欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

可靠度理论论文(合集7篇)

时间:2022-05-07 18:20:54
可靠度理论论文

可靠度理论论文第1篇

关键词:可靠度地下结构岩土参数概率特征

1.前言

地下结构和其它岩土工程一样,在整个设计过程中存在大量的不确定性。传统方法设计时用一个笼统的安全系数来考虑众多不确定性的影响。对各参数、变量都假定未定值。这就是常规的定值设计法。虽然以后对某些参数(如材料的强度)取值时也用数理统计方法找出其平均值或某个分位值,但未能考虑各参数的离散性对安全度的影响。所以安全系数法不能真正反映结构的安全储备。

60年代末期,数理统计和概率方法在结构设计中成功应用,鼓励和启发了隧道工作者寻求用概率方法研究地下工程中各种不确定性并估计他们的影响。进入70年代,可靠度分析方法扩大到更多的设计领域。但是,这种方法仍然受到一些岩土工作者的反对和质疑。原因在于岩土工程本身的机理比较复杂,有些问题还没有充分认识;岩土工程概率方法还处在发展阶段,不少概念还不很明确,计算方法也不够简便;一些人对概率论和方法不很熟悉。这些困难也促使一些岩土工作者潜心钻研,他们吸收地面结构概率分析成果,针对岩土和地下工程的特点开展专题攻关,虽未完全解决技术上的关键,也取得了可喜的成果。研究表明,概率和可靠度分析方法在不确定性越严重的问题中越能显示出活力来。

1992年,国家技术监督局《工程结构可靠度设计统一标准》,作为其它各类工程结构设计共同遵循的准则。铁路、公路、水利、港口等行业先后开展结构设计统一标准的编制工作。作为上述各类工程的重要组成部分的隧道及地下工程,采用概率极限状态设计也提到日程上来。一些技术难题有待继续攻克,实用化问题也要同时解决。目前,可靠度分析在地下工程中的应用正在经历由粗糙到精细,由简单到复杂再回到简单并进入实用这一过程。

2.岩土参数概率特征的研究

确定围岩的物理力学参数和原始应力状态时分析地下结构力学行为的先决条件。对于重要的大型结构(如水电站地下厂房等)通常要在周围地层钻孔取样并进行一系列试验以取得有关参数。交通用途隧道纵向长度比横向长度大得多,经过的围岩也回变化,通常按各类围岩的综合力学参数进行计算。引入可靠度后,必须考虑这些物性参数的概率特征。这方面的研究成果对地下结构可靠度分析至关重要。

2.1围岩分级判据的可靠性研究

一般隧道设计时都要现场确定该隧道所处的围岩类别。各种围岩分类法都有各自的一套标准。但由于标准本身常存在模糊性或不确定性,或者不同人对标准的理解和处理不尽相同,不同人对同一围岩的评价结果总体会趋于一致,具体还不会完全同一。围岩分类的随机性值得我们进一步研究。

我国在围岩分类和分级方面已有不少成果,可惜各部门还不统一。东北大学林韵梅教授等提出围岩稳定性动态分级法,李强提出模糊聚类分析法。在动态分析法中对分级判据的分布进行初步分析,应用数理统计方法对分级判据进行研究。在定义分级判据可靠性的函数上,用柯尔莫洛夫法对其分布规律进行检验。还提出了分级标准和分级方法的评价准则。

2.2地质资料的概率处理

对于大型地下工程和重点长大隧道都要进行比较细致的地质勘探。但要从有限的勘探资料中获得隧道全长或大型地下工程周边围岩的地质状况和有关参数,必然存在不确定性和偶然性。用概率法可减少误判的机率。例如长江科学院包承纲研究员等以概率方法处理水坝地基钻孔之间的地层分界线,取得更为合理的结果。

地层中常有一些异常地质点存在,如软弱夹层、空洞等。他们对地下工程施工和运营有很大影响。为此,首先要弄清楚它们出现的可能性、大概的位置及其性质,然后通过可靠度分析法去分析它们的影响。Bercher(1979)及Tang(1987)等都对某地区在给定钻孔布置与地质历史推断情况下,对异常地质出现的概率和统计特征做过估计,先给予一个不出现异常的先验概率,然后根据一系列钻孔资料按Bayesion公式推得修正的不出现概率和联合分布。

2.3土性参数的随机场研究

据研究,土性参数变异系数可达0.29,比计算模型的不定性影响大得多。土性参数概率特征经历了两个阶段。早期研究建立在随机变量基础上。后期研究集中在随机场理论的应用上。

