欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

处理工艺论文(合集7篇)

时间:2022-11-03 10:45:45
处理工艺论文

处理工艺论文第1篇

Al-Cu-Mg-Ag合金的固溶热处理就是在较高温度下使合金元素充分溶解到α-Al基体中,然后快速冷却以得到过饱和固溶体,使其在后续的时效热处理中析出尽可能多的强化相(Ω、θ''''相),以提高合金的力学性能,是时效热处理的前期准备过程[7]。影响固溶热处理的主要工艺参数有:固溶温度、固溶时间和冷却速度。固溶温度越高,Cu、Mg、Ag等合金元素在合金中的固溶度越高,合金元素的扩散速度越快,固溶时间也就越短。但是当固溶温度过高时会使合金中的低溶点相发生溶化,即出现过热现象;同时弥散分布的金属间化合物也会发生长大粗化,导致合金性能降低。因此,固溶温度对Al-Cu-Mg-Ag合金性能的影响比较敏感[15],而固溶时间对Al-Cu-Mg-Ag合金的影响较小,为了阻止强化相的析出趋势,固溶后冷却速率需要足够大,一般选择室温水淬。表2是当前典型的几种Al-Cu-Mg-Ag合金的固溶热处理工艺。从表2发现,含Ag的Al-Cu-Mg系铝合金,由于其合金化元素种类多,含量高(尤其是Cu的含量较高),且Cu原子的扩散速率又比较低,应选择较高的固溶温度;但该合金的过烧敏感性又很高,因此一般选择的固溶温度在510~530℃范围内,稍微低于过热温度;保温时间通常在2h左右,对于大块材料(厚的板材,粗的棒)可以适当延长保温时间。

2时效热处理

Al-Cu-Mg-Ag合金经固溶热处理后形成过饱和固溶体,在人工时效过程中,微量Ag元素降低合金基体{111}A1面的层错能,促使Ag-Mg团簇和{111}A1面上聚集的Cu原子聚集(Cu原子在{111}A1面上发生偏聚,形成{111}A1面GP区),成为Ω相的形核质点;同时过饱和固溶体中Cu原子易直接从{100}Al面上脱溶析出(形成Cu原子团的偏聚区,即{100}A1面GP区);随时效时间的延长,它们分别脱溶析出强化相Ω相和θ''''相;θ''''相和Ω相是亚稳相,在较高温度下最终转化为平衡相θ相。即Al-Cu-Mg-Ag合金的脱溶序列为:SSS(过饱和固溶体)Ag-Mg团簇Ω相θ相、SSSCu-Cu团簇GP区θ''''相θ相。时效过程中Ω相和θ''''相的密度和形态决定时效的效果,进而影响合金的性能。因此,可以通过改变时效工艺来改善Al-Cu-Mg-Ag合金的性能,常用的时效工艺有单级时效、多级断续时效、形变时效、应力时效等。

2.1单级时效单级时效是2000系铝合金常用的热处理制度,同时也是其它时效工艺的基础。Al-Cu-Mg-Ag合金的单级时效分为自然时效和人工时效。自然时效由于抑制了强化相Ω相的析出,合金的强度较低。单级人工时效促进了强化相Ω和θ''''相的析出,合金的强度较高。由于Al-Cu-Mg-Ag合金在较高的温度(165℃以上)时效时才会析出Ω相,且Ω相的尺寸随时效温度的升高而增加,过高的时效温度(250℃以上)更容易使Ω相和θ''''相粗化或者转化为θ相,对晶界也有所削弱,从而降低合金性能[21-22]。因此,Al-Cu-Mg-Ag合金单级人工时效,一般选择时效温度为160~200℃。但是高温短时间人工时效能够极大地提高合金的高温持久性能,对Al-5.06Cu-0.44Mg-0.3Mn-0.55Ag-0.17Zr合金[23]在高温(250℃)时效后在200℃/300MPa下进行持久试验,其峰值时效状态的持久寿命长达31h;而对应的165℃时效后的持久寿命小于16h。Al-Cu-Mg-Ag合金有很高的时效响应速度,且在相同条件下时效温度越高达到峰时效的时间也越短[23-25],文献[23]中的合金在250℃下时效5min后就达到了峰值强度(σb=458MPa)。Al-Cu-Mg-Ag合金时效过程为单峰时效过程,即经过欠时效、峰时效和过时效阶段。欠时效态合金虽然析出相的密度没有达到最大值,但是析出相更加细小,使其有较高的强度,同时在高温使用时会发生二次强化相的析出,使其有很好的抗蠕变性和耐高温性[26]。峰时效态合金(达到峰时效的时间一般为4~10h)组织由大量Ω相和少量的θ''''相组成,析出相密度达到最大值,常温力学性能最好[4,27],对于Al-4.83Cu-0.45Mg-0.50Ag-0.29Mn-0.12Zr合金[4]在165℃下时效6h后达到峰值强度σb=472MPa,σ0.2=455MPa,对应的伸长率为12.68%。过时效态合金,随着时效时间的延长合金的强化相逐渐粗化,强度有所下降。

2.2多级断续时效多级断续时效是Lumley等在研究Al-Cu-Mg-Ag合金的抗蠕变性时发现的,根据这一现象CSIRO公司发明了T6I6和T6I4等多级时效热处理技术;与单级人工时效(T6态)相比,除保留与T6态相同的性能外,由于θ''''相的析出密度得到提高,使Al-Cu-Mg-Ag合金的塑性得到提高[28-31]。Al-Cu-Mg-Ag合金的多级断续时效一般是三级时效。在第一级的高温欠时效(一般时效温度为160℃或185℃,时效时间≤2h)过程中,析出大量的Ω相和少量θ''''相,并随着时效时间的延长,析出相不断长大(同单级欠时效)。在第二级的低温时效(时效温度为室温或65℃)过程中,Ω相的析出受到抑制,而θ''''相继续析出。在第三级的较高温再时效(时效温度为150℃或165℃)过程中,Ω相和θ''''相同时析出长大,Ω相为主要强化相,θ''''相相对较少[28,31-33]。最后合金组织中析出大量的Ω相和θ''''相,使合金具有很好的强度和塑性。有时为了简化试验流程省去第二级的低温时效,合金也能获得较好的性能[28]。张坤等[29]对高纯Al-4.61Cu-0.47Mg-0.44Ag合金采用二级时效工艺,第一级采用185℃×30min预时效后水淬,然后进行150℃×25h较高温时效,该工艺明显缩短热处理周期,同时合金强度与T6态相当(σ0.2=420MPa左右),伸长率却由8%升高到14%,使塑性得到显著改善。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[28,30]在185℃下欠时效2h后,当在较低的温度(65℃)下进行二次时效时,合金的硬度为151HV比T6态(185℃×4h)低10HV,伸长率为14%比T6态高1.4%;当在较高的温度(150℃)下进行二次时效时,合金的硬度为165HV、伸长率为13.8%,都高于T6态。对于Al-(4.8~4.9)Cu-(0.43~0.47)Mg-(0.30~0.39)Ag-0.15Zr合金[31-32],先在160℃时效2h,然后在65℃下时效67~240h,二级低温时效对合金的硬度几乎没有影响,然后三级时效在160℃时效24h左右达到峰值硬度160HV左右,合金的性能和T6态(160℃×12h)相差不多。

