欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 SCI发表 期刊投稿 出版社 公文范文 精品范文

分子生物学发展(合集7篇)

时间:2024-02-03 17:04:11
分子生物学发展

分子生物学发展第1篇

关键词 分子生物学 儿科 基因工程

中图分类号:Q7文献标识码:A

1 分子生物学为儿科的发展提供了新的驱动力

儿科这种称谓源自于欧洲,在15至16世纪之后,受到欧洲文艺复兴运动的影响,整个科学技术获得了极大的发展,医学也不例外,但是这一时期的儿科是包含在产科以及内科里的,产科与内科依据病儿的年龄分别诊断,也就是说这一时期,儿科并没有获得独立的研究与发展。世界上第一个儿童医院于1820年在法国巴黎诞生,14年之后的1834年俄国建立了世界上第二个儿童医院。此后,儿科作为一个独立学科进入人们的研究视野。早期的儿科研究内容主要针对的是小儿疾病的诊治。儿科疾病的诊治也主要是依据成人疾病诊治。对于儿童不同年龄所不同的生理、病理现象及其特点认识不足,对于儿童成长的环境、膳食、营养、卫生、保健等影响因素的认识也并不多。此后随着营养学、免疫学、细菌学等一些学科的快速发展,学术界对于上述问题也有进一步的认识。到了21世纪,物质代谢、免疫学等学科以前所未有的速度发展,抗菌素、激素、预防接种等获得极大发展,儿科领域的研究也突飞猛进,儿童的营养性以及感染性疾病有了新的控制方法,发病率与死亡率不断下降。尤其值得一提的是,以费明翰调查作为典型的第二次流行学革命对于学者们研究儿童的生活方式、心理-行为对疾病模式的意义产生了极大影响,甚至可以说是革命性的,这也是儿科首次对医学革命做出的巨大贡献。

不可否认的是,在分子生物学出现之前,儿科的研究基本上都局限在传统的疾病诊治的经验桎梏中。分子生物学虽然在20世纪50年代产生之后就是生物学研究的前沿,其深度和广度是人类有史以来从未达到过的。分子生物学的成果给儿科医学的发展提供了极其广阔的空间。在传统儿科研究的主要驱动力中主要包括三个驱动力,也即科学驱动、技术驱动与技巧驱动。在分子生物学产生以前,这些驱动力是分割的,但是分子生物学产生之后为儿科研究的这些驱动力进行了整合,分子生物学在针对儿科研究里的发现、分析以及解决问题等方面都展现出强劲的展动力。可以说在很大程度上,分子生物学为解决儿科发展所遇到的一些特殊性、个案性、疑难性问题时提供了清晰的思路、犀利的灵感以及独特的视角,为儿科的发展提供了全新的驱动力,从而大大促进了儿科的发展。

2 分子生物学拓展了儿科研究范围提高了发展质量

分子生物学理论主要包括DNA结构、中心法则、基因调控等方面的研究,分子生物学里基因工程的发展对于传统的病毒学、生物学以及遗传学都产生了革命性影响。众多常见儿科疾病的病原学诊断也获得了极大的发展。举例而言,目前已分离出的呼吸道病毒已超过百种、肠道病毒近百种。这些病毒参与了从呼吸道到消化道以及神经系统疾病的发生。疫苗和化学治疗的发展使过去的难治性疾病得到了较好的控制。有关遗传性疾病(染色体疾病、遗传代谢性疾病)诊断和治疗的理论、方法和技术使从前无法认识和处理的上百种疾病有了正确的解释与治疗手段。分子生物学的诊断方法以令人眩晕的速度遍及儿科各个疾病。分子生物学研究所带来的各种变化极大拓展了传统儿科学的研究领域,对于儿科学知识的丰富也起了很大作用,尤其是在阿波罗登月以及人类基因组计划等活动之后,分子生物学的发展也明显加速。这也使得人们更进一步的对儿科的疾病、健康以及生命现象本质的研究上达到的一个高峰。人们不再像传统的儿科研究,只关注儿童疾病的诊治了,对于儿童的健康以及生命质量也作为关注的重中之重。对于儿童成长的环境,研究已经不仅仅局限于自然物质环境,对于儿童成长的心理精神环境关注增多。分子生物学的产生及其发展,在很大程度上使得新一代的儿科研究工作者们所面临的任务、机遇以及(下转第53页)(上接第11页)挑战与前辈们发生了改变,前辈儿科研究工作者的重点在于通过儿童疾病诊治降低儿童死亡率和发病率,当前的研究者重点在于保持这一局面并提高儿童生活和生命的质量。如传统的研究对于儿童的孤独症抑郁症关注不够,但是分子生物学产生之后,人们的关注明显提高了,如北京大学医学遗传中心的钟南、张茜医生在其《儿童孤独症的分子生物学研究进展》中专门论述了分子生物学对儿童孤独症的影响。分子生物学的产生与发展也在很大程度上拓展了儿科研究的范围,大大提高了研究的质量,这种质量的提高主要是通过提供新的途径与方法来实现的,如朱汝南、钱渊、王芳、刘成贵等人的《分子生物学方法在儿童流行性感冒监测中的应用》一问中就认为流行性感冒(流感)病毒是引起急性呼吸道感染的重要病原,它可在短期内突然发生,起病急,蔓延快,往往造成不同程度的流行,甚至造成世界性大流行。儿科呼吸道感染病人的突然大量增加往往是流感流行的晴雨表,因此儿童中的流感监测有着特殊重要的意义。在他们的研究中,充分利用了经典病毒学方法(病毒分离和血凝 (HA)试验)对儿童中流感流行情况进行监测的同时,还建立了分子生物学方法检测和鉴定流感病毒,并对近年A3型流感病毒分离株的血凝素基因进行了序列分析。又如,著名遗传学家吴希如在20世纪90年代就逐步建立并开展了儿科分子生物学及分子遗传学研究。对于分子生物学在小儿惊厥、癫痫及其相关遗传病机制等领域的影响与作用进行了大量的研究,并取得了丰富的成果。

参考文献

[1]钟南,张茜.儿童孤独症的分子生物学研究进展[J].中国实用儿科杂志,2008(3).

[2]龙华.分子生物学前沿[A].全国首届动物生物技术学术研讨会论文集[C].2004.

分子生物学发展第2篇

【关键词】 子宫腺肌病;血管生成;免疫

Abstract:Adenomyosis (AM) is the common disease in department of gynaecology. In clinical aspect, it has the characteristics of implantation,recurrence and invasive growth of endometrial tissues which are similar to biological behaviors of malignant tumors. However, their mechanisms have not been well-clarified yet. The pathogenesis of human adenomyosis might be correlated with the factors of vascular formation, immune, apoptosis, neurophysin receptor and heredity

Key words:adenomyosis(AM);vascular formation; immune

子宫腺肌病(adenomyosis)是指具有生长功能的子宫内膜腺体和间质在多种致病因素的作用下侵入子宫肌层而引起的以经量过多、经期延长、继发性痛经渐进性加重为主要临床表现的良性病变。该病首次由Frank命名,为良性疾病,但在生物学行为上具有粘附、侵袭、转移等许多类似恶性肿瘤之处。近年来,随着分子生物学和现代诊断技术的发展,许多学者对本病的发病机制进行了深入的研究,提出了许多相关因素。现就近年来有关本病发病机制的分子生物学研究概况综述如下:

1 血管生成与子宫腺肌病的相关性

近年来血管因子在细胞的增生、迁移发生过程中的重要意义受到学术界的重视。研究表明,血管生成可能在子宫腺肌病发病过程中起重要作用[1]。Han[2-3]用免疫组化染色发现子宫腺肌病的子宫内膜和肌层的血管生成活性显著升高。Hirotaka[3]通过宫腔镜检查发现近一半的子宫腺肌病内膜有异常血管形成。某些血管生成因子活性增高或是抑制因子活性降低,或两者平衡失调,经过一系列过程形成新生血管,其中至少包括微血管基底膜和细胞外基质的降解,血管内皮细胞迁徙及增殖分裂,新的原始血管分化成熟,最后形成新的毛细血管。以上过程受到多因素的调节,如血管生成因子、细胞因子、整合素家族和其他黏附分子、成纤维生长因子、蛋白水解酶、透明质酸酶及小分子物质等,其中血管生成因子家族在血管生成中起着非常重要的作用,该家族包括血管内皮生长因子(VEGF)、血小板来源的内皮细胞生长因子(PD-ECGF)、巨噬细胞移动抑制因子(MIF)、肿瘤坏死因子(TNF)等,而VEGF是最为关键的因素,其他因子最终都是通过它而发挥调节血管形成作用。

VEGF通过增加血管通透性,改变血管细胞基因表达,促进血管内皮细胞的有丝分裂等途径导致新生血管形成,成为目前公认的最关键的促血管形成因子,是参与调控血管生成的最重要的血管生长因子,它在组织中的表达反映了该组织的血管生成活性。

2 免疫与子宫腺肌病的相关性

免疫系统是机体的一个重要功能系统,担负着免疫防御、免疫监视与免疫自稳的功能,但免疫系统功能失调可引发或促进疾病。近年国外有研究表明,子宫腺肌病患者的细胞免疫和体液免疫均增强,免疫功能失调在子宫肌腺病的发病中可能起一定的作用[4]。

2.1 细胞免疫

(1)免疫细胞:包括T细胞、B细胞、单核- 吞噬细胞、NK细胞等。正常的子宫内膜间质中具有一定数量的免疫细胞,约占子宫内膜间质细胞的10%~15%,主要成分为T细胞与巨噬细胞,免疫细胞数量及功能的异常与子宫腺肌病的发生发展密切相关。Propst 等[5]用免疫组化染色证实子宫腺肌病组织确实表达巨噬细胞单克隆刺激因子(GM – CSF),且GM - CSF 配体的表达在子宫腺肌病组织腺上皮比在位内膜明显增加,尤其在月经周期的分泌期更明显。表明子宫腺肌病腺上皮产生的GM- CSF 配体水平上调,可能在子宫腺肌病活化的巨噬细胞水平的增加上起作用。

