自检内容包括检波器内阻、噪声、隔离度测试等,一次完整的自检过程通常需要2-5分钟,因此无缆存储式地震数据采集系统一般只在开机时自检一次,之后则无自检过程,因此采集站的部分工作状态,如检波器连接状态等仅仅反映了系统开机时的状态,不能作为现场质量监控的标准。法国UNITE系统由于没有远程监控功能,在自存储模式下通常是定时自检,自检时间为5分钟,在系统自检期间,地震仪停止其它一切工作,这样就减弱了地震仪野外勘探作业工作的灵活性。

4)有一定的远程修复及设置功能。如配置系统采样率、增益,系统复位等,出工前对地震仪的工作参数进行统一配置,布设到野外后,根据自检结果对有问题的地震仪进行参数设置和系统复位等操作,远程修复和解决问题,节省人力物力,提高无缆地震仪智能化控制程度。

1.2无线通信技术的选择

目前成熟的无线通信技术较多,如Wi-Fi、Zigbee、Bluetooth、GPRS、3G等,这些通信技术被广泛应用到生活及工业生产中,北斗短报文是近几年才发展起来的一种远距离通信技术,表1列出了应用以上几种通信技术典型模块的最大数据传输速率、传输距离、通信频带的参数值。

1.2.1Wi-Fi

Wi-Fi是IEEE802.11系列标准的统称,其传输速率快、安全性高,可集成到已有的宽带网络中,配合路由器组建有线、无线混合网络快捷方便。地震勘探仪器中Wi-Fi常用的组网模式有两种,即AP(无线访问接入点)模式和AdHoc(点对点)模式,在野外我们可以用架设AP基站的方式来拓扑无线局域网络的覆盖面积[3],而AP之间可以通过网桥设备连接,从而完成更大面积的网络覆盖范围,然而在实际勘探应用中AP基站和网桥设备架设困难,尤其应用于大道距的二维或者三维勘探工作中,需要更多的基站与网桥,较大的影响了施工进度。AdHoc是一种无中心、自组织、多跳移动通信网络,结点间通过分层的网络协议和分布式算法相互协调,实现了网络的自动组织和数据的相互交换,这种模式下地震仪可将其采集数据及工作状态信息接力式的传输回控制中心,美国WirelessSeismic公司的RT2无线遥测系统就是应用了这种多跳的数据传输方式,两个节点间通信距离的范围约为25~70m,然而这种工作模式会导致越靠近中央记录系统的节点积累的数据量越大,且在线性的网络拓扑结构中,数据传输的稳定性受通信距离与地形环境影响较大,数据通信的质量和速率难以得到有效的保证。

1.2.2GPRS、3G移动网络通信技术

移动网络通信技术已经成为人们工作生活中不可或缺的重要组成部分。该技术具有抗干扰能力强、传输速率高、网络覆盖面广、接入时间短、建设成本低等特点[10],在地震勘探中可被应用于移动网络信号覆盖范围内的地震台网远程监控,它提高了远程仪器维护的工作效率[11]。然而在地震勘探大道距(道距大于1km)地震深反射、折射探测作业中,由于其基站的信号覆盖范围有限,对于远程监控地震采集站工作存在一定的局限性。

1.2.3北斗短报文通信技术

北斗卫星作为北斗通信技术的中继,转发来自地面用户端的定位及通信请求,地面中心站控制端接收到请求后,解析消息后将解算出的位置信息传回用户端或将接收到的接收信息通过北斗卫星转发至另一地面用户端,达到卫星定位及通信的目的。北斗短报文通信技术在应用时具有信号覆盖范围广、安全、可靠性高和控制简单等特点,用户一次最大可以传送120个汉字的报文信息,而民用信息发送的频度通常为30-60s,接收信息则没有频度的要求,对于地震仪基本的控制命令收发及状态信息的传送,北斗短报文通信技术可以满足无缆地震仪基本状态监控数据传送的要求。

1.3系统结构设计

基于北斗的无缆存储式地震仪远程监控系统工作,系统由主控中心、北斗卫星、采集单元三部分组成,主控中心通过北斗指挥机完成对采集单元远程的控制及状态数据的回收工作,并对接收到的数据进行管理和存储。采集单元完成地震数据采集的同时,通过北斗通信模块可接收来自主控中心端的控制命令,并反馈执行结果信息。北斗卫星是控制命令及反馈信息传递的媒介。