2.3形变时效形变时效热处理将加工硬化和时效析出强化相结合以改善合金的性能。在固溶后时效前对合金进行预变形,增加合金组织中的位错密度,利用沉淀相在位错线上优先形核,增加沉淀相的形核率和析出相的密度,降低时效析出相的尺寸,改变合金在后续时效过程中的脱溶序列,进而改变合金的微观组织结构[34-35]。在传统的Al-Cu-Mg系铝合金的预变形时效过程中,由于预变形引入大量位错亚结构促进了非均匀形核的强化相θ''''的析出,使合金的强度得到显著提高[36]。但是形变时效(一般选择的预变形量为2%~6%)对Al-Cu-Mg-Ag合金性能的影响则较为复杂,这可能是由于合金成分、时效温度和时间以及预变形量的不同,导致析出的强化相θ和Ω相的密度和尺寸不同,进而影响合金的性能。陈瑞强等[37]发现Al-5.12Cu-0.40Mg-0.89Ag-0.32Mn-0.17Zr合金的最佳形变热处理工艺为4%预拉伸、165℃×10h人工时效,该合金可获得室温σb≥473MPa,σ0.2≥428MPa,δ≥11.3%的满意综合性能;文献[38-39]也认为,时效前的预拉伸能提高合金的性能。但肖代红等[40]对Al-5.3Cu-0.8Mg-0.3Ag合金的预拉伸量为0、2.5%、5%的3种状态的合金在185℃经峰时效处理后,其室温σb分别为530、510、475MPa,σ0.2分别为477、456、410MPa,δ分别为10.5%,11.0%、12.3%,这显示时效前预拉伸降低了合金的强度提高了合金的塑性。而李周兵等[41]对Al-5.20Cu-0.40Mg-1.02Ag-0.2Mn-0.17Zr合金进行0、4%预拉伸后,再在165℃下进行时效,此时σb分别为492MPa、508MPa,σ0.2分别为455MPa、468MPa,δ分别为15.2%、12.9%,此结论与文献[40]的相反,即时效前预拉伸提高了合金的强度降低了合金的塑性。一般认为时效前预拉伸(或冷加工)不改变析出相的种类,由于增加了位错密度,抑制了{111}Al面Ω相的析出,但是却细化了Ω相的尺寸;位错和晶界缺陷为θ''''相的异相形核提供了形核质点,从而促进了{100}Al面θ''''相的析出[37,41-45]。由于高温强化相Ω相体积分数的减少,峰时效状态的合金的耐热性能降低;同时总体上造成时效态合金的时效过程延缓,硬化水平降低,峰时效时间延长[40,42]。

2.4应力时效应力时效是指在时效过程中引入一个小于屈服极限的应力,在温度和应力的耦合作用下,使析出的强化相发生显著变化。时效过程中施加外应力不会改变合金再结晶晶粒的形貌,但对Al-Cu-Mg-Ag合金组织中强化相的析出序列、数量、大小和分布等都有显著影响[46-47]。应力时效延缓了Al-Cu-Mg-Ag合金中强化相θ''''和Ω的析出[48]。这可能是由于在应力时效初期(约2min)产生大量位错阻碍了溶质原子的扩散,延缓了Cu-Cu团簇或Ag-Mg共聚团簇的形成,从而延缓了强化相θ''''和Ω的析出,最终使峰时效时间延长。应力时效能够促进θ''''相的析出,而抑制Ω相的析出,使合金的峰值硬度降低[49]。这可能是因为外加应力的存在,产生了大量的位错,为θ''''相的异相形核提供了有利的位置,但位错的存在不利于溶质原子的扩散,阻碍了Mg-Ag共聚原子团簇的形成,从而延缓了合金中强化相Ω的析出,最终使合金的硬度下降。在应力时效作用下,Al-Cu-Mg-Ag合金的强化相θ''''相和Ω相均沿某一方向(外加拉应力的方向[50])呈择优取向析出,即产生应力位向效应。研究发现,外加应力对Al-Cu-Mg-Ag合金时效动力学过程的影响主要是在相的成核阶段,且存在一个调整微观结构演化的临界应力值,当超过临界值时易在惯析面成核,即在惯析面析出沉淀相;在160℃下,对θ''''相临界应力为16~19MPa,对于Ω相临界应力为120~140MPa[50]。根据扩散理论结合弹性理论[49],外应力会使得合金中溶质原子沿不同的方向扩散速度不同,使时效初期共格片状相出现择优取向效应,从而产生位向效应。Eshelby弹性夹杂物理论[46,51]认为,外加应力与不同变体相互作用引起的系统弹性性能变化的不同将导致析出相择优取向析出,而且析出相在长大过程中错配应变的大小及符号的变化将会产生完全相异的结果。通过塑性和弹性夹杂模型[47],可以定性预测分布在{100}面和{111}面的相的各向异性。外加应力时效(一般选择200MPa)会降低Al-Cu-Mg-Ag合金的时效硬化速率,延长欠时效的时间,减小峰值硬度,同时也提供了一种控制高强铝合金(屈服强度)各向异性的方式[47]。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[48-49]在170℃下进行无外加应力时效和200MPa外加应力时效时发现,在没有外加应力时效时,合金硬度在12h后就达到峰值(161.5HV)然后逐渐下降;应力时效的硬度在16h后才达到峰值(157.9HV),且随时效时间的延长仍保持较高的硬度。