(2)细胞因子:细胞因子( cytokine, CK)是指由免疫细胞和某些非免疫细胞(如血管内皮细胞、表皮细胞、成纤维细胞)经刺激而合成、分泌的一类小分子蛋白质,主要调节免疫应答、参与免疫细胞分化发育、介导炎症反应、刺激造血功能并参与组织修复等。免疫细胞数量及功能的异常,导致其分泌的细胞因子发生变化,而细胞因子的变化,又可影响局部一些生长因子的活性,从而引发疾病。

ENA-78属于趋化性细胞因子超家族,主要来源为活化的巨噬细胞,对中性粒细胞有特异性趋化作用。有研究显示,子宫腺肌病患者体内存在着一系列的免疫反应,包括细胞表面抗原表达增强、巨噬细胞活化及免疫球蛋白和补体成分的沉积,激活的免疫细胞分泌不同的细胞因子或生长因子,如IL-1、TNF、IFN-γ等,形成复杂的细胞因子网络, ENA-78是其中一个重要环节,有学者报道在子宫内膜上皮细胞产生ENA-78和IL-8可增加IL-1、TNF、IFN -γ的量[6]。

基质金属蛋白酶(MMPS)是一类降解细胞外基质的酶,主要参与细胞外基质的重建,在很多生理和病理过程中发挥作用。Qiu F等[7]于2006年研究认为,AM异位内膜组MMP-2的表达显著高于在位内膜组,提示MMP-2的过度表达使内膜的侵袭力增强,异位内膜组织能降解包括基底膜在内的ECM成分,破坏了阻止子宫内膜侵入的“天然屏障”,为AM异位病灶的形成提供了条件。

E-cadherin属粘附因子家族,其功能主要是调节细胞与细胞之间的黏附反应,对维持组织结构形态起重要作用。有学者研究发现,在月经周期的各个阶段,子宫内膜中E-cadherin都有表达,而在分泌期明显高于增殖期,主要在上皮细胞表达。子宫腺肌病是雌激素依赖性疾病,子宫内膜分泌雌二醇、孕酮能力增强或其受体表达能力增加,使局部激素水平上升,从而导致E-cadherin表达增强。在妊娠、流产等因素作用下,子宫内膜、子宫内膜—子宫肌层连接区、子宫肌层受到损伤,而高表达E-cadherin的子宫内膜腺上皮细胞有较强的黏附力,在其与子宫内膜接触后,黏附并在子宫肌层生长,形成异位的子宫内膜,发生子宫腺肌病,这也解释了肌层中的异位内膜与宫腔表面的子宫内膜有直接通道相连的病理表现。我们认为E-cadherin在子宫腺肌病的发生、发展过程中发挥了一定作用。

(3)人类白细胞抗原( human leucocyte antigen,HLA)是人类主要组织相容性抗原,由抗原呈递细胞使抗原内在化并降解、加工抗原,然后作为免疫原复合物释放至细胞表面。HLA-DR(主要组织相容性复合物- Ⅱ型抗原(MHC - Ⅱ))是经典的HLA基因之一, 其被巨噬细胞识别,进而激活T细胞并刺激B细胞产生抗体,研究结果[8]显示子宫腺肌病的在位和异位内膜腺上皮细胞中HLA-DR 抗原的表达比正常子宫内膜明显增高, HLA-DR 优先分布于子宫腺肌瘤的腺上皮细胞,且分泌期高于增殖期。HLA-DR抗原表达升高引起抗原传递以及其后的免疫反应异常可能是子宫腺肌病发病的原因之一。

2.2 体液免疫

在子宫腺肌病患者的外周血中存在自身抗体,如磷脂次黄嘌呤IgG、磷脂酰甘油IgG和磷脂酰丝氨酸IgG的增高,在切除子宫或使用达那唑治疗后,这些抗体明显下降,说明了与自身免疫性疾病和反复流产有关的抗磷脂抗体的存在,也预示了该病患者常常伴发不孕和体外受精成功率低。同时,相关研究报道补体系统通过沉积C3和C4也参与子宫腺肌病的免疫调节。

3 细胞凋亡与子宫腺肌病的相关性

细胞凋亡又称程序性死亡(PCD),指有核细胞在凋亡刺激信号的作用下,通过启动细胞内死亡机制,经过一系列信号传导途径,最终发生细胞程序性变性和坏死的主动死亡过程,是受高度调节的生理过程,它与细胞有丝分裂相互协调,共同调控胚胎发育、形态发生、正常组织的更新,同时消除多余、衰老和受损伤的细胞,以维持机体内环境的稳定[9]。目前, 已经认识到, 细胞凋亡不仅参与了胚胎发生、组织塑形、造血调控、发育、生殖、老化、免疫等生理过程, 而且与病毒感染、增殖性疾病、肿瘤等多种疾病的发生及治疗有关。子宫腺肌病是一种增殖性疾病,因此它的发生可能与凋亡调控基因有关。

Survivin 基因:Survivin (生存素)作为凋亡抑制蛋白( inhibitor of apop tosisp rotein, IAP)家族中的新成员, 越来越受到学者们的重视。Survivin 位于17q25染色体上,与细胞分裂、增生有关,是目前发现的最强凋亡抑制基因,是通过直接抑制凋亡通路下游的caspase - 3 (半胱氨酸天冬氨酰蛋白酶- 3 )和caspase - 7而发挥抗凋亡作用[10]。Survivin主要分布于胚胎及分化不成熟的组织中,在正常成人分化成熟组织一般不表达[11]。生存素高表达时能促进细胞增殖,参与调节细胞的有丝分裂,并能对抗各种凋亡诱导因子如IL-3、TNF-α、Bax、Fas和某些抗癌药物及放射线等的作用,可调节细胞周期,并可参与血管生成,而一些细胞因子如血管内皮生长因子(VEGF)还可以促进生存素再表达[12]。汤淼等[13]采用免疫组化抗生物素蛋白-过氧化物酶染色法(SP法)检测Survivin在AM (子宫腺肌病)中的表达发现: 腺肌病中异位内膜生存素高表达,细胞凋亡抑制作用增强,增生增加,使异位内膜细胞存活期延长,细胞死亡与增生失衡,过度的增生使增生性疾病发生。由此推测,生存素引起的凋亡抑制可能是腺肌病发生的一个因素。

4 激素、受体蛋白与子宫腺肌病的相关性

子宫腺肌病通常被认为是一种雌激素依赖性疾病, 多见于育龄期妇女,绝经后异位的内膜组织逐渐萎缩被吸收,如使用雌激素替代疗法可使原病变复发,其异位内膜也随卵巢分泌的甾体激素周期性变化而改变,均提示本病与雌激素水平相关。目前雌激素在子宫腺肌病发生发展中的重要作用已经得到公认。

Noel JC[14]等发现子宫内膜异位症腺体、间质及肌层均有PR (孕激素受体)及ER (雌激素受体)的表达,且主要集中在异位病灶,在月经周期的各个阶段均为PR>ER,除直肠阴道异位病灶外(增生期PR及ER的表达水平高于分泌期),其他部位异位病灶无明显周期性变化。还有学者发现异位病灶本身还能分泌雌激素,因异位内膜中雌激素合成酶的含量增加,使组织中的雌激素水平异常增高所致,这些酶包括芳香化酶细胞色素P450、17p羟类固醇脱氢酶2型、硫酸雌酮脂酶。异位间质细胞芳香化酶高表达和雌激素浓度增加,促进环氧合酶- 2 (COX - 2)活性,增加前列腺素PGE2 生成[15]。反过来, PGE2通过增强异位内膜芳香化酶活性,进一步促进雌激素生成,如此芳香化酶- 雌激素- 前列腺素在子宫内膜异位组织内形成正反馈调节循环。动物实验中发现子宫腺肌病的小鼠血清中有高水平的催乳素,子宫催乳素受体表达也增加;研究还发现子宫腺肌病异位子宫内膜腺上皮绒毛膜促性腺激素、黄体生成素的受体基因mRNA 和受体蛋白的表达明显高于在位子宫内膜,而间质细胞的表达无明显差异,提示子宫内膜腺上皮绒毛膜促性腺激素、黄体生成素受体表达水平的升高与子宫腺肌病的发生有关。

5 遗传基因与子宫腺肌病的相关性

Patois等[16]发现异位子宫内膜间质细胞可见染色体(7q) (q21.2. q31.2)部位缺失。Zong 等[17]发现HLA - DQA1 0301 和0401 等位基因与子宫腺肌病和子宫内膜异位症均有关,两者可能在HLA - DQA1 和HLA - DRB1 等位基因频率上有共同的发病机制。此外,还有众多关于癌基因与子宫腺肌病的研究,p53、MDM2、和p21Waf1都是癌基因蛋白,他们都具有调节细胞周期的能,Anas-tasiaa[18]等的研究发现这些癌基因蛋白在子宫内膜异位症中表达而在子宫腺肌病不表达,p53, MDM2,和p21Waf1癌基因蛋白的表达表明了这些癌基因蛋白在调节子宫内膜异位症的细胞生长中起作用,但是在子宫腺肌病中没有调节作用。近年研究还发现,氧自由基代谢失衡可引起组织细胞发生破坏性的反应,与子宫腺肌病的发生有一定的相关性。同时,多次妊娠分娩及宫腔操作均可造成子宫内膜和浅肌层的损坏,有利于基底细胞增生并侵入子宫肌层。

综上所述,子宫腺肌病虽为良性病变,但具有恶性肿瘤远处转移、种植和生长的恶性生物学行为,探讨本病的发生机制有利于临床选方用药及新药的研发,提高本病的治愈率,减少远期复发率。

参考文献

[1] Kang S,Zhao J.Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosis[J].Environ Mol Mutagen,2009,50(5):361-366.