2采集站单元设计

2.1硬件设计

地震检波器将地面振动信号转化为模拟电信号传输到FPGA数据采集单元,由FPGA完成数据的采集、缓存,并提供必要的测试、控制功能。AT91RM9200作为中央处理器,读取FPGA中存储的数据,并转存到CF存储卡中;通过SPI接口与Wi-Fi模块连接,实现近距离的无线数据传输功能;通过UART与GPS、北斗模块连接,为采集站提供高精度的授时、定位、远程通信功能,完成数据同步采集、位置信息获取、工作质量远程监控。采集站也可通过以太网接口与电脑终端连接,完成数据的回收及参数设置、检查工作。采集站在野外应用时采用太阳能和内置锂电池两种供电模式,电源智能管理系统会根据采集站当前工作的天气条件转换供电模式,保证仪器可靠、稳定的工作[12]。

2.2软件设计

采集单元的主控制器ARM9运行嵌入式Linux内核版本为2.6.31的操作系统,北斗通信进程完成对北斗模块接收信息的解析与执行,及执行结果的反馈。北斗短报文通信系统包括指挥机与用户机,指挥机是北斗短报文通信系统的中央控制器,它相当于一个服务器,负责接收来自多个用户机的报文,并可以控制多台用户机来完成相应的指令。用户机是北斗短报文通信系统的子节点,相当于一个客户端,负责将节点工作信息上传到指挥机,和接收来自指挥机的命令。北斗用户机在接收到指挥机传来的信息时,用户机会通过UART将信息内容上传给下位机系统,下位机会根据其数据传输的格式将信息进行解析,并根据信息包含的指令内容来执行相应的任务。

3上位机服务器软件设计及测试

主控中心由上位机、打印机、存储器、发电设备、北斗指挥机组成。上位机与北斗指挥机完成命令的选择与打包发送,及对采集站反馈信息的接收、显示、存储和打印处理。发电设备输出220V的交流电压,为上位机及其外设供电。此外上位机服务器软件通过对GoogleEarthAPI接口的调用,实现了对野外采集站排列位置的远程监测,为微动勘探实验中按两个嵌套式三角形方式排列的采集站传回的GPS位置信息在GoogleEarth中的显示。操作人员可根据地图显示软件中采集站的排列位置了解施工进度,获取采集站排列班报,完成布站人员调度等工作。为了了解远程监控系统的性能及数据传输丢包、误码情况,设计如下测试实验:将7台内置有北斗通信模块的采集站接好检波器放置在室外采集,由主控中心完成与各个采集站间的数据包收发,采用60s一次通讯频度,数据包长度为200字节,从500个样本数据中任选7个,分别用于七个站的通讯测试,主控中心将样本数据依次发给各个子站,并重复500次,子站收到数据包后向主控中心返回相同的样本数据。主控中心计算从开始发包到收包完成的时间间隔作为通信的延时,主控中心与采集站分别记录通信时丢包数,并根据与标准样本数据对比的结果记录错包数。

4结论

监控系统设计论文第5篇

系统的主控电路如图2所示,由单片机学习开发板中的最小系统电路来完成。

2电路

本系统的电路基于主控电路的配置,包括温度传感器DS18B20、nokia5110液晶显示屏、风扇(电动机驱动)、键盘、蜂鸣器、湿度传感器湿度传感器DHT11、可燃性气体浓度传感器MQ-2、加热器YF3030012160J等。其中风扇(电动机驱动)、键盘、蜂鸣器等器件开发板上自带,只需要配置剩余的器件即可。图3温度传感器模块原理图温度传感器模块原理图如图3所示,温度传感器的测温范围为-55℃-125℃,当室内温度高于设置值30℃时,系统将报警,同时单片机通过达林顿管,启动风扇,进行换气,降低室内温度,直到达到预期要求;当室内温度低于设置值(20℃)时,系统将报警,同时单片机通过继电器,控制12V直流电源,启动加热器加热,直到达到预期要求。加热器工作时的表面温度为160±10℃;加热器模块原理图如图4所示。湿度传感器模块原理图如图5所示,湿度传感器的测量范围20-90%,当室内气体湿度高于设置值(60%)时,单片机控制风扇的开启,进行换气,降低湿度,直到达到预期要求。可燃性气体浓度传感器模块原理图如图6所示,当室内可燃性气体浓度高于设置值(25%)时,系统将报警,同时,单片机将驱动风扇,进行换气,降低可燃性气体浓度。