3结语

处理工艺论文第2篇

各元素在合金中的作用如下:(1)Si和Mg的影响Si和Mg是该铝型材合金的主要组成元素,其结合形成了产品的主要强化相Mg2Si。但Si和Mg比例不同,形成强化相的数量和分布有差别,这直接影响到产品日处理后的力学性能。研究表明[3],对于Al-Mg-Si三元合金,当其处于ɑ(Al)-Mg2Si-Si三相区间内时,具有最大的抗拉强度。对于Al-Mg-Si三元合金,Mg2Si含量增加,会提高其抗拉强度,但会降低其伸长率;当Mg2Si含量为定值时,Si含量增加,抗拉强度增加,伸长率变化不大,但当Si出现过剩相时,合金的耐蚀性随过剩相含量的增加而降低,脆性增大;当Si含量为定值时,增加Mg含量,也会提高抗拉强度。合金位于ɑ(Al)-Mg2Si两相区或Al单相区(Mg2Si固溶于基体),具有最佳的耐蚀性能。公司根据以上机理,确定了内控标准。(2)Mn的影响Mn亦可强化基体,提高产品的韧性和耐蚀性,但Mn含量过多时,会减少Si的强化效果,形成晶内偏析,产生粗精组织,降低铸锭的挤压性能,因此,要适当控合金中Mn含量。(3)Ti的影响Ti是晶粒细化剂,可以避免铸造时形成热裂纹,减少铸锭中的柱状晶组织,细化铸锭的晶粒度,减少挤压产品的各向异性。(4)Zn和Cu的影响少量的Zn和Cu可以提高铝型材的强度,耐蚀性变化不大,但添加量过多时会降低铝型材的抗腐蚀性。同时,少量的Cu可以减少人工时效后机械性能的下降。(5)Fe的影响Fe是铝型材中的杂质元素,会损害型材的综合性能,应尽量减少其含量。综上所述:在该产品用铝合金成分配比中,镁硅比应保持在1.18左右,此时铝型材内强化相绝大部分是Mg2Si,含有少量的富余Si,Si含量亦不过剩,此时强度较高,塑性和抗蚀性未降低;由于没有过剩的硅含量,Mn含量可以处于国标的下限。Fe含量应根据原铝锭冶炼水平,越低越好。

2热处理工艺控制

2.1铝棒均质热处理工艺控制在铝棒铸造成型过程中,受合金成分、浓度梯度、温度梯度、冷却强度等因素的影响,铝棒不可避免的会出现树枝晶、蔷薇晶、带状组织、偏析、非平衡相、铸造应力等不希望得到组织或状态,为了在挤压前消除这些缺陷,优化铸棒组织,需要对铝合金棒进行均质处理。均质处理时一是要考虑铝棒不能过烧,出现二次共晶;二是要使粗大的针状、带状和非平衡相充分溶解。以XX公司35吨均质炉,装入直径292mm铝棒为例,考虑到热电偶误差,保温温度应控制在570±5℃,保温6h为宜,低于560℃,可能出现组织不均匀区域(低倍组织),挤压型材力学性能较低;高于585℃,将会使晶界粗化,引起过烧,严重时形成难熔质点。保温时间应在5.5~6.5h之间,过高和过低都影响铝型材力学性能。以保温温度570℃,保温6h为参照,挤压工艺相同的情况下,当保温温度延长至7.5h时,抗拉强度下降约11%。冷却时,采取风冷+水冷分级的冷却方式,一方面使冷却介质均匀分布,一方面不至于冷却速度过慢或扩快,影响均质效果。

2.2加热固溶热处理工艺控制研究表明[4],模具出口处型材温度受铝棒加热温度、挤压速度和其它因素多重影响,其中铝棒加热温度影响强度约44%,挤压速度影响强度约32%。对于本文研究的该型材产品,由于合金为6082合金,本身变形抗力较大,同时型材截面复杂,幅面宽,因此,适宜较高的铝棒加热温度,低的挤压速度。对铝棒加热的控制主要是加热温度和保温时间,对于加热温度控制,主要考虑因素是型材出口温度(固溶温度)和变形抗力,铝棒加热温度过低,将造成变形抗力过大,出现模具崩裂或走水;即使挤出型材,型材出口温度较低,型材性能较差。考虑到铝棒从铝棒炉出来到进入挤压机有一定的时间间隙,铝棒加热温度应适当提高。对于铝棒保温时间控制,主要考虑析出物溶解程度和铝棒温度均匀性,对于长棒炉,通过改善加热方式和内部热循环方式,尽可能提高炉内温度均匀性。对生产该型材的铝棒,保温时间应控制在3分钟以上,能够保证析出相的充分溶解,如果铝棒进入加热炉前长时间放置,保温时间应延长。同时,实践证明,保温时间继续延长,对挤出型材性能影响不大。当生产铝型材使用在线淬火方式时,型材出口温度即为固溶温度。固溶温度与铝棒加热温度直接相关。对于生产该型材的6082合金,理论上,固溶温度越高,越有利于强化相的彻底固溶。由上述可知,其它挤压工艺相同的情况下,铝棒加热温度直接决定固溶温度,因此铝棒温加热温度越高,固溶的越好,但固溶温度要低于合金最低熔点,防止合金过烧。生产实践表明,当固溶温度处于520-545℃时,型材具有较高的性能;此时,采用某挤压工艺时,铝棒加热温度应控制在485~510℃。

2.3淬火工艺控制由于生产本文所述型材产品使用的是6082铝合金,该合金的淬火敏感性比6061、6063等牌号合金要高[2],因此,淬火强度要高,否则,将影响产品强度和时效效果。在曾经使用过的水淬、强风+雾、强风等淬火方式中,水淬冷却强度最大,淬火后硬度高,但淬火后由于型材厚度不均,容易出现产品的翘曲和变形,造成废品。强风+雾的淬火方式亦能达到产品性能要求,但对光身料产品,气雾容易在产品形成水渍,增大后期处理难度。Xx公司通过改变出风口位置,改善气体质量和温度,可以使产品强度和硬度等性能指标达到要求。在淬火工艺控制过程中,该型材的淬火冷却速度要保证达到300℃以上。

2.4时效工艺控制经过固溶淬火后的铝型材得到一种不稳定的固溶体,此时其力学性能并不能达到最大;同时,由于该固溶体处于过饱和状态,又有较大的析出倾向,如果不对其进行人工时效处理,析出相将在晶界处聚集,出现晶间腐蚀或应力腐蚀。在实际生产过程中,由于可能需要整形等工序,人工时效前产品会在自然状态放置一段时间,相当于一个自然时效过程。生产实践显示,自然状态放置时间应尽量避免在5~7h之间,在此时间区间内,相同人工时效工艺下,力学性能偏低。在人工时效工艺参数优化过程中,当时效温度为175℃吴宗闯,等:集装箱铝型材生产过程中热处理工艺控制初探•89•时,保温6.5h,产品性能最优;但延长保温时间,产品强度、硬度等力学性能变化不大,保温时间延长至15h,产品性能略有降低,强度降低小于3%。但保温时间低于5.5h,力学性能下降明显。考虑企业成本控制因素,保温时间控制6~7h最佳。