[2] Han Y,Zhou Y,Zheng S,et al.Study on the expression of vascular endothelial growth factor In patients with adenomyosis of the uterus[J].Zhonghua fuchanke zazhi,2002,37(9):539-541.

[3] Hirotaka O,Tanaka T.Stromal vascularization in the endometrium during adenomyosis[J].Microsc - Res – Tech,2003,60(4):445-449.

[4] Kawahara R,Matsuda M,Mori T.Increase in the number of integrinbeta1-immunoreactive monocyte-lineage cells in experimentally-induced adenomyosis in mice[J].Life Sci,2003,73(7):907 - 916.

[5] Propst AM,Quade BJ,Nowak RA,et al.Granulocyte Macrophage Colony Stimulating Factor in Adenomyosis and Autologous Endometrium[J].J Soc Gynecol Investig,2002,9(2):93-97.

[6] Bersinger NA,Frischknecht F,Talylor RN,et al.Basal and cytokine-stimulated production of epithelial neutrophil activating peptide -78(ENA-78) and interleukin-8 ( IL-8) by cultured human endome-trial epithelial and stromal cells[J].Fertility and Sterility, 2007,28.

[7] Qiu F,Gao XM.Expression of matrixmetalloproteinase and tissue inhibitor of metalloproteinase in adenomyosis[J].Sichuan Da Xue Xue Bao Yi Xue Ban,2006,37(1):118-122.

[8] Koumantakis EE,Panayiotides JG et al. Different HLA-DR expression in endometriotic and adenomyotic lesions:correlation with transvaginal ultrasonography findings[J].Arch Gynecol Obstet,2009,8.

[9] Nasu K,Yuqe A.Involvement of resistance to apoptosis in the pathogenesis of endometriosis[J].Histol Histopathol,2009,24(9):1181-1192.

[10] Ye CP, Qiu CZ,Huang ZX,et al. Relationship between Survivin expression and recurrence,and prognosis in hepatocellular carcinoma [J].World Gastroenterol, 2007,14;13(46):6264–6268.

[11] Li E.Role of Survivin and its splice variants in tumori - genesis[J].Br J Cancer, 2005,31:92(2):212–216.

[12] Cheng KW,Lahad JP,Gray JW,et al.Emerging Role of RAB GTP ases in Cancer and Human Disease[J].Cancer Res,2005,65:2516-2519.

[13] 汤淼,王敏. 生存素在子宫腺肌病异位病灶中的表达及其意义[J].中国妇产科临床杂志,2007,3(8):213 – 215.

[14] Noel JC,Chapron C.Estrogen and progesterone recaptors in smooth muscle component of deep infiltrateing endometriosis[J].Fertil Steril,2009,11 .

[15] Carli C,Metz CN. Up-regulation of cyclooxygenase-2 expression and prostaglandin E2 production in human endometriotic cells by macrophage migration inhibitory factor:involvement of novel kinase signaling pathways[J]. Endocrinology,2009,150(7):3128-3137.

[16] Nikos P,Christos K,Georgia B,et al . Chromosome Analysis of Uterine Adenomyosis: Detection of the Leiomyoma - Associated del(7q) in Three Cases[J].Cancer Genet Cytogenet,1995,80:118-120.

分子生物学发展第3篇

[关键词] 早期宫颈癌;复发;分子生物学

[中图分类号] R737.33 [文献标识码] A [文章编号] 2095-0616(2013)10-39-03

宫颈癌是女性最常见的生殖道恶性肿瘤。宫颈癌死亡率每年大约26万,其中80%发生在发展中国家,HPV16和18是最常见的两种致宫颈癌的病毒,70%的宫颈癌由这两种病毒引起[1]。近年来采用阴道脱落细胞图片检查的普及,使不少宫颈癌患者能早期发现、早期治疗,提高了患者的生存期。但临床发现宫颈癌年轻化倾向明显,25~54岁人群发病率不降反升[2]。导致早期宫颈癌复发的因素较多,许多国内外学者对早期宫颈癌的各方面进行了大量的研究分析,得出了很多与早期宫颈癌复发有关的原因。本资料通过对国内外最近五年相关文献资料的研究学习,总结导致早期宫颈癌复发的分子生物学因素。

1 宫颈上皮细胞间质转化

大量的研究表明宫颈上皮细胞间质转化(EMT)与宫颈癌的形成和转移复发有密切关系。

1.1 上皮细胞间质转化(EMT)

正常的上皮细胞靠专门的细胞间粘附力紧密连接在一起,而且具有顶-基底极性。间质细胞形似纺锤体,连接松散,流动性强,具有前-后极性。上皮细胞通过复杂的程序转变成间质细胞的过程称为上皮细胞间质转化。上皮细胞转变为间质细胞后会失去原来的特性,中间会形成一种亚稳定的细胞既有上皮细胞又有间质细胞的特性,这是一种很多肿瘤都有的过程[3]。上皮细胞间质转化有3种类型,其中第3型存在于肿瘤的侵袭与转移中[4]。宫颈上皮细胞通过EMT过程,形成上皮样的癌细胞失去极性,不稳定,但是还具有上皮细胞的其他特性,经恶化和分化形成具有转移、侵袭能力的癌细胞。癌细胞离开原始位置,侵入基底膜下,侵入血管和淋巴管随血液转移到另一个地方形成转移灶。在这过程中,还有以下因素参与,干细胞机制[5]、抗吞噬作用[6]、免疫逃避、药物抗性等。

1.2 EMT的分子生物学

上皮细胞间质转化的标志性分子变化主要有:(1)E-钙粘蛋白和β-连环蛋白的下调。E-钙粘蛋白和β-连环蛋白的下调与早期宫颈癌的组织学分化、转移和复发成正相关[7]。(2)N-钙粘着糖蛋白、纤维连接蛋白以及波形蛋白的上调表达。波形蛋白的上调表达与早期宫颈癌的转移、复发成正相关[7]。(3)Rho GTP酶介导的细胞骨架重排。RhoC在正常宫颈组织、CIN 组织和宫颈癌组织中的表达逐渐增高,在有淋巴结转移的宫颈癌组织中的表达明显高于无淋巴结转移组织,同时RhoC的沉默可以明显降低SiHa细胞的体外粘附能力和侵袭、迁移能力[8]。(4)调控EMT的基因转录因子的上调和易位,如Twist1、Twist2、Snail、Slug、Six1等。Twist1、Twist2和E47抑制E-钙粘蛋白的表达以及调节其它基因功能诱导EMT过程[9]。

1.3 EMT的信号通路

上皮间质转化的信号通路有转化生长因子(TGF-β)通路、Wnt通路、Notch通路、NF-κβ通路等。这些通路相互作用,共同调节EMT的过程[10]。

1.3.1 TGF-β信号通路 TGF-β是一组具有广泛生物活性的多肽,哺乳动物中有三种亚型TGF-β1、TGF-β2、TGF-β3,其中TGF-β1是TGF-β相关的致瘤作用研究的重点,TGF-β1在肿瘤细胞中是上调的[11]。TGF-β通过细胞膜表面具有丝氨酸/苏氨酸激酶活性的TβR Ⅰ和TβR Ⅱ结合形成复合物。TβR Ⅰ有ALK1/TSR-1、ALK1/TSK7L、ALK5/TβRⅠ 3种受体,TβR Ⅱ只有一种受体。TGF-β与TβR Ⅱ结合形成复合物使TβR Ⅰ磷酸化,随之smads被磷酸化,诱导该复合物进入细胞核;这一信号通路受到干扰发生异常,与肿瘤的发生有重要关系[12]。与TGF-β信号通路影响细胞核内转录的因子有smad、Ras、Rho、TAK1、PP2A、β-catenin 以及NF-κβ、ATF2等。Smad7和TGF-β1与宫颈癌的发生发展、临床分期、侵润和淋巴结转移相关[13]。Stephanie等[14]的研究发现TGF-β信号通路在EMT过程中起着重要作用,从而导致癌细胞具有侵袭和转移能力。Iancu等[15]研究TGF-β通路在HPV诱导的宫颈癌中发现TGF-β通路的破坏与宫颈恶性进展有很大关系;在宫颈上皮样瘤变到宫颈癌的过程中TGF-β1表达减少;同时TGF-β1受体基因表达也下降。

1.3.2 Wnt信号通路 Wnt信号通路有经典的Wnt信号通路、Wnt/ca+通路、Wnt/PCP通路,其中经典通路最重要,通过β-catenin激活基因转录;其机理概括为WntFzdDshβ-catenin降解复合体解聚β-catenin入核TCF/LEF基因转录[16]。参与Wnt信号通路的蛋白有Frizzled、Dishevelled、Gsk3β、CK1、APC、β-catenin等。Wnt信号通路受到刺激后,APC基因突变使β-catenin降解复合物合成障碍,以及β-catenin基因突变使β-catenin不能被磷酸化和泛素化降解,从而使β-catenin降解障碍,胞浆内游离的β-catenin聚集,进入核内激活Cyclin D1、C-myc等基因转录,导致肿瘤发生。细胞核的Survivin、Cyclin D1受Wnt通路的激活[17],影响宫颈癌的复发和转移。Survivin、P21、Cyclin D1蛋白对早期宫颈癌复发的影响中发现,三者在早期宫颈癌中的表达明显升高,并且三者共表达时与临床分期、病理分级有关;Survivin、Cyclin D1表达与早期宫颈癌复发有关,二者共同表达与盆腔淋巴结转移有关[18]。