3系统的实现

监控系统设计论文第6篇

关键词:单片机;逆变电源;锁相;抗干扰

引言

本监控系统是为铁路用4kVA/25Hz主从热备份逆变电源系统设计的。

4kVA/25Hz主从逆变电源是电气化铁路区段信号系统的关键设备,有两相输出:110V/1.6kVA局部电压(A相);220V/2.4kVA轨道电压(B相);两相均为25Hz,且要求A相恒超前B相90°。由于逆变器是给重要负载供电,且负载不允许断电,故采用双机热备份系统,一旦主机发生故障,要求在规定时间内实现切换,因此,备份逆变器一直处于开机状态。由于逆变器经过了整流,逆变两级能量变换,功率较大,且指标要求较高,必须要采用先进的控制技术;同时为了安全实现主从切换,也必须要有完善的监控系统来实现锁相,保证整机的安全。

1监控系统总体设计要求

根据实际情况,本系统主要完成以下功能:

1)主从切换功能主从控制之间实现准确无误的切换,具有自动和手动两种功能,保证切换时电压同频率,同相位,同幅值;

2)锁相功能主从机组局部电压同频同相,同一机组内A相恒超前B相90°;

3)完善的保护功能具有软起动功能,以避免启动瞬间电压过冲对逆变器及负载的冲击,以及输出过压、过流保护,频率、相位超差保护,桥臂直通保护,过热保护等;

4)显示功能实时显示运行参数及工作状态并具有声光报警功能,以提示值班人员及时排除故障;

5)通信功能具有主从机组之间通信,与监控中心(上位机)通信等功能;

6)抗干扰功能系统具有良好的抗干扰能力。

2系统硬件电路设计

2.1DS80C320单片机简介

DS80C320是DALLAS公司的高速低功耗8位单片机。它与80C31/80C32兼容,使用标准8051指令集。与普通单片机相比有以下新特点:

1)为P1口定义了第二功能,从而共有13个中断源(其中外部中断6个),3个16位定时/计数器,两个全双工硬串行口;

2)高速性能,4个时钟周期/机器周期,最高振荡频率可达33MHz,双数据指针DPTR;

3)内置可编程看门狗定时器,掉电复位电路;

4)提供DIP,PLCC和TQFP三种封装。

2.2基于DS80C320的监控系统硬件电路设计

按照上述系统设计要求,设计了如图1所示的监控系统。监控系统采用模块化的设计思想,分为微处理器及外设模块,模拟量采集模块,开关量采集模块,频率及相差测量模块,控制量输出模块,人机接口模块,同步信号模块以及通信模块。

1)微处理器及外设模块微处理器采用DS80C320,非常适合于监控。本系统充分利用前面已提及的特点,简化了硬件设计与编程,从而提高了整个系统的可靠性。根据系统需要扩展了一片8255,一片E2PROM和一片8254。

2)模拟量采集模块根据采集精度要求以及被采集量变化缓慢的特点,采用AD公司的高速12位逐次逼近式模数转换器AD574A,其内部集成有转换时钟,参考电压源和三态输出锁存器,转换时间25μs,并通过ADG508A扩展模拟量输入通道。

3)开关量采集模块首先经光耦进行隔离后,再通过与门送入单片机的外部中断口,同时通过8255送入单片机,采取先中断后查询的方式。

4)频率及相差测量模块信号先经过具有迟滞特性的过零比较器转换为方波,然后通过双四选一开关4052送入单片机,通过定时器T0来计算频率和相差。

5)控制量输出模块通过光耦控制输出,实现可靠隔离。

6)人机接口模块包括按键和显示部分。通过简单的按键选择,实现电流、电压、频率及相差的显示。显示部分采用8279驱动8位七段LED显示,同时通过发光二极管和蜂鸣器提示运行状态。

7)同步信号模块本模块用来实现锁相。单片机控制8254产生局部同步脉冲和轨道同步脉冲,同步脉冲用来复位正弦基准。通过软件控制同步信号的频率,可实现主从锁相和局部及轨道的相位跟踪。具体实现过程将在下文详述。