不难理解,岩土工程的性状是由某一空间范围内岩土的平均特征所控制。根据一个个试样求得的统计特征称为点特征。点特征与空间特性之间由一定的关系。空间平均特征的方差应小于点特征的方差。控制岩土工程可靠度的是土性参数的空间平均值方差而不是点方差。因此,土性参数的概率分析是一个随机场问题。对于空间分布的地层,由于沉积和埋藏等条件的联系,不同点之间虽有差别又有一定的相关性。这种相关性将随二点距离的增大而减弱。相关距离是岩土可靠度随机场研究中的一个重要参数。有关学者提出了相关距离的物理意义、集合意义及实际计算方法,提出了不同地层相关距离的年经验值。研究了不同统计方法的参数对可靠度分析的影响。

2.4岩体特性统计特征的研究有待加强

近几年由于土坡稳定、桩基承载力及地基承载力等方面可靠度分析实用化的需要,推动了土体概率特征的研究。而土性概率特征的研究成果又促进了上述几种典型工程实用可靠度分析。由于岩体的本构关系更为复杂,节理、裂隙、层状等对岩体特性影响更多,岩石地下工程计算模型不定性更为突出。对于众多不定性相互作用的岩石工程,更需要可靠度分析。国内勘察设计部门也积累过大量岩石资料,但用概率方法加以整理的参加横过较少。日本在这方面做过的工作值得重视。他们对各类围岩(如花岗岩、闪绿岩、砾岩、砂岩、泥岩等)的主要指标(如单轴抗压强度、压缩变形系数、抗剪强度、干密度等)的分布特征,均值及变异性以及相互关系等都做过分析整理,这些资料可供参考。

3.作用效应随机分析方法的成果

作用效应是可靠度分析中重要的综合随机变量,它占用很大的计算工作量。地下结构作用效应的定值分析方法不论是“荷载—结构”模式或“地层—结构”模式,目前大多采用有限元分析,考虑空间作用时还用三维有限元。对裂缝、节理发育的岩石地层主要有两种方法:

a.仍然利用连续介质力学理论,但要寻求反映不连续岩体特点的本构关系或把节理裂隙的力学性质作为附加条件加以考虑,然后求解;

b.应用块体理论,寻求关键块。利用量测到的位移信息反求地层的力学指标也是常用的方法。引入可靠度以后如何在上述各方法基础上进行随机分析时必须解决的问题。

3.1随机有限元的进展

有限元法在随机介质中的应用始于70年代初期。当时主要用于岩土理论与应力分析。其基本思路是采用蒙特卡洛模拟法。该法建立在大量确定性计算基础之上,费用较为昂贵。结构静力计算的随机有限元法70年代中期由瑞典的K.Handa首先提出,80年代末日本的Hisada和Nagagri等对随机有限元作了较为系统的研究。至此以后随机有限元理论朝着两个方向发展,一是基于摄动展开的有限元统计分析;另一是随机场的局部平均。具体的方法有:纽曼随机有限元法;随机有限元最大熵法;有限元一次二阶矩法;随机有限元响应面法;摄动随机有限元法等。上述各种方法各有其特点,有的理论上较为严密,但计算量大;有的较近似而计算简便。响应面法,摄动法及蒙特卡洛法在我国隧道可靠度分析中都已实际应用。

作为随机有限元的深入,有人还提出非线性随机有限元,但该理论正处于尝试中。采用目前流行的随机有限元通常只能确定荷载效应的某些数值特征,如均值、方差、相关矩等,难以确定荷载效应的概率分布及高阶矩,故还不能很好的满足可靠度分析的要求。蒙特卡洛法可求出概率分布,但计算量较大。成都电子科技大学张新培教授提出了改进的随机有限元法。该法以有限元为基础,利用荷载列阵与刚度矩阵各元素之间特征函数确定结构各单元荷载效应的特征函数,再根据特征函数与分布密度函数及数字特征的关系,求出荷载效应分布密度函数积极数字特征。此法概念简单,容易实行,较好地满足可靠度分析的要求。

3.2随机块体理论的提出和应用

块体理论是我国学者石根华和美国学者R.Goodman首先提出的岩体工程分析方法,为岩体洞室和边坡稳定分析开辟了新的途径,在国际上受到重视并得到日益广泛的应用。块体理论中关于岩体被不连续的空间平面切割成分离块体以及切割面上的力学参数c、Φ等都作为定值。由于实际岩体不连续面形成因素复杂,同一组不连续面的产状在一定范围内发生变化,连续空间平面切割成的变形状空间块体具有随机性。切割面力学参数也使随机变量。因此更适合概率分布。河海大学王保田、吴世伟提出的随机块体理论,用随机抽样法寻找可动块体的概率,并用一次二阶矩法求关键块的概率。二者结合可较好的解决已知结构面产状概型和力学性态是随机值的问题。南京航空专科学校的张广健等应用随机块体理论编制出计算程序,用以对隧道围岩稳定性进行可靠度分析,求得各类围岩的块体稳定可靠指标。所得结论与设计和施工经验基本一致。若能用现场实测数据统计分析,其结果将更能反映工程实际。