1.3.3 Notch信号通路 Notch信号通路是肿瘤血管生成和转移的一个关键因素[19]。Notch信号通路由Notch、Notch配体(Jagged)、受体等组成,其中配体有Delta-like1、3、4,Jagged1、2,CSL,受体有Notch1、2、3、4,Notch信号通路在不同的肿瘤以及不同的阶段作用不同。Notch信号通路概括为DeltaNotch酶切ICN细胞核CLS/ICN复合体基因转录[19]。Notch1中有Notch1-RBP-Jκ路径、Notch1-PI3K-PKB-Akt路径、Notch1-IKK-NF-κB路径共同相互影响宫颈癌的发生发展[20]。Bajaj等[21]研究发现CD66+细胞中Notch信号通路对宫颈癌有重要作用。免疫组织化学分析显示Notch3在宫颈鳞癌中过度表达,Notch阳性表达的宫颈癌患者比阴性表达的患者的生存率小[22]。

1.3.4 NF-κB信号通路 基本的NF-κB信号通路包括受体、受体近端信号衔接蛋白、IκB 激酶复合物、IκB 蛋白和NF-κB二聚体。受到刺激后IκB 激酶复合物被激活,IκB 蛋白磷酸化和泛素化,IκB 蛋白被降解,NF-κB二聚体释放修饰后进入细胞核内,进行基因转录。NF-κB一般情况下位于细胞胞浆内,由两个功能亚单位P65和P50组成,与其抑制因子IκB-α和IκKB-β结合在一起。宫颈癌中IκB-α的去磷酸化使IκB-α减少,从而NF-κB的P65进入细胞核内[23],参与细胞核内基因的表达调控。NF-κB激活对肿瘤的促进作用主要有:(1)①NF-κB激活对宫颈癌的转移有明显促进作用[24];(2)NF-κB的GADD45α和γ表达下调使肿瘤细胞逃避凋亡;(3)NF-κB上调Cyclin D1等,促进肿瘤细胞生长。NF-κB的P65和c-IAP2的过度表达和caspase-3的下调,是宫颈癌发生发展的重要因素[24]。

2 小结

目前国内外对早期宫颈癌治疗后复发的因素研究较多,都认为复发是由于多方面、多路径的因素共同作用的结果。发现复发转移的关键因素,提高患者的生存率,减轻患者的痛苦是有必要的。除EMT、VEGF信号通路、notch信号通路等,是否可以发现更多关键的分子生物学层面的相关因素,使早期宫颈癌能更早的发现,得到早期治疗,阻断关键的分子生物路径,减少复发率。

[参考文献]

[1] Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer[J]. Gynecol Oncol,2008,110(3 Suppl 2):S4-7.

[2] 汤钊猷.现代肿瘤学[M].第3版.上海:复旦大学出版社,2011:1124-1169.

[3] Lee JM,Dedhar S,Kalluri R, et al.The epithelial- mesenchymal transition:new insights in signaling, development, and disease[J]. Cell Biol,2006,172:973-981.

[4] kalluri R,Weinberg RA.The basics of epithelial-mesenchymal transition[J].J clin invest,2009,119(6):1420-1428.

[5] Mani SA, Guo W, Liao MJ,et al.The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133:704-715.

[6] Franco DL, Mainez J, Vega S,et al. Snail1 suppresses TGF-β induced apoptosis and is sufficient to trigger EMT in hepatocytes[J]. J Cell Sci,2010,123:3467-3477.

[7] Cheng Y, Zhou Y, Jiang W,et al.Significance of E-cadherin, β-catenin, and vimentin expression as postoperative prognosis indicators in cervical squamous cell carcinoma[J].Hum Pathol,2012,43(8):1213-1220.

[8] 贺晓琪. RhoCGTP酶对宫颈癌侵袭转移的影响以及与上皮间质转化的相互调控机制[D].武汉:华中科技大学,2008:34-39.

[9] Peinado H,Olmeda D,Cano A.Snail,Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?[J].Nat Rev Cancer,2007,7:415-428.

[10] Yang J,Weiberg RA.Epithelial-mesenchymal transition at the crossroads of development and tumor metastasis[J].Dev Cell,2008,14(6):818-829.

[11] Rik Derynck,Rosemary J.Akhurst,Allan Balmain. TGF-βsignaling in tumor suppression and cancer progression[J].Nature Genetics,2001,9(29):117-129.

[12] 刘成敏,张成仁,王秀梅.Smads介导的TGF-β信号转导通路与肿瘤关系的研究进展[J].中华肿瘤防治杂志,2010,17(8):631-634.

[13] 孟茜,孟娟.Smad7和TGF-β1在宫颈癌中的表达及意义[J].当代医学,2010,16(21):78-79.

[14] Stephanie B.Walsh,Jianmin Xu,Hui Xu,et al.Cyclosporine A mediates Pathogenesis of Aggressive Cutaneous Squamous Cell Carcinoma by Augmenting Epithelial-Mesenchymal Transition:Role of TGF-β Signaling Pathway[J]. Mol Carcinog,2011, 50(7): 516527.

[15] Iancu IV, Botezatu A, Goia-Ru?anu CD,et al.TGF-beta signalling pathway factors in HPV induced cervical lesions[J].Roum Arch Microbiol Immunol,2010,69(3): 113-118.

[16] Paul Polakis.Wnt signaling and cancer[J].Genes Dev,2000,14:1837-1851.

[17] Clevers H.Wnt/beta-catenin signaling in development and disease[J].Cell,2006,127(3):469-480.

[18] 李全红,姚嘉斐,胡淑敏. Survivin、P21WAF1/CIP1及Cyclin D1蛋白表达及与早期宫颈癌复发的关系[J]. 中国癌症杂志,2003,13(6):495-499.

[19] Alejandro Garcia,Jessica J.Kandel.Notch:A key regulater of tumor angiogenesis and metastasis[J].Histol Histopathol,2012,27(2):151-156.

[20] 周建松,叶枫.宫颈癌NOTCH1相关信号路径研究进展[J].国际妇产科学杂志,2009,36(3):238-240.

[21] Bajaj J, Maliekal TT, Vivien E,et al.Notch signaling in CD66+cells drives the progression of human cervical cancers[J]. Cancer Res,2011,71(14):4888-4897.

[22] Yeasmin S,Nakayama K,Rahman MT,et al.Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes[J]. Gynecol Oncol,2010,117(3):409-416.

[23] Kuncharin Y, Sangphech N, Kueanjinda P,et al.MAML1 regulates cell viability via the NF-κB pathway in cervical cancer cell lines[J]. Exp Cell Res,2011,317(13):1830-1840.

分子生物学发展第4篇

关键词 分子生物学 妇科 产前诊断 免疫遗传

中图分类号:Q7文献标识码:A

1 分子生物学与妇产科的基本情况概述

分子生物学的兴起是上世纪50年代以后的事情,但是自其兴起和发展以来,发展的巨大成就十分引人关注。六十多年来产生了巨大的影响,繁荣的势头依然十分强劲。分子生物学研究要进行的问题在于对生命本质一致性的分析,学者们通过分子水平的研究,发现由最低级、最简单的单细胞生物到最复杂最高等的人的基本组成(这些组成主要由蛋白质、核酸、糖等三类物质构成)的构成与遗传信息的物质基础(主要包括DNA和RNA)、流向(中心法则)以及含义(遗传密玛)乃至能量转换的机理都是高度一致的,正是因此,人们才发现在分子水平层面,生物取得了相对的统一。分子生物学的这一成就具有极其重要的意义,它使得基因在不同生物个体、种属之间的转移成为可能,从而大大的提高了生命科学各个分支学科以及整个生命科学的发展。在21世纪,分子生物学的发展将不断深入和扩大,关于脑的活动、生命发育、疾病免疫等复杂难题将成为分子生物学研究的重中之重。

要准确客观理解分子生物学对妇产科的影响,必须对妇产科的基本情况所有了解,在长期的医学研究和发展实践中,妇产科的研究和实践内容不断丰富和发展,如在生命发育阶段,对胎盘、胎儿生理、母体子宫平滑肌的功能调节以及分娩发动机制、早产等问题都有研究。在妊娠期目前对于绒毛外滋养细胞以及胎儿胎盘转运方面的问题也引起了学界的高度重视。在欧美国家,分子生物科学较为发达,对生物的基因芯片以及微RNA的研究不断深入,探讨了一些生物学的病理机制及治疗方法,典型的如子痫、慢性高原疾病、肥胖等问题。以世界卫生组织(WHO)为代表的一些研究结构对妇科流行病学、早产病因基因组研究以及基于循证医学早产临床干预等问题进行了深入研究。

2 分子生物学在妇产科领域的应用与发展分析

事实上,妇产科的发展历史较之于分子生物学要早很多,但是分子生物学兴起之后,对妇产科的发展产生了极大的影响,有些影响甚至可以说是革命性的。比如在女性的产前诊断中,分子生物学的兴起使得我们对一些具有严重出生缺陷或者遗传病等问题在宫内期即可作出诊断并及时采取科学合理的对策措施。分子生物学产生之前,该领域主要运用的是胎儿镜以及影像技术,但是,近年来,致病基因不断分离克隆,高危胎儿的基因突变分析不仅重要而且必须,分子生物学技术为此提供了可能性,如分子杂交、荧光原位杂交、PCR技术等分子生物学技术在单基因病以及染色体畸变的诊断中获得了较为广泛的应用。此外,一些全新的分子细胞遗传学技术,诸如端粒探针、锚定原位标记技术、基因组杂交等在妇产科的应用问题也已经被提上议事日程。笔者通过以上的分子生物学在产前诊断的应用问题的论述,已经很明显的说了分子生物学对提高植入前遗传诊断或用孕妇血中胎儿细胞诊断问题具有十分重要的作用。