8)通信模块采用了RS232和RS485两种通信方式。利用串口0采用RS232实现与另一机组监控单元的双机通信,获取对方机组状态信息;利用串口1采用RS485标准接口实现与上位机的通信,完成传输数据和远程报警等功能。

3系统软件设计

3.1系统软件流程

主程序流程图如图2所示。系统上电复位后,首先对单片机,芯片及控制状态进行初始化;然后读取AC/DC模块的工作状态,若正常则启动DC/AC模块,否则转故障处理;开启DC/AC后,读入其工作状态并判断输出电压是否满足要求,有故障转故障处理,正常则开启故障中断;接下来进行主从机组判断和相位跟踪,实现主从相位同步和局部及轨道电压的锁相;只有在实现锁相后,才采用查询方式处理键盘及测量显示。在软件编制中,键盘中断是关闭的。实验证明,对人机交互通道采用这种查询处理方法,完全可以满足系统的实时要求。开关量的输入采取先产生中断,后查询的方法,保证了响应的实时性和逆变系统的安全性。

3.2系统采用的主要算法和技术

3.2.1交流采样算法

测量显示大信号的交流量时,通过互感器得到适合A/D转换的交流小信号,然后对小信号进行采样,最后对采样数据采用一定的算法,得到正确的显示值。均方根法是目前常用的算法,其基本思想是依据周期连续函数的有效值定义,将连续函数离散化,从而得出电压的表达式

式中:n为每个周期均匀采样的点数;

ui为第i点的电压采样值。

3.2.2数字滤波算法

A/D转换时,被采样的信号可能受到干扰,从采样数据列中提取逼近真值数据时采用的软件算法,称为数字滤波算法。目前常用的方法有程序判断滤波、中值滤波、算术平均滤波、加权平均滤波、滑动平均滤波等。根据本系统对采集精度有较高要求以及被采集的模拟量变化缓慢的特点,采用程序判断滤波法和算术平均滤波法相结合的滤波方法,即进行多周期采样,取其算术平均值作为有效采样值。每次采样后和上次有效采样值比较,如果变化幅度不超过一定幅值,采样有效;否则视为无效放弃。

3.2.3单片机锁相技术

本监控系统一个很重要的功能是实现相位同步,即保证主从机组的相位同步和机组内局部电压相位恒超前轨道电压相位90°。本系统锁相的基本原理是,对于频率相同而相位不同步的两路信号,比如A路和B路,若A路为基准,B路超前(滞后)一定的相位,可以通过适当降低(增大)B路信号的频率来实现相位调整进而锁相,最后再把B路频率置为原频率值。

本系统中,单片机控制8254产生25Hz同步脉冲,同步脉冲用来复位正弦基准,使基准正弦波重新从零值开始。基准正弦波与三角波比较产生SPWM波,经逆变得到与基准正弦同频的交流输出,因此,通过调整同步脉冲的频率可改变正弦基准的频率,进而可改变被调整输出电压的相位。要实现系统的锁相要求,需要从机组局部电压跟踪主机组的局部电压,各机组轨道电压跟踪本机组的局部电压。因此,要有主从局部锁相和局部轨道相位跟踪两个子程序。

锁相的流程图如图3及图4所示。首先由多路开关选择要锁相的两路信号,由单片机测量相位差,并对所得相位差数据进行必要的运算和处理后,判断有无超差。倘若相位超差,则根据超差范围确定同步脉冲的频率值。如果是主从局部锁相,则应同时改变从机组局部和轨道的同步脉冲;否则,若为局部、轨道相位跟踪,则只改变本机组轨道的同步脉冲。通过调整同步脉冲,可实现相位调整。实现锁相后,同步脉冲的频率置为25Hz返回。

4抗干扰措施

由于该监控系统工作于强电环境,很容易受到各种干扰的影响。干扰一旦串入系统,轻则会引起误报,严重时就会导致整个系统瘫痪,甚至造成重大事故。本系统从硬件和软件两方面采取了抗干扰措施,保证了监控系统的可靠运行。

4.1硬件抗干扰措施

1)光电隔离在输入和输出通道上采用光耦合器件进行信息传输,在电气上将单片机与各种传感器、开关、执行机构隔离开来,可以较好地防止串模干扰。

2)加去耦电路在电源进线端加去耦电容,削弱各类高频干扰。

3)合理布置地线系统中的数字地与模拟地分开,最后在一点相连,避免了数字信号对模拟信号的干扰。

4)数字信号采用负逻辑传输骚扰源作用于高阻线路时易形成较大干扰,而在数字信号系统中,输出低电平时内阻要小些,因此,定义低电平为有效(使能)信号,高电平为无效信号,可减少干扰引起的误动作,提高控制信号的可靠性。