3结束语

处理工艺论文第3篇

在实际热处理中,较多的是采用连续冷却热处理。为了对在连续冷却条件下过冷奥氏体的转变进行定性分析,可以将铸铁的冷却曲线绘制到C曲线上。如图4所示,当冷却速度为V1时,冷却曲线与C曲线有b1和a1两个交点,分别表示珠光体转变结束和开始。将冷却速度提高到V2,转变温度降低,转变开始和结束时间都缩短。如果将冷却速度提高到临界冷却速度V''''c以上,则冷却曲线与转变终了线不相交,这说明一部分奥氏体转变为珠光体,而其余部分被过冷到Ms点以下转变为马氏体。虽然应用C曲线可以定性地分析过冷奥氏体连续冷却转变,但是由于连续冷却时奥氏体转变的孕育期与等温转变有所不同,上述分析在数值上存在着一定的偏差。因此,在分析过冷奥氏体连续冷却时比较多的是采用过冷奥氏体的连续冷却转变曲线(CCT曲线)。图5是共析成分奥氏体连续冷却转变曲线,为便于对比,图中还画出了C曲线。与其C曲线相比,连续冷却时转变开始时间和开始温度降低。图中CC''''线为转变中止线,表示冷却曲线与此线相交时转变并未完成,但奥氏体分解停止,剩余部分被冷却到更低的温度下转变为马氏体。许多因素都会影响奥氏体连续冷却转变曲线,如奥氏体化温度、化学成分、加热速度。因此,实际铸铁的连续冷却转变曲线与图5有比较大的出入。图6是一种球墨连续冷却转变曲线,冷却曲线下面的数据为硬度(HV10)。

铸铁的正火处理主要是为了增强其强度和耐磨性,主要用于灰铸铁、球墨铸铁和蠕墨铸铁。下面重点探讨灰铸铁、球墨铸铁的正火处理。(1)灰口铸铁的正火工艺灰口铸铁在提高加热温度后,可使奥氏体碳含量增加,从而使冷却后珠光体量增加,具体的加热温度根据灰口铸铁共晶渗碳体量不同而有所不同,当共晶渗碳体较多时,温度为900~950℃;当较少时,温度为850~900℃。保温时间一般为1~3小时。保温后采用冷却,这样可以使珠光体含量增加,冷却方式可采用喷雾冷却、风冷或空气冷却。(2)球墨铸铁的正火处理球墨铸铁的正火处理主要分四种:高温奥氏体化正火和两阶段正火所得到的基体组织都为少量铁素体(牛眼状)和少量铁素体;部分奥氏体化正火和高温不保温正火所得到的基体组织都为铁素体(破碎状)和珠光体。这四种球墨铸铁正火处理的目的和处理规范,如图7所示。

淬火是为了提高铸件的各种性能,如提高其耐磨性、硬度等。而回火是为了降低淬火中产生的应力,是一种后处理方法。(1)抗磨白口铸铁的淬火及回火工艺以不同牌号的抗磨白口铸铁为例。KmT-BCr2Mo1Cu1抗磨白口铸铁,转化退火工艺为:940~960℃保温1~6h,缓冷至760~780℃保温4~6h,缓冷至600℃以下出炉空冷,淬火工艺:960~1000℃保温1~6h,出炉空冷;回火工艺为:200~300℃保温4~6h,出炉空冷;KmTBCr15Mo2-DT抗磨白口铸铁,转化退火工艺:920~960℃保温1~8h,缓冷至700~750℃保温4~8h,缓冷至600℃以下出炉空冷,淬火工艺:920~1000℃保温2~6h,出炉空冷,回火工艺:200~300℃保温2~8h,出炉空冷;KmT-BCr20Mo2Cu1抗磨白口铸铁,转化退火工艺:920~960℃保温1~8h,缓冷至700~750℃保温4~10h,缓冷至600℃以下出炉空冷,淬火工艺:960~1020℃保温2~6h,出炉空冷,回火工艺:200~300℃保温2~8h,出炉空冷。(2)球墨铸铁的淬火及回火工艺球墨铸铁的淬火分为部分及完全奥氏体化后淬火两种。部分奥氏体化后淬火:加热到共析转变温度范围内(即加热时共析转变的上、下限之间),在淬火后为马氏体和少量分散分布的铁素体,再回火。270~350HB,aK20~40J/cm2;完全奥氏体化后淬火:一般加热到Ac1(加热时共析转变温度)上限以上30~50℃,普通球墨铸铁850~880℃,淬火后为马氏体组织,再回火。HRC>50,aK10~20J/cm2。球墨铸铁的回火分为以下三种:低温回火(140~250℃):马氏体逐渐分解,析出碳化物微粒,形成含碳量比淬火马氏体少的回火马氏体。最终组织为球墨、残余奥氏体和细针状回火马氏体;中温回火(350~500℃):马氏体分解终了,形成一种混合组织,又称屈氏体,为细小弥散渗碳体质点和铁素体的混合物;高温回火(500~600℃,一般550~600℃):马氏体析出的渗碳体显著地聚集长大,称为索氏体或回火索氏体。(3)等温淬火等温淬火可以最大限度地发挥材料潜力,使其具有较高的韧性、硬度、塑性和强度。等温淬火在白口铸铁生产过程中,可用于多种铸件的热处理,如衬板、犁铧、抛丸机叶片等。白口铸铁等温淬火的工艺:先将其在900℃奥氏体化,然后在等温转变温度下等温1~1.5小时后空冷。等温淬火在灰铸铁、蠕墨铸铁及球墨铸铁生产过程中主要是来获得残余奥氏体基体组织和贝氏体。要掌握好等温淬火时间,时间过短会使转化的贝氏体不足;时间过长会对材料的韧性产生影响。灰铸铁、蠕墨铸铁、球墨铸铁等温淬火工艺是将铸铁加热到奥氏体化温度,保温后进行等温淬火。等温淬火温度要根据过冷奥氏体等温转变动力学曲线确定,提高奥氏体化温度,有利于形成上贝氏体组织,增加奥氏体化保温时间,可以提高材料的韧性。

总而言之,在改变基体组织时,必须严格按照有关理论知识和相关工艺,控制好正火、淬火和回火才能够有效增强基体组织的强度和耐磨性,提高铸件的各种性能(耐磨性、硬度等)。由此可知,改变基体组织热处理是铸铁热处理主要方法之一。

本文作者:王群陈志坚房应荣工作单位:科美(杭州)机械有限公司

处理工艺论文第4篇

关键词:乡镇污水;工艺设计;现状

1污水处理厂对乡镇污水的处理工艺流程

污水处理厂对城镇生活污水采取的是分级处理方式。一级处理是对污水进行最基本的初步处理,主要是通过过滤、沉淀等比较普遍的方式除去污水中的悬浮颗粒以及胶状物质,并初步调节生活污水的pH值,城市生活污水经过一级初步处理仍然达不到国家污水的排放标准,需要进行后续的二级处理。采用生物处理方法对城镇污水进行二级处理,目的是除去生活污水中溶解有机物,还可以将一级处理中过滤干净的悬浮颗粒和胶状物一并分解除去。城镇生活污水经过二级处理后基本可以达到国家污染物排放标准。但为了使污水得到进一步的净化和处理,降低污水对人体和生态环境造成的损害与破坏,需要进行城镇生活污水的三级处理。三级处理是对经过二级处理后的污水的再净化,该过程会发生一些物理反应、化学反应以及生物反应,最终达到除去溶解在污水中的有机物、不容易进行生物降解的有机物、矿物质、氮磷化合物、病原体以及其他类物质。城镇生活污水经过污水处理厂的三级处理后就可以达到工业用水的基本要求,如果处理过程比较严格,就会获得更好的处理效果,理想状况下亦可当作生活用水供城镇居民使用。