当前,应用到妇产科的分子生物学技术是多种多样,纷繁复杂的,如索森印迹杂交(Southern blot hybridization)、聚合酶链反应(polymerase chain reaction)、荧光原位杂交(fluorescence in situ hybridization)、单链构象多态性(single strand conformation polymor-phism)、异源双链分析(heteroduplex analysis)、DNA序列分析、蛋白截短测试(protein truncation test)等等,不一而足。这些技术在妇产科的很多具体方面得到了应用与发展,如在遗传方面的研究,当前,我们已知一些遗传性肿瘤(视网膜母细胞瘤、Wilm氏瘤)的突变基因是按孟德尔方式遗传的。当然也有一些基因与肿瘤的易感性有关,但是其遗传方式都是孟德尔方式,分子生物学技术可以对这些基因可以进行产前检查。又如多聚合酶链反应这一分子生物学技术的广泛应用,对于一些妇产方面的疾病,比如Duchenne's肌营养不良症、囊性纤维化症、苯丙酮尿症、脆性X染色体综合征等进行诊断和治疗已经成为可能。再如,分子生物学在母婴感染传播方面的应用,超微量的DNA扩增技术具备敏感性、特异性以及简便性的优点在母婴感染传播方面的应用优势十分明显。分子生物学的应用使得对于母婴传播方面存在可能的人类免疫缺陷病毒(HIV)、巨细胞病毒(CMV)、风疹病毒等进行一些提前的检测与预防成为可能。值得一提的是利用PCR技术还可以根据不同引物的特点进行预后。近年来,丙型肝炎病毒(HCV)的母婴传播已成为一个研究热点,PCR技术在这一领域也取得了诸多成就。此外,在妇科肿瘤基因研究方面,目前学界对肿瘤发生和发展的认识进入了分子水平。在分析肿瘤细胞中复杂的染色体异常组成以及对癌基因的定位及其抑制方面都有贡献。当前免疫遗传研究热点是人类白细胞抗原系统(human leucocyte antigen,HLA)与该病的关系。分子生物学技术的应用使HLA分型研究从抗原水平进入到基因水平,使与疾病关联的HLA基因准确分型、定位。以上所举的一些也只是分子生物学在妇产科领域应用和发展的冰山一角,我们有理由相信,随着分子生物学和妇产科的不断交叉融合,两个学科以及交叉部分都会取得更多崭新的成就。

参考文献

[1] 李隆玉,万建萍,钟传庆.子宫内膜癌发生分子机制及治疗的研究进展[J].中华肿瘤防治杂志,2008(19).

分子生物学发展第5篇

视网膜母细胞瘤( retinoblastoma,RB)是婴幼儿最常见的一种眼内恶性肿瘤, 不仅严重影响患儿的视力,更危及生命。随着生物学技术的迅猛发展,RB的生物学研究已取得一些突破,探讨RB的发病机制对抑制肿瘤的生长和转移,提高患儿的生存率,具有重要的临床意义。现将视网膜母细胞瘤发病机制的研究进展综述如下。

【关键词】 视网膜母细胞瘤;基因突变;p53;鼠双微粒体2;Rb蛋白

Abstract Retinoblastoma is a common pediatric eye malignant tumor, it not only seriously affects childrens eyesight, but also endangers their lives. With the rapid development of biological technology, some breakthroughs have been made in retinoblastoma biological research. It has an important clinical significance to explore the pathogenesis of retinoblastoma in order to inhibit tumor growth and metastasis and improve the survival rate of children. Now the pathogenesis of retinoblastoma research is summarized.

KEYWORDS: retinoblastoma; mutation; p53; MDM2; pRb

0 引言

视网膜母细胞瘤(retinoblastoma,RB)是发生于婴幼儿时期最为常见的眼内恶性肿瘤[1],出现首个体征的平均年龄为生后7mo(双侧发病病例)和24mo(单侧发病病例)[2],严重危害着患儿的视力和生命,已经受到医学界的广泛关注。我国每年新病例约有1000人,占全世界每年新病例的20%。其中30%~40%的病例属于遗传型,符合常染色体不完全显性遗传,外显率约90%;60%~70%的病例属于非遗传型。遗传型是由生殖细胞突变引起,变异存在于每一个体细胞中;非遗传型,基因突变仅发生在视网膜细胞。因此,遗传型RB通常为双侧、或单眼多发性;非遗传型则以单侧、散发型多见。

RB是人类特有的一种视网膜肿瘤,对其成因学者们提出了许多假说:1971年,Knudson[3]的二次突变假说认为RB需要经历某个基因的两次突变才能发生;Benedict等[4]在1983年提出类似Knudson的假说;同年Cavenee证实了两个等位基因的失活致RB发生,该基因位于13q14位点,编码pRb蛋白,靠近脂酶D的编码区,命名为Rb1基因。pRb在细胞的增殖和分化中起重要作用,决定细胞是否进入S期[5]。Rb1基因启动子包含多个转录因子的结合位点(RBF1, Sp1, ATF和E2F)[6],遗传型Rb在这些位点上发生突变,造成转录调节因子无法结合,降低了转录活性[7],导致细胞内pRb功能低下或缺失,细胞的正常周期被打破,表现出细胞快速生长形成肿瘤。

1 RB基因突变

1970年代,Knudson[3]首次提出视网膜母细胞瘤发生的“二次突变学说”,即一个正常的视网膜母细胞瘤变成肿瘤细胞需发生2次突变。随机发生的2次突变可使RB基因中正常的等位基因失活。当两个等位基因均发生突变,由体细胞的杂合子型变成了纯合子状态,细胞将失去正常RB蛋白功能,细胞分化失去控制,从而形成肿瘤。1980年代,对RB基因的位置和作用方式有了基本了解。多位学者对RB肿瘤细胞内RB基因及产物进行详细分析[8,9]:(1)在DNA分子水平,大约15%~30%的RB肿瘤显示RB基因结构异常,主要限于显示大的缺失、易位、重组以及影响限制性酶切位点的点突变;(2)在mDNA表达水平,更多的RB肿瘤表现出低于正常胎儿视网膜或分子量大小异常。RB的mDNA异常被认为是由于不同的RB基因点突变对mDNA稳定性转录及剪接影响所致;(3)在蛋白质水平,绝大多数RB或缺失RB蛋白或仅表达少量的或分子量异常的RB蛋白。RB基因突变的类型:(1)大片段缺失[811]:即大片段(全部或部分)RB基因缺失,缺失断裂点可出现于整个RB基因范围内(外显子13~17区域内);(2)在基因编码序列中缺失或插入几个碱基,引起阅读框架移位[1214]。(3)点突变:按其性质可分为2类:错义突变和无能突变。据文献统计,遗传型患者中,仅25%有阳性家族史,多数RB患者为新发生的生殖细胞突变。这说明RB发病过程除了基因突变外可能有其他机制的参与。

2 癌基因、抑癌基因论

近年来,对RB中一些癌基因和抗癌基因的研究开始引起人们的重视。越来越多的研究表明,视网膜母细胞瘤的发生、发展是一个复杂的过程,有多个癌基因和抑癌基因的异常改变,其中MDM2基因的扩增或过表达及p53基因突变有着举足轻重的作用。我们着重对P53及与其可能相关的癌基因MDM2做一综述。p53为一公认的抗癌基因,50%以上的肿瘤组织中可检测到它的突变。肿瘤抑制基因p53位于人类17号染色体短臂17P13.1上,其编码产物位于细胞核,是一种分子量约为53KD的含磷蛋白,可分为野生型和突变型两种。正常细胞所产生的P53蛋白(野生型)很少,而且在细胞中易水解,半衰期为20min左右,用常规免疫组化方法难以检出[15]。突变型p53基因由野生型突变产生,失去抑癌基因活性,可导致正常细胞恶性转化、肿瘤发生[1618]。因其多积聚在细胞核内,稳定性增加,半衰期延长,故可通过免疫组织化学染色检测[17]。在正常细胞中,p53信号通路主要调节细胞损伤后反应(修复或凋亡)[19]。研究发现[2023],RB组织中有高水平的突变型p53基因蛋白表达,提示p53基因突变与RB发生关系密切。p53基因突变与P53蛋白过度表达间的高度一致性己经被证实[24]。

MDM2是一种癌基因,其主要的功能是与野生型或突变型P53蛋白的相互作用[25]。野生型p53基因诱导MDM2转录增强,致使MDM2蛋白水平升高;反过来,MDM2蛋白与P53结合形成复合物,促使P53蛋白降解,抑制其功能的发挥,二者构成了负反馈调节环。通过这种调节,二者在细胞内能处于平衡状态,这即利于DNA损伤后的修复,同时又防止修复后细胞生长受阻[26]。研究表明:MDM2P53负反馈调节环异常可导致细胞中抑癌基因p53功能失活,与多种肿瘤的发生发展密切相关[27] 。MDM2(鼠双微粒体2)癌基因定位于12q13 14,多项实验证实了该基因能使体外细胞发生转化并具有动物成瘤性[28,29]。

MDM2还可通过P53非依赖性方式在肿瘤的发生、发展中起作用。最近新的研究表明MDM2和P53的调节通路有新的酶化途径参与[30],这表明两者之间的作用不是单一途径。

3 其他观点

Rb基因编码的Rb蛋白(pRb)是一种具有广泛生物学意义的转录调节因子,为具有DNA结合能力的核磷酸化蛋白,主要参与细胞周期的调节,对细胞生长起负调控作用,它是调节细胞增殖信号通路的中心成分。近期研究认为,pRb与RB的发生密切相关。

pRb作用于肿瘤的发生、发展可能是通过两种机制:(1)细胞周期调控作用,pRb及其相关蛋白是决定细胞分裂增殖还是休止、分化的重要分子[31]。pRb的功能受磷酸化状态影响,pRb以非磷酸化的活性形式与转录因子E2F结合而抑制其活性,阻止细胞从G1期进入S期[32],抑制细胞增殖,而pRb的磷酸化可使其失活。(2)诱导细胞凋亡,通过p53依赖和p53非依赖的细胞凋亡途径,诱导细胞凋亡[33]。有研究表明[3436]:pRb功能异常导致中心体和非整倍体的扩增。这就意味着pRb与中心体扩增和染色体稳定性有关。最近研究发现:肿瘤的发生开始于干细胞的表观遗传变异,这就意味着基因表达的后天性缺失(非突变性的)比突变更常见。所以就有人提出质疑“二次基因突变论”的合理性。