4.2软件抗干扰措施

1)利用可编程硬逻辑看门狗将单片机从死循环和跑飞状态中拉出,使单片机复位。而DS80C320提供了内部可编程硬逻辑看门狗,不须外加电路,就能够实现可靠的超时复位。同时,DS80C320还为一些重要的看门狗控制位提供了访问保护,防止单片机失控后对这些重要的控制位进行非法操作,进一步保证了程序的安全性。

2)对于数字信号采集,利用干扰信号多呈毛刺状且作用时间短这一特点,多次重复采集,直到连续两次或两次以上采集结果完全一致才认为有效。数字信号输出时,重复输出同一个数据,其重复周期尽可能短,使外部设备对干扰信号来不及作出有效反应。

3)对模拟量的采样和处理,采用数字滤波技术。

4)采用指令冗余和软件陷阱,防止程序跑飞。

监控系统设计论文第7篇

系统由分布在育苗架中的多个传感器节点、数据采集单元、设备控制单元和存放在嵌入式ARM设备中的监控软件4部分组成,如图1所示。育苗架由钢制材料构成,共有4层。每一层上面都布有4个温度传感器和加热、加湿装置,苗架内布有1个湿度传感器。苗架工作时处于完全密封状态,苗体生长所需的温湿度环境均由外部智能控制。数据采集单元负责向传感器节点发送指令,进行温湿度数据采集,并通过处理、打包过程,将数据通过RS-485总线接口发送到嵌入式设备上的智能监控软件中,数据传输所使用的协议为Modbus[3]。智能监控软件收到采集单元发来的数据之后,进行解包、分析、处理等过程,然后显示到用户界面上,同时软件具有记录历史数据的功能。用户在监控软件上可以设定期望达到的温度、湿度值,软件会发送包含这些期望值的指令给数据采集单元。数据采集单元收到这些指令之后,会判断当前是否符合条件。当条件符合后,数据处理单元会自动调用设备控制单元对育苗架进行相应的加热、加湿操作[4]。

2系统硬件设计

2.1嵌入式平台

嵌入式平台CPU型号为博通公司的BCM2835,采用ARM11微架构,主频为700MHz,同时平台配有512MBDDRRAM和8GBNandFlash,提供高效、稳定的运行和存储环境。平台配有HDMI高清视频接口,用来外接显示器,可以直观地显示系统操作界面。配有RJ-45网络接口和多个USB接口,用来连接网络、键盘鼠标和USB转RS-285数据线。平台搭载开源的嵌入式Linux操作系统,该操作系统稳定性好并且具有丰富的扩展功能,适合作为嵌入式监控平台[5]。

2.2传感器节点和设备控制单元

温度传感器采用Pt100。Pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号(4~20mA)的仪表,其本质是铂热电阻,阻值会随着温度的变化而改变,主要用于温度参数的测量和控制,测量量程为-200℃~+200℃,精度为0.1℃。湿度传感器采用NWSF-1AT,它是一种集传感、变送为一体的湿度传感器,适于室内环境的湿度测量。其测量量程为0~100%RH,精度为±5%RH,响应时间小于15s,是一种两线制的标准化输出信号(4~20mA)传感器。设备控制单元采用继电器控制。加热装置分布在育苗架的每一层,且可以独立工作,加热装置的核心是碳纤维加热毯,它使用碳纤维作为加热介质。碳纤维(carbonfiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的导热性能好,热膨胀系数小且具有各向异性。因此,碳纤维加热毯的功耗低、加热速度快,适合在农业上使用。加湿装置分布在育苗架的每一层,核心是双向高压喷头,可以均匀覆盖待加湿区域。本单元既可以接收由数据采集单元发来的指令,打开或者关闭加热、加湿装置;也可以设定一个阈值,自动地打开或者关闭加热、加湿装置。