2我国主要的乡镇污水处理工艺

2.1淹没式生物膜工艺

目前,淹没式生物膜工艺被广泛应用于城镇生活污水的处理过程中,处理效果较为明显。淹没式生物膜工艺中的生物载体主要是由具备弹性的生物环填料、球形悬浮状填料以及软性填料组成,曝气池中生物的存在状态有两种,分别是悬浮状态和固定状态,选用该种工艺进行城镇生活污水的处理需要进行后续的再次沉淀,目的是进行固液分离。该工艺的主要优点:(1)生物种类和生物量较多,对污水的处理能力较强,处理效果也较好;(2)对污水的水质和水量变化的适应性较强,工艺性能比较稳定,不易被破坏;(3)成本费用较低,操作简便,易于运行。综上所述,淹没式生物膜工艺具有低耗能、高效率、无二次污染的优点,是处理城镇生活污水的最佳选择。

2.2氧化塘处理工艺

氧化塘处理工艺也是当前用的较为广泛的一种城镇生活污水处理工艺,是利用水中天然存在的各种藻类植物和具有分解作用的微生物对城镇生活污水进行处理,发生一系列的需氧、厌氧生物反应的天然或人工建造的池塘。该工艺是通过天然的生物净化作用达到对生活污水进行处理的目的。该处理工艺的优点:氧化塘的修建是在现有河道的基础上进行,投资成本低,而且可以利用处理后的污水进行水生植物和生物的养殖,从而实现处理后城镇生活污水的再利用。不足之处:对城镇生活污水的处理效率较低、占据较大的空间面积,更严重的是该工艺的设计和操作一旦出现问题,很容易造成水体的二次污染,使水资源滋生大量的蚊虫等危害人体健康的生物。

3污水处理技术的发展重点

3.1高效率、低成本的污水处理技术

由于我国仍是发展中国家,经济发展尚不发达,我们现在的主要资金还是运用到了经济发展方面,在污水排放量一天天增加的同时,我们的污水处理技术却不能以相同的速度提高,尽管政府已把部分资金投入到污水处理技术方面,但是还相差甚远,先进的设备成本过高,迫使许多政府机构放弃投资。因此我们需要努力争取更大的支持、加大污水处理的投资,但也不能仅靠扩大投资来增加更多的污水处理,我们需要利用有限的投资提高污水处理的规模及标准,研究开发低成本、低投资、高效率的污水处理新技术和新设备,这将是我们未来发展的首要任务。

3.2大力发展污泥处理技术

在我们处理城市污水的同时,势必会产生许多的污泥,且污泥中含有的污染物浓度更高,所以处理好污泥也是我们处理污水的最重要的工作之一,可是怎样才能处理好污泥,这对我们发展中国家来说是一个很大的难题。我国的有关环保部门规定,因污泥量中含有大量的有毒有害物质,如果不处理就会对环境产生极大的影响,因此污泥必须进行妥善的处理。因城市污水产生的污泥含水率极高,所以在污水处理的过程中产生的污泥量也特别多,虽然我们不能阻止污泥的产生,可是我们可以让污泥量减少:一是我们可以从源头去减少污泥量的排放,这样在污泥处理中也会减少费用;二是对处理污泥量的力度提高,但是第二种方法是我们大多数人不能接受的,因为这样会使成本更高,所以我们都会选择简单、节省成本的第一种方法,这就需要我们去开发更为有效的技术,以解决污泥处理的问题。

4结语

我国乡镇污水的处理任重而道远,只有加大对污水处理的重视,才能保护生态环境,促进和谐社会的发展。随着经济发展的越来越快,我们可以使用的水资源也会越来越匮乏,而我国的污水处理技术水平非常有限,我们需要进一步去开发新的技术和新的设备,这样我们的生活环境才会改善,我们的生活质量才会提高,我们的社会经济才能源源不断地得到发展。

作者:马三贵 单位:河南恒安环保科技有限公司

参考文献:

处理工艺论文第5篇

作者简介:冉全(1978-),贵州人,东南大学在职硕士,主要从事环境方面的教学工作。

太湖位于长江三角洲南缘,湖水面积2338m2,是我国第三大淡水湖泊,地跨苏、浙、皖、沪三省一市,流域面积为36500km2。随着长三角地区经济的高速发展,太湖流域的水体富营养化问题也日趋严重。自20__年太湖点源污染逐渐得到控制,农村地区面源污染问题愈显突出。根据有关资料表明,在太湖水体污染中,面源污染占相当重要的份额,从全流域总氮排放负荷来看,生活污水占25.1%;从总磷排放负荷来看,生活污水占60.0%。因此,控制农村地区生活污水污染成为解决太湖富营养化问题的重要措施之一。农村生活污水一般具有污水面广,水量偏小,有机物浓度偏高,日变化系数大等特点。不可能铺设大型污水管网,宜采用小型污水处理装置。

本次研究选择在污染较重的太湖流域的宜兴市大浦镇,采用组合处理工艺重点研究了面源污染的主要控制因素COD、TN、TP氨氮等处理效果;期望能提供一种科学有效的污水处理方法,切实解决面源污染问题。

1材料与方法

1.1组合工艺基本原理

本试验工艺流程图见图1,该装置建在宜兴市大浦镇漳渎村。

污水首先进入厌氧发酵池,进行厌氧发酵,以降低后续接触氧化反应的有机负荷,同时进行硝化液回流脱氮处理;经过厌氧处理的污水经泵提升进入接触氧化池,接触氧化池共分五格串联,充分利用污水提升后的部分水头,采用跌水充氧技术提供好氧反应的需氧量,以降低运行成本,实现低能耗污水处理。在接触氧化池内,对有机污染物进行好氧降解和充分硝化;接触氧化池出水部分回流到前端厌氧池进行脱氮,部分进入后续潜流式人工湿地或生态净化塘,进一步去除氮、磷等营养物质。