4 展望

众所周知,肿瘤的发生和发展是一个复杂的过程,有很多影响因素,包括癌基因的激活、抗癌基因的失活、凋亡机制的异常及其他因子的改变。肿瘤细胞既是分化紊乱的产物又是增殖失控的产物。视网膜母细胞瘤亦是如此。目前的研究还没有对RB的发病机制做出较权威的结论,但其分子生物学研究取得了一定进展,我们了解到RB的发生不仅是基因突变那么简单,可能有抑癌基因、癌基因、抗凋亡因子的参与,我们已了解了相当一部分,以后要继续完善研究它们之间的内在关系及相互影响,找出RB发病的主要机制。从分子水平重新认识RB的发生、发展规律,具有明显的理论价值与广泛的应用前景,能为以后基因治疗RB提供科学依据。

参考文献

1 Poplack DG. Principles and Practice of Pediatric Oncology. Philadelphia: LippincottRaven 1997:699715

2 Balmer A, Zografos L, Munier F. Diagnosis and current management of retinoblastoma. Oncogene 2006;25(38):53415349

3 Knudson AG Jr. Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68(4):820823

4 Benedict WF, Murphree AL, Banerjee A, et al. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer genes. Science 1983;219(4587):973975

5 Mittnacht S. The retinoblastoma proteinfrom bench to bedside. Eur J Cell Biol 2005;84(23):97107

6 Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C Semin Med Genet 2004;129(1):2328

7 Sakai T, Ohtani N, McGee TL, et al. Oncongenic germline mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991;353:8386

8 Lee EY, Chang CY, Hu N, et al. Mice deficient for RB are nonviable ahd show defects in neurogenesis and haematopoiesis. Nature 1992;359:288294

9 Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 1987;235(4794):13941399

10 Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323(6089):643646

11 Fung YK, Murphree AL, Tang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236(4809):16571661

12 Mori N, Yokota J, Akiyama T, et al. Varible mutations of the RB gene in smallcell lung carcinoma. Oncogene 1990;5(11):17131717

13 Dunn JM, Phillips RA, Zhu X, et al. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol 1989;9(11):45944602

14 Dunn JM, Phillips RA, Becker AJ, et al. Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 1988;241(4874):17971800

15童坦君.遗传不稳定性与人类肿瘤.生命的化学 1993;13:7

16 Oki E, Tokunaga E, Nakamura T, et al. Genetic mutual relationship between PTEN and p53 in gastric cancer. Cancer Lett 2005;227(1):3338

17 Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53dependent cellular senescence in suppression of PTENdeficient turmorigenesis. Nature 2005;436(7051):725730

18 Wang J, Ouyang W, Li J, et al. Loss of tumor suppressor p53 decreases PTEN expression and enhances signaling pathways leading to activation of activator protein 1 and nuclear factor kappaB induced by UV radiation. Cancer Res 2005;65(15):6601661

19 Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2(2):103112

20 Yule K, Nakajima M, Uemura Y, et al. Imnunohistochemical features of the humor retina andl retinoblastom. Virchows Arch 1995;426(6):571575

21 郭浩轶,宋绣雯.视网膜母细胞瘤中p53 bcl2和cmyc蛋白表达相关性研究.河南医学研究 2002;11(3):206208

22 申煌煊,张清炯,肖学珊,等. p53和MDM2在3种RP小鼠视网膜中的表达.眼科新进展 2002;22(5):301304

23 张杰,孟瑞华,徐建森,等. PTEN和p53在视网膜母细胞瘤中的表达及临床意义.眼科新进展 2008;28(10):754757

24 Rodrigues NR, Rowan A, Smith ME, et al. p53 mutation in colorectal cancer. Proc Natl Acad Sci U S A 1990;87(19):75557559

25 Chi SW, Lee SH, Kim DH, et al. Structural details on MDM2P53 interaction. Biol Chem 2005;280(46):3879538802

26 雷晓华,朱润庆,胡学斌.视网膜母细胞瘤中MDM2、P16和P53的表达及其意义.中国实用神经疾病杂志 2006;9(6):1618

27 Momand J, Wu HH, Dasgupta G, et al. MDM2master regulator of the p53 tumor suppressor protein. Gene 2000;242(12):1529

28 Alkhalaf M, Ganguli G, Messaddeq N, et al. MDM2 overexpression fenerates a skin phenotype in both wild type and P53 null mice. Oncogene 1999;18(7):14191434

29 Zhanig Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and P53. Mol Cell1999;3(5):579591

30 Zhang Z, Wang H, Li M, et al. Novel MDM2 P53independent functions identified through RNA silencing technologies. Ann N Y Acad Sci 2005;1058:205214

31 Kather A, Ferrara A, Nonn M, et al. Identification of a naturally processed HLAA 0201 HPV 18E7 T cell epitope by tumor cell mediated in vitro vaccination. Int J Cancer 2003;10(4):345353

32 Classon M, Dyson N. p107 and p130: Versatile proteins with interesting pockets. Exp Cell Res 2001;264(1):135138

33 DAdda di Fagagna F, Reaper PM, ClayFarrace L, et al. A DNA damage checkpoint response in telomere initiated senescence. Nature 2003;426(6963):194198

34 Lentini L, Pipitone L, Di Leonardo A. Functional inactivation of pRB results in aneuploid mammalian cells after release from a mitotic block. Neoplasia 2002;4(5):380387

35 Duensing S, Lee LY, Duensing A, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell pision cycle. Proc Natl Acad Sci U S A 2000;97(18):1000210007

36 Lentini L, Iovino F, Amato A, et al. Centrosome amplification induced by hydroxyurea leads to aneuploidy in pRB deficient human and mouse fibroblasts. Cancer Letters 2006;238(1):153160

参考文献

1 Poplack DG. Principles and Practice of Pediatric Oncology. Philadelphia: LippincottRaven 1997:699715

2 Balmer A, Zografos L, Munier F. Diagnosis and current management of retinoblastoma. Oncogene 2006;25(38):53415349

3 Knudson AG Jr. Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68(4):820823

4 Benedict WF, Murphree AL, Banerjee A, et al. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer genes. Science 1983;219(4587):973975

5 Mittnacht S. The retinoblastoma proteinfrom bench to bedside. Eur J Cell Biol 2005;84(23):97107

6 Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C Semin Med Genet 2004;129(1):2328

7 Sakai T, Ohtani N, McGee TL, et al. Oncongenic germline mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991;353:8386

8 Lee EY, Chang CY, Hu N, et al. Mice deficient for RB are nonviable ahd show defects in neurogenesis and haematopoiesis. Nature 1992;359:288294

9 Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 1987;235(4794):13941399

10 Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323(6089):643646

11 Fung YK, Murphree AL, Tang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236(4809):16571661

12 Mori N, Yokota J, Akiyama T, et al. Varible mutations of the RB gene in smallcell lung carcinoma. Oncogene 1990;5(11):17131717

13 Dunn JM, Phillips RA, Zhu X, et al. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol 1989;9(11):45944602

14 Dunn JM, Phillips RA, Becker AJ, et al. Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 1988;241(4874):17971800

15童坦君.遗传不稳定性与人类肿瘤.生命的化学 1993;13:7

16 Oki E, Tokunaga E, Nakamura T, et al. Genetic mutual relationship between PTEN and p53 in gastric cancer. Cancer Lett 2005;227(1):3338

17 Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53dependent cellular senescence in suppression of PTENdeficient turmorigenesis. Nature 2005;436(7051):725730

18 Wang J, Ouyang W, Li J, et al. Loss of tumor suppressor p53 decreases PTEN expression and enhances signaling pathways leading to activation of activator protein 1 and nuclear factor kappaB induced by UV radiation. Cancer Res 2005;65(15):6601661

19 Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2(2):103112

20 Yule K, Nakajima M, Uemura Y, et al. Imnunohistochemical features of the humor retina andl retinoblastom. Virchows Arch 1995;426(6):571575

21 郭浩轶,宋绣雯.视网膜母细胞瘤中p53 bcl2和cmyc蛋白表达相关性研究.河南医学研究 2002;11(3):206208

22 申煌煊,张清炯,肖学珊,等. p53和MDM2在3种RP小鼠视网膜中的表达.眼科新进展 2002;22(5):301304

23 张杰,孟瑞华,徐建森,等. PTEN和p53在视网膜母细胞瘤中的表达及临床意义.眼科新进展 2008;28(10):754757

24 Rodrigues NR, Rowan A, Smith ME, et al. p53 mutation in colorectal cancer. Proc Natl Acad Sci U S A 1990;87(19):75557559

25 Chi SW, Lee SH, Kim DH, et al. Structural details on MDM2P53 interaction. Biol Chem 2005;280(46):3879538802

26 雷晓华,朱润庆,胡学斌.视网膜母细胞瘤中MDM2、P16和P53的表达及其意义.中国实用神经疾病杂志 2006;9(6):1618

27 Momand J, Wu HH, Dasgupta G, et al. MDM2master regulator of the p53 tumor suppressor protein. Gene 2000;242(12):1529

28 Alkhalaf M, Ganguli G, Messaddeq N, et al. MDM2 overexpression fenerates a skin phenotype in both wild type and P53 null mice. Oncogene 1999;18(7):14191434

29 Zhanig Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and P53. Mol Cell1999;3(5):579591

30 Zhang Z, Wang H, Li M, et al. Novel MDM2 P53independent functions identified through RNA silencing technologies. Ann N Y Acad Sci 2005;1058:205214