3.3三维随机边界元法的提出

地下结构的有限元分析特别是三维分析需要划分许多单元,计算机工作量和对计算机内存的要求都很大。特别对无限区域的课题,在一定范围内离散将忽略外方广大区域的影响而带来误差。因此人们的注意力又转到一些边界解法上,相应的边界单元法得到发展。隧道的边界元分析有其明显的优点,日益受到国内外重视。针对地下结构分析中参数都具有明显不确定性的特点,随机边界元法的研究和应用将对隧道可靠度分析起到新的推进作用。

武汉水利电力学院潘国宁等提出的三维随机边界法是将边界元计算过程作为函数转换过程,再参数取值时对函数过程做泰勒展开。通过边界计算得到应力和位移的均值;然后计算有关变量对参数的一阶导数和二阶导数在取均值时的值。最后考虑参数的变异性来分析计算结果的变异性。此法公式简洁,计算工作量小,对隧道分析有重要参考价值。

3.4围岩参数的随机反分析

由于围岩的物理力学指标不容易确定,现场取样试验或直接测试资料也只是得到点特性而不是我们所要求的围岩空间平均特性。因此,利用施工监测得到的位移信息反演求出围岩参数的方法在一定条件下能满足地下结构分析的要求。目前定值的反演分析比较成熟,已开发出很多程序可供应用。但是反演分析所依据的信息实际是带有一定离散性的随机变量,可靠度分析也要求反分析的结果能表示出概率特征。因此,随机反分析也逐渐受到重视。专门著作《反演理论》对反分析概率化有重要论述。同济、北方交大、西南交大岩土和地下工程专业的博士研究生的论文都曾涉及隧道随机反分析问题。目前采用的方法有传统的蒙特卡洛法、随机摄动法。

4.针对岩土工程特点的可靠度分析方法的新发展

《工程结构可靠度设计统一标准》在附录一中推荐用一次二阶矩法计算结构的可靠指标。同时指出对于变异系数很大、极限状态方程非线性程度很高等情况,宜用更精确的方法计算。岩土物性变异性比较大,常呈现一定的相关性,如内摩擦角与内聚力之间负相关,容重与压缩模量、内聚力等正相关。忽视这些相关性,会使计算结果出现误差。而一次二阶矩法是假定基本变量间是相互独立的。

目前针对相关性提出两种一次二阶矩的改进方法。一是将相关变量变为互不相关的变量,新变量的方差矩阵是由原变量标准化后的方差矩阵构成。另一方法是将极限状态方程的标准差展开后求得分离变量作为新变量的灵敏系数,在新的灵敏系数重反映与之相关的另一变量的影响。前法适用于多个相关的基本变量,后法只适用于两个相关变量。

对于非线性极限状态方程,用当量正态法有时计算误差过大,有时不易收敛。此时将蒙特卡洛模拟引入可靠度分析中,只要模型次数多就能得到精确的失效概率值。对于很小的失效概率需要很大的模拟次数。为节省机时,可从计算方法上改进。为避免概型拟和引入的误差,采用高阶矩发值得进一步探索。

对于一些判别准则易受人为因素影响的问题,也可将模糊数学方法引入可靠度分析中,发展成为模糊可靠度分析法。坑道稳定性位移判别的方法和准则就有很多主观和客观不确定性因素,坑道稳定性模糊概率分析法,把“坑道稳定性”作为一模糊随机事件,求其模糊概率,用模糊统计分析试验法结合专家综合评判来确定地下坑道周边位移与坑道稳定性的隶属函数,推导出坑道稳定性可靠度计算的一般表达式。

5.围绕《铁路隧道设计规范》的修订,隧道可靠性

铁路隧道在我国地下工程中占很大比例,第二层次的《铁路工程可靠度设计统一标准》也已。第三层次的铁路各专业设计规范可靠度设计修订工作已提上日程。针对人们对可靠度理论在隧道中的应用有怀疑态度甚至否定这一情况,铁道部先组织几批专家进行“以可靠性理论为基础修订铁路隧道设计规范的可行性研究”,得出可行的结论,并分别从“荷载—结构”模式、“地层—结构”模式和以工程类比为基础的经验设计模式等几个方面提出实现可靠度设计的途径和需要攻关研究的课题。该项研究经铁道部组织专家评审验收,人为结论正确,所建议的隧规改革目标明确,路径可行,可作为今后隧规改革的指导性文件。