1.2水样的采集与分析

1.2.1水样的采集

通过管网收集大浦镇漳读村的居民生活污水,然后进入处理工艺。在20__年4月至5月份,对该处理工艺的进水与出水进行采样分析,每三天采样一次,连续采样50天。

1.2.2水样的分析

水样分析采用国标法。

2结果与讨论

水体富营养化或面源污染的主要促进因素是COD、TN、TP、氨氮等。该组合工艺对COD的去除效果良好,对TN、TP、氨氮具有很高的去除率。

2.2.1COD的去除

COD的去除主要通过微生物的生长进行去除,它的生长情况与污水成分、含量、溶解氧量、以及水力停留时间等因素有关,见图2,平均去除率达73%,对COD的去除最低维持在61以上的去除率,出水浓度的变化与进水浓度的变化趋势基本保持一致;进水浓度在70mg/L至400mg/L范围内变化,出水浓度都能维持在100mg/L以下,去除率也保持在一定的水平;进水COD负荷在70mg/L至400mg/L之间对去除率没有明显的影响,这说明了该组合工艺具有较强的耐冲击负荷的能力。

图2

2.2.2TN的去除

氮的去除包括两个过程,硝化和反硝化过程

目前已初步搞清楚,硝化作用的生物化学机制是按以下途径进行:

NH3H2N-NH2NH2-OHN2N2O(HNO)

NONO2-NO3-

联胺

羟胺

氮气氧化亚氮(硝酰基)氧化氮亚硝酸 硝酸

反硝化作用的主要反应过程为:

C6H12O6 4NO3-6H2O 6CO2 2N2 能量

见图3,出水TN都在8mg/L以下,出水浓度随进水浓度降低呈下降趋势,去除率保持在80%以上,平均去除率达87%。由于春季到来,温度上升,湿地里长芦苇和浮萍,还有进水浓度降低,工艺的总氮去除率有所提高。

图3

2.2.3氨氮的去除

见图4,氨氮保持了很高的去除率,在前边的八个出水样品中没有检测出氨氮,这可能是由于水力负荷较小,在整个工艺中的水力停留时间较长,从而使氨氮的去除率很高。氨氮最低的去除率也维持在90%以上,平均去除率高达97%。

图4

2.2.4总磷的去除

磷的去除主要是通过湿地基质、植物以及微生物的共同作用来完成,在去除过程中发生一系列的物理、化学和生物化学反应,而微生物则是主角,水生植物和湿地基质则为微生物的生长提供了良好的环境。进水浓度没有明显的变化规律,出水浓度有降低的趋势。可能是由于气温升高,湿地里的微生物生长加快,芦苇生长,并且有浮萍大量生长对磷的去除有促进作用。出水浓度都保持在0.5mg/L以下,最高也只有0.43mg/L,去除率有上升,平均去除率达到93%。

图5

3小结与结论

在进水COD负荷70mg/L至400mg/L之间时,对COD的取出率没有明显的影响;植物的生长对总磷、总氮的去除有明显的提高作用;随水力负荷的增加氨氮的去除有所下降。

该工艺对污水中污染物的去除效果好,COD、氨氮、总氮、总磷的平均去除率分别为73%、97%、87%、93%,出水都能达到一级排放标准。而且投资省,能源消耗低,维护简单,是处理农村生活污水的一种简单适用的方法。

参考文献

[1[张自杰.排水工程(下)[M].北京:中国建筑工业出版社,20__.

[2]孙治荣,秦媛,张素霞,等.生物接触氧化法去除微污染水源水中的氨氮[J].工业用水与废水,20__(12),6,6.

[3]丁原红,洪华生,熊小京,等.生物接触氧化预处理微污染源水[J].水处理技术,20__,3,28.

[4]刘晋.生物生态组合技术处理农村生活污水研究[D][硕士学位论文].江苏:东南大学环境工程系,20__.

处理工艺论文第6篇

1.1粪便污水主要来源于城市公厕、小区及企业等的化粪池。粪水中含有大量卫生用品、化纤织物、木头、塑料等杂物。若使用格栅除污机拦截,会出现缠绕等问题,且格栅不能完全密闭,产生的臭气对周边环境造成影响。

1.2由于大多数粪便中,新鲜粪便的含量不高,含水率较大。若直接采用厌氧消化工艺,会导致处理池容积过大,能耗高,沼气量低等问题。

1.3粪便污水中含有大量的泥沙和污泥,需要进行必要的污泥处理。

2粪便处理工艺设计

2.1粪便处理模式。该粪便处理站处理规模为200t/d。粪便处理采用固液分离,絮凝脱水、整体除臭工艺。即粪便首先进行固液分离处理,处理后的粪便过滤液通过调节池,均匀的供给到絮凝脱水设备,通过絮凝脱水设备将水渣分离。其中脱水后的上滤液进行后续上滤液处理;固液分离中产生的垃圾杂物以及絮凝脱水后的粪渣进行焚烧处理。在粪便处理的整个过程中增加除臭设备,以减小处理过程中对周边环境的影响。

2.2固液分离、絮凝脱水阶段

2.2.1固液分离阶段。粪便通过吸粪车运送到粪便处理站后,进入固液分离装置进行初步分离处理。主要作用是去除粪便中的大块沉淀物和大于20mm的漂浮悬浮物以及90%以上的大于0.5mm的砂。吸粪车与固液分离装置采用快速接头密闭对接,粪便污水在抽吸泵的负压下快速进入固液分离装置,可避免卸粪过程中粪液泄露,对周围环境产生影响。

2.2.2调节池。调节池为地下封闭钢筋混凝土池子,具有水力和水质调节作用。经固液分离后的粪便污水进入粪便调节池。在调节池中设置搅拌装置,对粪便废物进行搅拌,防止表面结痂,中间悬浮,池底沉淀固化,避免对后续工艺及设备的运行产生不利的影响。同时,一些有机物在调节池中可进行缺氧水解反应。

2.2.3絮凝脱水阶段。粪便经过调节池,进入絮凝脱水阶段。在絮凝脱水阶段,污泥脱水机采用螺压式浓缩、脱水一体机。在污水处理过程中,絮凝脱水的主要设备为脱水机,如带压式脱水机、板框式脱水机、螺压式脱水机等。其中带压式脱水机、板框式脱水机是污水处理中应用较为广泛的两种脱水机。但是,两种脱水机均是开放式操作,密封性较差,易产生恶臭,需大量抽风换气,不适宜粪便脱水。而螺压式脱水机具有低转速、全封闭、可连续运行等特点。因此该项目中采用螺压式浓缩脱水一体机,共两台,单台处理能力8~12m3/h。粪便污水通过调节池的提升泵,进入螺压式污泥浓缩脱水机。同时投加混凝剂,对污泥进行调质和絮凝。絮凝脱水后液体的固悬物含量大幅下降,COD含量也有大幅下降。同时,此次设计中,在接粪管及污泥脱水机中均设有冲洗装置,对快速接口和脱水机的滤网内、外侧进行清洗,避免粪便固化、遗撒、堵塞滤网。