31 Kather A, Ferrara A, Nonn M, et al. Identification of a naturally processed HLAA 0201 HPV 18E7 T cell epitope by tumor cell mediated in vitro vaccination. Int J Cancer 2003;10(4):345353

32 Classon M, Dyson N. p107 and p130: Versatile proteins with interesting pockets. Exp Cell Res 2001;264(1):135138

33 DAdda di Fagagna F, Reaper PM, ClayFarrace L, et al. A DNA damage checkpoint response in telomere initiated senescence. Nature 2003;426(6963):194198

34 Lentini L, Pipitone L, Di Leonardo A. Functional inactivation of pRB results in aneuploid mammalian cells after release from a mitotic block. Neoplasia 2002;4(5):380387

分子生物学发展第6篇

文章编号:1003-1383(2008)03-0347-03中图分类号:R 575;R 392.11文献标识码:Aお

非酒精性脂肪性肝病 (nonalcoholic fatty liver disease,NAFLD)是以无过量饮酒史(酒精摄入量<20 g/d)以及肝细胞脂肪变性、气球样变、弥散性肝小叶轻度炎症和(或)肝中央静脉、肝窦周围胶原沉积等为临床病理特点的慢性肝脏疾病[1],它包括单纯性脂肪肝 (nonalcoholic fatty liver,NAFL)、脂肪性肝炎(nonalcohlic steatohepatitis,NASH)、脂肪性肝硬化(fatty liver cirrhosis,FLC)三种类型。NAFLD已成为导致转氨酶异常的首要病因,并且有部分患者进展到终末期肝病,部分患者甚至与肝脏肿瘤有关。目前我地区NAFLD的发病正在逐渐上升[2],本病的发病原因尚不完全清楚,认为其发生与胰岛素抵抗、氧应激反应和脂质过氧化物质的代谢失衡有关[3]。本文就该病近几年来其分子生物学方面的一些研究进展综述如下。

1.氧自由基对肝细胞的损害作用

患者由于甘油三脂在肝细胞内蓄积,大量的游离脂肪酸(FFA)在线粒体内氧化,产生了过多的超氧阴离子和活性氧物质 (reactive oxygen species,ROS),使抗氧化物质耗竭,过量的过氧化氢 (H2O2)和氢氧根离子 (OH-)损伤肝脏细胞的线粒体和细胞膜,使肝细胞正常生长停滞,炎症变性,最终导致肝细胞变性坏死而引起临床症状[4]。氧是生物维持活性的必要元素,但其在代谢过程中形成的中间产物ROS,与生物膜的磷脂、酶和膜受体相关的多价不饱和脂肪酸及核酸等大分子物质发生脂质过氧化反应,结果使细胞膜的流动性和通透性发生障碍,引起细胞功能失调甚至破裂、死亡。机体在正常生理状态下,具有完善的抗氧化机制,包括超氧化物歧化酶(SOD)等酶类和谷胱甘肽(GSH)等非酶类活性氧清除剂。现代研究认为,活性氧增多和活性氧清除剂减少是NAFLD的重要发病机制[5]。线粒体是脂肪酸进行β-氧化和三羧酸循环、ATP合成和ROS形成的主要场所,线粒体在氧化脂肪和其他燃料供给大多数细胞 ATP时,快速形成 ROS,尽管在这一过程中部分电子可与呼吸链上的半醌自由基反应形成超氧阴离子(O2)、过氧化氢 (H2O2 )和氢氧根离子 (OH-)等氧自由基,其中超氧阴离子是最重要的毒性氧类产物,但细胞内的抗氧化剂可以清除之,避免其所致的氧化应激和脂质过氧化[7]。线粒体是 ROS形成的主要部位,线粒体电子转运系统可消耗细胞90%的氧。大量的ROS可直接或间接通过改变线粒体膜通透性转变孔 (MPTP)的开关,导致细胞凋亡和坏死[8]。 ROS可氧化不饱和脂肪酸导致脂质过氧化,所形成的脂质过氧化物 (LPO)可使部分非酒精性脂肪性肝炎(NASH)患者发生 mtRNA缺失、复制错误、修复障碍和断裂,并造成其呼吸链复合物活性降低[4]。DNA对氧应激很敏感,线粒体的DNA(mtRNA)的氧化损伤敏感性比核DNA高达10~16倍,这是由于mtRNA缺乏组蛋白保护、线粒体修复程序不完整以及 mtRNA相似呼吸链(该链是细胞内 ROS的主要来源)的缺乏[6]。研究发现,大部分NAFLD患者的大部分肝脏 mtRNA均有缺损,造成呼吸链复合物活性降低,同时,线粒体缺乏过氧化氢酶,该酶是唯一作用于GSH过氧化氢毒性作用的酶,线粒体不仅是氧应激的源头,而且是 ROS作用的靶,大量的ROS促成线粒体功能障碍[8]。LPO还可与线粒体蛋白反应形成复合物,抑制电子沿着呼吸链的传递,使氧自由基形成显著增多,进而加重线粒体损伤[6]。

2.肿瘤坏死因子(TNF-α) 与NAFLD

机体的氧应激反应产生过多的TNF-α可以诱导肝脏成纤维细胞、平滑肌细胞、血管内皮细胞、粒细胞和巨噬细胞产生集落刺激因子(GM-CSF),从而影响机体的炎症反应和脂质代谢[9]。TNF-α与早期非酒精性脂肪性肝病损伤有密切关系。有报道,NAFLD患者循环中TNF-α水平增高,且TNF-α与肝脏损伤的生化指数相关[10]。人们应用逆转录聚合酶链反应在大鼠非酒精性肝病模型的研究中发现,肝内TNF-α mRNA增高的水平与肝脏病理损伤的程度相关,同时发现,抗TNF-α抗体可以明显减轻非酒精性脂肪性肝病大鼠的肝脏炎症和肝细胞坏死病变,但对肝脂肪变性无影响[11]。对离体人肝胚细胞瘤细胞进行细胞毒性实验发现,TNF-α可以使该细胞生存力下降,这种作用与TNF-α抗体引起细胞凋亡有关,抗TNF-α抗体可以减轻TNF-α的细胞毒性作用[12]。以上研究说明,TNF-α在NAFLD的发病中起一定作用。

3.白介素(Interleuldn,IL) 与NAFLD

近年来有研究表明,不同的枯否氏细胞的功能状态可加重或减轻NAFLD的肝损伤,因此认为其在NAFLD的发病中起重要作用,为此,枯否氏细胞的功能状态在NASH发病机制中的作用也日益受到关注。人们发现NAFLD不但循环中 IL-la和 IL-6水平显著增高,而且两者的浓度与肝脏损伤的严重程度呈高度相关趋势[13]。采用逆转录聚合酶链反

应研究发现,给大鼠过量的脂肪灌胃2周或 4周,其肝脏内 IL-la mRNA水平增高。喂饲过量的脂肪16周的大鼠肝内枯否氏细胞产生的 IL-6 mRNA水平较对照组增加4倍。因此认为NAFLD中IL-la和IL-6的增高可能与 IL-la、IL-6转录水平增高有关[14]。IL-6可以刺激培养的人皮肤纤维母细胞合成胶原。有人发现,枯否氏细胞 IL-6 mRNA表达的增高与NAFLD纤维化形成有关,提示NAFLD中枯否氏细胞起源程序 IL-6可能有促进胶原形成的作用[13]。另外,离体的 IL-la、IL-6细胞毒性实验发现,单独或联合将 IL-la或(和)IL-6作用于肝炎细胞不会引起细胞毒性反应[14]。目前,关于 IL-la、IL-6在NAFLD发病中的作用途径还在研究中。

4.转化生长因子-β(TGF-β)与NAFLD

TGF-β广泛存在于哺育动物所有组织中,以血小板和骨组织中表达水平最高。在人体内存在 TGF-β1、2、3三种异构体。TGF-β起着调节细胞生长和分化的作用[15]。NAFLD患者,肝内TGF-β主要来源于枯否氏细胞。目前认为,TGF-β在NAFLD的主要作用是通过诱导细胞外基质的形成,抑制细胞外基质降解,导致肝纤维化形成[16]。从脂肪性肝纤维化大鼠肝脏分离得到的枯否氏细胞作用于肝星状细胞,可以发现肝星状细胞产生胶原。为了进一步证实TGF-β的作用,将抗TGF-β IgG预先与枯否氏细胞一起培养,然后去除多余的IgG,此时枯否氏细胞刺激肝星状细胞产生胶原的作用被抑制,表明脂肪性肝损伤中枯否细胞产生TGF-β是促进胶原形成的重要细胞因子[17]。另外,离体培养的肝窦内皮细胞上的受体可与TGF-β快速结合。肝窦内皮细胞上这种高亲和力受体的存在可能是TGF-β作用的重要途径[18]。研究显示,增殖细胞核抗原(PCNA)单克隆抗体,停滞于G1/S期的肝窦内皮细胞数量与NAFLD的严重程度明显相关。TGF-β通过与肝窦内皮细胞受体结合抑制其增殖,使其分化为平滑肌样细胞,后者在肝纤维化中起一定的作用。肝窦内皮细胞增殖抑制还可能通过产生另一些中间介质刺激肝星状细胞分泌细胞外基质。人体内三种形式的TGF-β在NAFLD中均增高,并且随病变严重程度而增加,其mRNA表达水平明显增高。肝内TGF-β二聚体具有生物活性,还原剂可使二聚体分离,活性完全丧失,酸性微环境对于激活TGF-β有着重要意义。枯否氏细胞可能首先分泌非活性TGF-β,后者在细胞外或靶细胞表面激活,转化为活性形式的TGF-β而发挥作用[19]。

此外,本病还受遗传、环境、免疫和药物等因素影响,总之,NAFLD的发病机制具有多样性,仍有广阔的研究空间。我们坚信随着对本病研究的不断深入,其发病机制将会得到进一步的阐明,并为其有效的防治提供措施。

参考文献

[1]Bitencourt AG,Cotrim HP,Alves E,et al.Nonalcoholic fatty liver disease:clinical and histological characteristics in obese who underwent bariatric surgery[J].Acta Gastroenterol Latinoam,2007,37(4):224-230.