为了使铁路隧道设计规范按可靠度设计加以修订这一难度较大的工作能逐步深入开展,铁道部主管部门已立项开展《按可靠度理论修改隧规的基础性研究》。研究内容包括围岩物性指标及深埋隧道围岩松动压力统计特征研究;浅埋隧道覆土荷载统计特征研究;明洞、棚洞填土荷载统计特征试验研究;衬砌混凝土偏压构件抗力计算方法及偏压强度统计特征研究;隧道衬砌几何特征研究等。由铁路各高校分别承担。铁路高校研究生论文选题也开始转向隧道可靠度设计这一领域。

与此同时,有关院校对人防工程按可靠度设计也提出过方法及若干建议。水电部门针对工程特点正对隧道工程的作用及作用效应进行统计参数整理。

可靠度理论论文第2篇

关键词:工程结构 可靠度 综述

中图分类号: N945 文献标识码: A 文章编号:

一、结构可靠性理论研究历史

1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标;二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%;1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。1952年成立的“电子设备可靠性咨询组”,简称AGREE(Advisory Groupon Reliability of Electronic Equipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到其他多个部门。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利的卡钦奇提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用。因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ 68-84)也是以该方法作为可靠性校准的基础。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,对桥梁结构可靠性研究非常必要和迫切。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并出版了许多专著。概括而言,如下几方面是结构可靠度理论研究的热点:

4.1结构系统的可靠度分析。如结构可靠度分析的一阶矩概念及荷载为Ferry Borges Castanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

4.2对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极限状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

4.3目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.4人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

4.5在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。

4.6模糊随机可靠度的研究。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。五、结语桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1] 王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

可靠度理论论文第3篇

Abstract: Since the 1940s, structural reliability theory has made great progress, especially in many countries have begun to study the structural design specification into a new period, so that the application of structural reliability theory. Based on the literature, from the structure reliability theory study of the history, status quo, the status quo of bridge structural reliability theory research engineering structure reliability trends and other aspects of bridge engineering structure reliability theory research are reviewed.Key words: engineering Structural Reliability Summary

中图分类号:K928.78 文献标识码:A 文章编号:2095-2104(2012)

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。一、结构可靠性理论研究历史长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(Advisory Groupon Reliability of Electronic Equipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。二、国内外工程结构可靠性理论研究现状二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ 68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。四、工程结构可靠性理论研究发展趋势进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为Ferry Borges Castanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。五、结语桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。参考文献[1] 王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.[2] 刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.[3] 拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.[4] A.M.Freudenthal,Safety of structures,Trans.ASCE,112(1947) .[5] 刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.[6] 中华人民共和国国家标准.建筑结构设计统一标准(GBJ 68-84).北京,1985.

[7] 贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

可靠度理论论文第4篇

关键词:工程结构 可靠度 综述

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。

一、结构可靠性理论研究历史

长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(Advisory Groupon Reliability of Electronic Equipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:

1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。

2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。

3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。

除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:

(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。

(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。

因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ 68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:

1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为Ferry Borges Castanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。

6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。

五、结语

桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1] 王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

[2] 刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.

[3] 拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.

[4] A.M.Freudenthal,Safety of structures,Trans.ASCE,112(1947) .

[5] 刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.

[6] 中华人民共和国国家标准.建筑结构设计统一标准(GBJ 68-84).北京,1985.

[7] 贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

可靠度理论论文第5篇

关键词:工程结构可靠度综述

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。

一、结构可靠性理论研究历史

长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:

1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。

2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。

3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。

除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:

(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。

(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。

因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:

1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。

6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。

五、结语

桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.

[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.

[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).

[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.

[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.

[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

可靠度理论论文第6篇

关键词:工程结构可靠度综述

对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。

一、结构可靠性理论研究历史

长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。

结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。

从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:

1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。

2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。

3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。

除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:

(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。

(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。

因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。

二、国内外工程结构可靠性理论研究现状

二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。

三、桥梁结构可靠性理论研究现状

桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。

四、工程结构可靠性理论研究发展趋势

进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:

1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。

2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。

3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。

4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。

5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。

6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。

五、结语

桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。

参考文献

[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.

[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.

[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.

[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).

[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.

[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.

[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.

[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.