2.2.4整体除臭。该项目中,采用生物滤床和植物液雾化吸收的技术,降解粪便处理厂臭气对大气的二次污染,保证处理厂不对工作人员及周围居民造成影响,各项环境污染控制指标符合国家有关标准。

2.3后续上滤液处理。絮凝脱水后的上滤液需要进一步处理。上滤液采用厌氧生化与MBR工艺相结合,处理后排入市政污水管网。

2.3.1厌氧生化处理。厌氧生化处理采用UASB工艺。在处理粪便上滤液方面,欧美等国家采用了UASB工艺,并且取得了良好的效果。我国也有工程实例,如北京小张家口粪便消纳站等也采用了UASB工艺。UASB可以提高厌氧反应器的负荷及处理效率,且占地较小。而且污泥停留时间的延长、污泥浓度的提高,使厌氧系统更具有稳定性,有效增强了对不良因素有毒物质的适应性。此次设计中,UASB工艺采用两相厌氧设计。

2.3.2MBR工艺。常规的MBR工艺中一般采用微生物悬浮生长,微生物的浓度约10-15kg/m3,使得膜分离装置的污染概率增加,膜表面易结垢。此次设计中,采用固化微生物技术,将游离的微生物限定在一定空间内(填料内),使其保持活性,可反复利用。固定化微生物处理技术在粪便上滤液处理中得到了一定的应用且效果良好。

2.4杂物及粪渣处理。目前,国内对于粪便处理过程中的杂物及粪渣采用的几种处理方法:a.经过粗过滤产生的大块沉积物、大粒径悬浮物及砂石,送垃圾填埋场填埋处理;b.经絮凝脱水阶段后,产生的粪渣可送至化肥厂制成有机肥料,使得资源有效利用。也可以进行堆肥处理;c.条件允许的情况下,可将粪便处理过程中产生的杂物、粪渣进行焚烧处理,进而实现资源转换为能源利用。该项目由于紧邻当地垃圾焚烧发电厂,因此可将粪便处理过程中产生的杂物、粪渣,送至垃圾焚烧发电厂,焚烧处理。既降低了建设运行成本,又可以转换为能源再次利用。

3结论

处理工艺论文第7篇

课程要求学生应掌握金属热处理基本的理论知识,了解金属热处理工艺设计的基本依据,熟悉生产中常用的材料及其热处理工艺、组织、性能与应用及环境之间的关系,根据零件技术要求,能正确地选择材料和制订工艺,并初步具备热处理操作的基本能力。对培养学生综合分析问题的能力和工程应用能力很重要,在整个专业人才培养方案中,对培养应用型创新人才的目标具有重要作用。

2课程设计的理念与思路

高职学生在学习基本专业知识的基础上,如何把知识转化为技能,技能转变为职业素质是我们需要破解的难题。金属热处理生产工艺是金属材料及热处理技术专业必修的核心主干课程,是培养金属材料热处理专业实用型人才的重要组成部分。在金属热处理生产工艺精品课程建设中,坚持以金属热处理生产典型工作任务为载体,培养学生掌握金属热处理生产的基本知识和基本技能,初步形成分析问题和解决问题的能力,熟练掌握金属热处理生产的工艺设备和机械设备的相关知识,使学生毕业后能在金属热处理生产企业进行生产和解决实际操作技术问题,成为高级技术技能型的专门人才。通过对本课程的学习,学生应具备以下主要技能:①掌握常规金属材料热处理的基本知识,能编制钢铁件的典型热处理工艺;②能对热处理设备、常用的工装及辅助设备、热处理炉的温度进行测量与控制;③会典型零件热处理的基本操作;④能进行表面改性热处理的工艺制订;⑤能进行化学热处理的工艺制订;⑥掌握复杂工件的畸变规律与矫正方法,掌握分析判断工件变形的原因及预防工件畸变的方法;⑦能借助金相检验报告判断材料及热处理质量的方法,能分析工件淬火产生常见缺陷的原因并提出预防和补救的方法;⑧能对金属材料进行常规检验及对常见的热处理缺陷进行分析。

3教学内容的改革

3.1根据热处理典型的工作任务,组织教学内容,改革教学方法

在教学内容的选择上,以《金属热处理工国家职业标准》为依据,确定热处理工的岗位职责、工作任务和技能要求,在教学的实施过程中把典型的工作任务转换为学习情境,制定课程标准,围绕热处理设备操作、热处理工艺的编制、典型零件热处理的操作技能等典型工作任务,遵循由浅入深、由简单到复杂的原则,设置了8个学习情景:①热处理工艺准备;②热处理设备与操作;③退火与正火;④淬火与回火;⑤表面改性热处理;⑥化学热处理;⑦复杂工件的畸变规律与矫正方法;⑧质量检验与缺陷分析。通过对8个教学子领域的学习让学习者能在金属热处理生产企业进行生产,并具备编制热处理工艺的能力和热处理操作技能。同时编制实训指导书,完成实训室实训项目的开发,在教学过程中聘请企业技术人员担任实践指导教师,使课程体现工学结合的特点。在本课程8个学习情景中,以典型的工作任务为载体,以项目为导向,按“理实一体化”展开教学。在课程教学中根据不同要求的教学内容的不同特点,采用讲授教学法、项目教学法、任务驱动教学法、分组讨论法、以实践技能为导向的课题式教学法等教学方法,引导学生积极思考、乐于实践,提高教学效果。表1列出了8个教学情景所须学习的内容、项目和使用的教学方法。

3.2教学内容的针对性与适用性

课程教学内容选取针对热处理岗位群的职业标准,以就业为导向,以金属材料热处理人才培养目标为标准,以满足就业岗位对所学人才能力的要求为宗旨,进行面向岗位的教学内容设计。充分体现教学内容来源于企业、服务于企业的教学宗旨,密切联系生产实践,做到学以致用。通过对热处理生产各岗位知识、能力、素质要求进行分析,以学习内容和工作过程为导向的原则,课程设计创设“三结合”的学习情景:学习内容与工作内容相结合,学习过程与工作过程相结合,学习情景与工作情景相结合。按照热处理生产岗位的需求,以热处理工的职业标准为依据,设计了8个学习情景。课程内容在设计过程中参考热处理岗位群多工种的职业标准,归纳出典型的工作任务作为教学情景,每个情景由若干项目任务组成,形成8个教学情景。各情景教学内容以热处理工国家职业标准中初级工—高级工的知识和技能要求为依据选取教学内容,设计实训项目,进行单元考核。由于教学内容考虑了工种职业资格的需要,不仅适合教学,还可作为企业员工培训教材使用。