3系统软件设计

系统软件设计由通信协议和上位机程序两部分组成。其中,通信协议采用Modbus、上位机程序使用Qt开发。

3.1通信协议

Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一种控制器请求访问其它设备的过程,制定了消息域格局和内容的公共格式。Modbus协议规定,在进行通信时,每个控制器需要设定唯一的设备地址,交换消息时根据设备地址进行响应,确保一条指令对应的设备是唯一的。Modbus协议查询指令数据示例如表1所示。其中,数据均为16进制,CRC错误校验位高位在前、低位在后。

3.2上位机程序

本系统上位机程序采用Qt开发,它是一款开源的界面设计库,使用C++类编写。其最大特点是跨平台,支持市面上所有主流平台,如Windows、桌面Linux、嵌入式Linux、MacOS、Android等。用户只需要编写一次代码,就可以在不同平台上进行编译、运行,可移植性较好。在正式编写Qt代码之前,需要在目标平台上搭建相应的开发环境,即本系统需要搭建适用于嵌入式Linux的Qt开发环境,Qt版本为4.8.5。首先将Qt源代码解压,在其根目录下执行./configure命令,对源码进行配置;然后执行make和makeinstall命令编译源码,并安装编译好的库文件到lib文件夹下;最后将这些库文件拷贝到嵌入式平台根目录下的lib文件夹中,并为其增加export变量路径:exportQTDIR=/usr/local/Trolltech/Qt-4.8.2exportPATH=/usr/local/Trolltech/Qt-4.8.2/bin:$PATHexportMANPATH=$QTDIR/man:$MANPATHexportLD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH至此,Qt环境搭建完毕。嵌入式平台用户界面如图2所示。上位机程序由查询指令发送模块、查询指令接受模块、控制指令发送模块、历史记录生成模块和通信控制模块组成。对各模块进行独立开发,最后在主界面中采用多线程机制进行结合,将各模块分别放置在单独线程中执行,既确保了各模块的独立性,又提高了程序的安全性和总体的运行效率。系统总体的软件流程如图3所示。系统启动后,会首先初始化硬件(内部寄存器、串口等)和传感器节点[6]。采集单元通过RS-485串行通信口与嵌入式设备进行通信。本系统可以选择手动查询模式或自动查询模式。安装在ARM设备上的上位机程序能够给数据采集单元发送查询或控制指令。当发送查询指令之后,采集单元会根据指令中包含的设备地址信息,匹配相应的传感器节点,并采集数据;将采集到的数据进行压缩、打包,然后传回上位机程序;上位机程序接收到数据之后,进行分析、解包、处理,最终显示到用户界面上,同时自动存储历史数据。当上位机发送控制指令之后,采集单元会把待设定的参数传递给控制单元,使其可以根据需求对加热、加湿装置进行控制[7]。

4实验及结果

为了验证系统的性能,将育苗架放置在室内环境中,分多个时间点记录育苗架周边环境的温度、湿度数据。给育苗架分别设定一个温度目标值和湿度目标值,每10min记录一次育苗架内的温湿度情况。为保证精度,周边环境的温湿度数据由小型气象站采集。育苗架内部的传感器放置如下:每层分成4个区域,每个区域的中心放置1个温度传感器,传感器距离每层顶部距离为20cm,用来采集温度数据;在育苗架内同时放置1个湿度传感器,用来采集湿度数据。育苗架内部的加热、加湿装置放置如下:加热装置铺在每层底部,使该层各部分可以均匀受热,且加热装置下再铺一层隔热层,避免每层热量相互串扰;加湿装置安装在每层的顶部,距离顶部5cm,采用360°双向设计,保证可以对该层各部分进行加湿。数据采集单元放置在苗架的外面,并且对苗架内的连线进行密封处理[8]。

4.1温度控制实验

将苗架温度目标值设定为25℃,湿度不设定,连续采集6h并记录数据,作出变化曲线图。图4为育苗架内温度曲线图,图中虚线为苗架外环境温度变化曲线。

4.2湿度控制实验

将苗架湿度目标值设定为40%Rh,温度不设定,连续采集6h并记录数据,做出变化曲线图。图5为湿度曲线图,图中虚线为苗架外湿度变化曲线。由两次实验可知,在系统刚开始工作的时候,不论苗架内外的温度还是湿度情况基本一致,各点的温度情况处于混沌状态,苗架内的温度和湿度都不等于设定值。随着时间的推移,苗架内各点的温度均趋向于设定值(25℃),湿度能维持在设定值(40%Rh)左右,且可以稳定保持。

5结论