可靠度理论论文第7篇

关键词:公路桥梁 钢筋砼构件 可靠度理论 计算方法

中图分类号:U4 文献标识码:A 文章编号:1674-098X(2013)03(c)-0-01

随着国民经济的发展,公路桥梁的地位越来越重要。现阶段,桥梁形式亦多为砼桥梁,这一论断在世界范围内皆成立。但是,因公路桥梁结构老化、营运环境恶劣、车辆荷载增加及养护维修工作不到位等因素的影响,公路桥梁结构损伤现象屡见不鲜,且其相应地导致了公路桥梁结构营运状况不佳、承载能力下降等问题。由此可得,加强公路桥梁耐久性、可靠度评估,确保公路桥梁安全畅通意义重大。

1 公路桥梁耐久性的评估方法―基于可靠性理论

所谓公路桥梁耐久性评估,其主要是指以特定信息为依托,对既有公路桥梁的可靠性予以准确的分析,并基于分析的基础上,提出相关针对性强。公路桥梁结构可靠度理论最突出的特点当属其基础为概率统计。概率统计对公路桥梁结构存在不确定性予以了肯定,并以公路桥梁结构可靠度的各影响因素作为随机变量,且通过恢复各影响因素的自然特性,再以数据为依托对此种客观变异性予以表达。基于可靠性理论法以可靠度计算方法为基本方法,即以统计方法及实测方法为基本方法,以可靠度数学理论为基本理论依据,并通过计算得出公路桥梁结构的可靠指标或实现概率,且以或对公路桥梁结构的安全水平予以衡量。随着公路桥梁结构耐久性及可靠度评估方法的深入研究,可靠性理论的应用也变得更广,甚至覆盖了结构工程的各领域。就公路桥梁设计而言,我国桥梁设计方式已经随着新桥规的编订而发生了相应地转变,即从容许应力设计方式到承载能力极限状态设计方式(以概率统计为基础)。研究结果显示,承载能力极限状态设计方式的科学性更强,且其设计理论及设计思想也更加科学和完善。此外,承载能力极限状态设计方式也为公路桥梁结构耐久性及可靠度评估提供了有力的理论依据。

2 结构可靠度理论的基本理论及基本计算方法

2.1 可靠度的基本原理

结构的可靠度。公路桥梁结构的可靠度以适用性、安全性及耐久性为主。如果工程结构实际承载能力与要求承载能力间一致,则该工程结构具备安全性;如果工程结构实际使用功能与要求使用功能间一致,则该工程结构具备耐久性及适用性。就工程结构的功能函数()而言,若R/S均服从正态分布,则R/S的平均值及标准差可表示为及,且结构功能函数(Z=R-S)亦服从于正态分布,则Z=R-S否认平均值及标准差表示为和。随机变量Z的分布图见下图,其中Z

由上图可得,从0至(平均值)间的间距度量标准可为标准差,即。此外,与间的关系为一一对应,即随着的增大而减小;随着的减小而增大。由此可得,、均可用作工程结构可靠性的衡量指标,其中属可靠指标。那么,工程结构失效概率满足如下函数式:

2.2 验算点法或JC法

验算点法或JC法是可靠度分析方法的一种,亦是一次二阶距的一种,其应用范围较广。所谓一次二阶距法,其主要是指将随机变量的一阶距及二阶距应用到可靠指标计算之中,且仅对功能函数泰勒级数展开式的一次项予以适当考虑。

两个正态随机变量的情况.在极限状态下,两个随机变量满足如下函数式(极限状态方程):

上述方程式中,R/S间相互独立,且其均服从于正态分布。

就ROS坐标系而言,极限状态方程为一条直线,其倾角呈45°。经过及计算后可得,及的新坐标系,现通过平移坐标系可得到另一个新坐标系(见下图):

由方程式及可得,变换原坐标系等效于正态分布标准化,其中及属标准正态变量。通过一系列方程式的计算及转换求的,原坐标系ROS与新坐标系间的关系满足如下函数式:

由解析几何相关理论可得,上述函数式为坐标系内标准型法线式直线方程,(常数项)为至极限状态直线间的法线长度,及为(法线)在坐标向量方向的方向余弦,其中为设计验算点。若、、、的取值既定,则工程结构可靠指标、设计验算点均可准确求的,且对应的失效概率函数式为:

3 结语

综上所述,钢筋砼施工在世界范围内各个国家均得到了广泛的应用,则世界各国对公路桥梁钢筋砼构件可靠度及耐久性的研究也相当深入。公路桥梁钢筋砼耐久性的评估方法很多,该文着重谈论了基于可靠度理论的评估方法。此外,公路桥梁钢筋砼构件可靠度的计算方法包括JC法及蒙特卡洛法,该文就JC法进行了详细地阐释。

参考文献