3.3教学方法的多样性

传统的教学模式具有其自身的优势,如传授的知识系统、严密,较好地发挥了教师的主导性,但弊病也十分明显:其一,教材抽象,体系严密,学生难以学习;其二,学生的主体地位难以体现;其三,重理论轻实践,学生动手的能力比较差,与素质教育的要求不相适应;其四,以教师为中心,只强调教师的“教”而忽视学生的“学”。在这样的教学模式中,学生参与教学活动的机会少,动手更少,大部分时间处于被动接受状态,学生的学习主动性很难发挥,更不利于创新、创造型人才的培养,不利于学生的发展[3]。为此,在课程教学中针对不同要求的教学内容既采用了传统的讲授教学法,又采用了任务驱动教学法、项目教学法、分组讨论法、以实践技能为导向的课题式教学法等教学方法,引导学生积极思考、乐于实践,提高教学效果。

4课程的特色与创新

4.1采用任务驱动式教学法,实现“理实一体化”教学模式

金属热处理生产工艺课程实践性强,为了加强实践性教学的效果,教学中注重理论与实践相结合,在教学中以典型工作任务为载体,以任务为导向,突出“练”,边讲基础知识,边应用到典型的工作任务中。实现“理实一体化”教学模式,提高学生学习的积极性和能动性,当下发了项目任务书后,学生必须积极学习基础知识,才能完成相关的项目任务。本课程以提高学生分析、发现、解决工程实际问题的能力为重点,强调学生个性发展。深化教育改革的关键,是改变以往单一的课堂讲授的教学形式,改变传统的系统式学科教学体系,提倡进行“教、学、做”一体化改革,使学生在专业理论知识方面以“够用”为主,更多突出技能的培养。采用任务驱动式教学法,就是要兼顾理论知识与技能的合理配置。任务的设计很重要,它是为实现一定的教学目标,依据课程内容主题,为学生策划学习资源和学习活动的过程。教学任务设计的最终目的是使学生掌握实际工作岗位对本课程所要求的知识和技能[4]。通过项目任务和专题设计等自主学习方式,体现学中做、做中学,活学活用,注重了学生的实践能力、创新能力及团队协作能力等综合素质培养。金属材料热处理技术校内实训基地的建设及实训项目的开发应用,解决了困扰热处理技术专业进行生产性实训所面临的困难和矛盾,实现了课堂与实习地点一体化的行动导向教学。通过系统实训,不断训练,极大地提高了学生岗位操作能力,同时也促进了学生的学习方式由个人竞争学习模式向团队协作学习模式的重要转变,提高了学生对企业生产组织方式的适应能力,实现与企业的“零距离”接触。以“淬火与回火”学习情景为例,任务驱动教学模式如表2、3所示。

4.2遵循了由浅入深、由简单到复杂的原则

遵循了职业成长的规律。以学习情景4的淬火与回火为例,设计了2个项目任务,项目8与项目10虽然都是淬火与回火工艺,但前者是试样的淬火与回火,后者是零件的淬火与回火,项目任务书如表4所示。2个项目任务中,1个是实验室试样,1个是轴,在编制淬火工艺时,淬火方法、加热温度、冷却介质、加热设备的选择都有差异。20钢、45钢、T10钢制试样按AC3或AC1±(30~50)℃的原则选择加热温度,按t=αkD选择保温时间,在箱式炉中进行加热后,以水作为介质进行冷却即可获得马氏体组织,硬度达到55~63HRC。对于轴,从技术要求上看,心部和表面硬度不同,在选择淬火方法和加热设备时需要充分考虑。结合材料65Mn淬透性曲线,可采用水-油双液淬火的方法进行处理。操作时掌握好在第一种淬火剂中的停留时间,同时注意上下移动工件。2个项目遵循了由浅入深、由简单到复杂的原则,通过反复训练,使学生工艺编制和操作技能由生疏到熟练,遵循了职业成长的规律。

4.3构建了TEST评价系统

评价的实质在于肯定学生的学习过程,重视学生学习中的知识积累和实践能力的发展,培养科学的思维方法,这是评价学生的理论依据,也是学生学习过程的目标导向[5]。传统课程的考试都是在课程结束后进行一次闭卷考试,这对该课程的学习来说是有局限性的,它难以测试学生综合性分析问题的能力,故此在精品课程建设中构建了TEST评价系统。新评价系统构建思路重视考核评价学生学习的过程及过程的动态化、评价内容的多元化。TEST评价系统是指课程总成绩由教师评价(T)、企业工程师评价(E)、学生评价(S)、总评价(T)组成。教师评价主要对学生的学习行为过程(包括学习态度、学习意识、精神、态度、价值观、行为习惯等)进行相应的评价。企业工程师评价主要根据项目任务从加热温度、加热设备、保温时间、冷却介质的选择进行考核评价,学生评价是对各组查阅资料、PPT的效果、汇报表现、实训准备和完成情况进行互评,使评价触及到学生的内心深处,使评价产生教育意义。总评价(T)由项目考核(40%)、期末考核(30%)、过程考核(30%)组成。其中项目考核由教师评价(T)(15%)、工程师评价(E)(15%)、学生评价(S)(10%)3部分组成。为方便不同角色对课程进行评价,开发了昆明冶金高等专科学校金属材料与热处理技术专业教学资源库,在这个网络平台上,教师、企业工程师、学生以不同角色进行登录,即可完成T、E、S的评价,理论考试课由网络系统根据考试大纲生成不同的试题,可进行在线测试,最终由系统按不同角色的权重自动生成总成绩(T)。在金属材料与热处理教学资源库社会评价系统中,用人企业登录后可对毕业生进行评价,教师根据企业的评价对教学进行改进,校企合作不断提高教学质量,共同培养出大批社会需求的高级技术技能型人才。

5教学效果

昆明冶金高等专科学校金属热处理工生产工艺课程于2012年获批云南省精品课程建设立项,如图1所示。金属热处理生产工艺的教学改革从2010级金属材料与热处理专业开始实施,为了对比教改前后的教学效果,分别对采用传统教学法、多媒体教学法、项目教学+任务驱动教学法的学生成绩进行统计分析,结果见表4。由表4可知,在试卷难度基本不变的情况下,采用项目教学+任务驱动教学法后,学生成绩优良率和平均分均明显高于传统教学,不及格率明显下降。通过4年的教学实践,学生反映项目教学+任务驱动教学法能调动学习的积极性:每次课都有不同任务,带着任务查阅资料,互相讨论,完成项目任务,把任务完成的结果上传到教学网络系统进行评价,得到项目考核的成绩。最终成绩中,项目考核占40%,期末考试占30%,过程(作业和考勤)考核占30%。在项目+任务教学过程中,教师的主导地位没有动摇,以项目和任务作为载体,运用网络平台提供的学习资源,引导学生自主学生,不断培养学生分析问题和解决问题的能力,提高学生专业综合素质和创新能力,构建学生知识、能力、素质协调发展的合理结构,并得到用人企业的好评。

6结语