[2]农乐根,钟秋红,李振忠,等.百色市机关事业单位职员脂肪肝发病情况调查[J].广西医学,2006,28(12):1924-1926.

[3]Adams LA.Nonalcoholic fatty liver disease and diabetes mellitus[J].Endocr Res,2007,32(3):59-69.

[4]Marovi D.Ultrasonography findings of liver in textile workers for diagnosing nonalcoholic fatty liver disease[J].Srp Arh Celok Lek,2007,135(9-10):532-535.

[5]Chavez-Tapia NC,Sanchez-Avila F,Vasquez-Fernandez F,et al.Non-alcoholic fatty-liver disease in pediatric populations[J].J Pediatr Endocrinol Metab,2007,20(10):1059-1073.

[6]Yoneda M,Yoneda M,Mawatari H,et al.Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD)[J].Dig Liver Dis,2007,13(2):123-126.

[7]Mitry RR,De Bruyne R,Quaglia A,et al.Noninvasive diagnosis of nonalcoholic fatty liver disease using serum biomarkers[J].Hepatology,2007,46(6):2047-2048.

[8]Tahan V,Imeryuz N,Avsar E,et al.Effects of rosiglitazone on methionine-choline deficient diet-induced nonalcoholic steatohepatitis[J].Hepatology,2007,46(6):2045-2046.

[9]Guha IN,Parkes J,Roderick P,et al.Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers[J].Hepatology,2008,47(2):455-460.

[10]Zamora-Valdés D,Méndez-Sánchez N. Experimental evidence of obstructive sleep apnea syndrome as a second hit accomplice in nonalcoholic steatohepatitis pathogenesis[J].Ann Hepatol,2007,6(4):281-283.

[11]de Oliveira CP,de Mello ES,Alves VA,et al.Changes in histological criteria lead to different prevalences of nonalcoholic steatohepatitis in severe obesity[J].Ann Hepatol,2007,6(4):255-261.

[12]Duseja A,Thumburu KK,Das A,et al. Insulin tolerance test is comparable to homeostasis model assessment for insulin resistance in patients with nonalcoholic fatty liver disease[J].Indian J Gastroenterol,2007,26(4):170-173.

[13]Marchesini G,Babini M.Nonalcoholic fatty liver disease and the metabolic syndrome[J].Minerva Cardioangiol,2006,54(2):229-239.

[14]Ahmed MH,Saad RA,Osman MM.Ezetimibe: effective and safe treatment for dyslipidaemia associated with nonalcoholic fatty liver disease.Response to: Toth PP, Davidson MH: simvastatin and ezetimibe:combination therapy for the management of dyslipidaemia[J].Expert OpinPharmacother,2005,6(1):131-139.

[15]Yoneda M,Fujita K,Iwasaki T,et al.Treatment of NASH: nutritional counseling and physical exercise[J].Nippon Rinsho,2006,64(6):1139-1145.

[16]Carvalheira JB,Saad MJ.Insulin resistance/hyperinsulinemia associated diseases not included in the metabolic syndrome[J].Arq Bras Endocrinol Metabol,2006,50(2):360-367.

[17]Church TS,Kuk JL,Ross R,et al.Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease[J].Gastroenterology,2006,130(7):2023-2030.

[18]Harano Y,Yasui K,Toyama T,et al.Fenofibrate,a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver[J].Liver Int,2006,26(5):613-620.

分子生物学发展第7篇

非酒精性脂肪性肝病 (nonalcoholic fatty liver disease,NAFLD)是以无过量饮酒史(酒精摄入量<20 g/d)以及肝细胞脂肪变性、气球样变、弥散性肝小叶轻度炎症和(或)肝中央静脉、肝窦周围胶原沉积等为临床病理特点的慢性肝脏疾病[1],它包括单纯性脂肪肝 (nonalcoholic fatty liver,NAFL)、脂肪性肝炎(nonalcohlic steatohepatitis,NASH)、脂肪性肝硬化(fatty liver cirrhosis,FLC)三种类型。NAFLD已成为导致转氨酶异常的首要病因,并且有部分患者进展到终末期肝病,部分患者甚至与肝脏肿瘤有关。目前我地区NAFLD的发病正在逐渐上升[2],本病的发病原因尚不完全清楚,认为其发生与胰岛素抵抗、氧应激反应和脂质过氧化物质的代谢失衡有关[3]。本文就该病近几年来其分子生物学方面的一些研究进展综述如下。

1.氧自由基对肝细胞的损害作用

患者由于甘油三脂在肝细胞内蓄积,大量的游离脂肪酸(FFA)在线粒体内氧化,产生了过多的超氧阴离子和活性氧物质 (reactive oxygen species,ROS),使抗氧化物质耗竭,过量的过氧化氢 (H2O2)和氢氧根离子 (OH)损伤肝脏细胞的线粒体和细胞膜,使肝细胞正常生长停滞,炎症变性,最终导致肝细胞变性坏死而引起临床症状[4]。氧是生物维持活性的必要元素,但其在代谢过程中形成的中间产物ROS,与生物膜的磷脂、酶和膜受体相关的多价不饱和脂肪酸及核酸等大分子物质发生脂质过氧化反应,结果使细胞膜的流动性和通透性发生障碍,引起细胞功能失调甚至破裂、死亡。机体在正常生理状态下,具有完善的抗氧化机制,包括超氧化物歧化酶(SOD)等酶类和谷胱甘肽(GSH)等非酶类活性氧清除剂。现代研究认为,活性氧增多和活性氧清除剂减少是NAFLD的重要发病机制[5]。线粒体是脂肪酸进行β氧化和三羧酸循环、ATP合成和ROS形成的主要场所,线粒体在氧化脂肪和其他燃料供给大多数细胞 ATP时,快速形成 ROS,尽管在这一过程中部分电子可与呼吸链上的半醌自由基反应形成超氧阴离子(O2)、过氧化氢 (H2O2 )和氢氧根离子 (OH)等氧自由基,其中超氧阴离子是最重要的毒性氧类产物,但细胞内的抗氧化剂可以清除之,避免其所致的氧化应激和脂质过氧化[7]。线粒体是 ROS形成的主要部位,线粒体电子转运系统可消耗细胞90%的氧。大量的ROS可直接或间接通过改变线粒体膜通透性转变孔 (MPTP)的开关,导致细胞凋亡和坏死[8]。 ROS可氧化不饱和脂肪酸导致脂质过氧化,所形成的脂质过氧化物 (LPO)可使部分非酒精性脂肪性肝炎(NASH)患者发生 mtRNA缺失、复制错误、修复障碍和断裂,并造成其呼吸链复合物活性降低[4]。DNA对氧应激很敏感,线粒体的DNA(mtRNA)的氧化损伤敏感性比核DNA高达10~16倍,这是由于mtRNA缺乏组蛋白保护、线粒体修复程序不完整以及 mtRNA相似呼吸链(该链是细胞内 ROS的主要来源)的缺乏[6]。研究发现,大部分NAFLD患者的大部分肝脏 mtRNA均有缺损,造成呼吸链复合物活性降低,同时,线粒体缺乏过氧化氢酶,该酶是唯一作用于GSH过氧化氢毒性作用的酶,线粒体不仅是氧应激的源头,而且是 ROS作用的靶,大量的ROS促成线粒体功能障碍[8]。LPO还可与线粒体蛋白反应形成复合物,抑制电子沿着呼吸链的传递,使氧自由基形成显著增多,进而加重线粒体损伤[6]。

2.肿瘤坏死因子(TNFα) 与NAFLD

机体的氧应激反应产生过多的TNFα可以诱导肝脏成纤维细胞、平滑肌细胞、血管内皮细胞、粒细胞和巨噬细胞产生集落刺激因子(GMCSF),从而影响机体的炎症反应和脂质代谢[9]。TNFα与早期非酒精性脂肪性肝病损伤有密切关系。有报道,NAFLD患者循环中TNFα水平增高,且TNFα与肝脏损伤的生化指数相关[10]。人们应用逆转录聚合酶链反应在大鼠非酒精性肝病模型的研究中发现,肝内TNFα mRNA增高的水平与肝脏病理损伤的程度相关,同时发现,抗TNFα抗体可以明显减轻非酒精性脂肪性肝病大鼠的肝脏炎症和肝细胞坏死病变,但对肝脂肪变性无影响[11]。对离体人肝胚细胞瘤细胞进行细胞毒性实验发现,TNFα可以使该细胞生存力下降,这种作用与TNFα抗体引起细胞凋亡有关,抗TNFα抗体可以减轻TNFα的细胞毒性作用[12]。以上研究说明,TNFα在NAFLD的发病中起一定作用。

3.白介素(Interleuldn,IL) 与NAFLD

近年来有研究表明,不同的枯否氏细胞的功能状态可加重或减轻NAFLD的肝损伤,因此认为其在NAFLD的发病中起重要作用,为此,枯否氏细胞的功能状态在NASH发病机制中的作用也日益受到关注。人们发现NAFLD不但循环中 ILla和 IL6水平显著增高,而且两者的浓度与肝脏损伤的严重程度呈高度相关趋势[13]。采用逆转录聚合酶链反应研究发现,给大鼠过量的脂肪灌胃2周或 4周,其肝脏内 ILla mRNA水平增高。喂饲过量的脂肪16周的大鼠肝内枯否氏细胞产生的 IL6 mRNA水平较对照组增加4倍。因此认为NAFLD中ILla和IL6的增高可能与 ILla、IL6转录水平增高有关[14]。IL6可以刺激培养的人皮肤纤维母细胞合成胶原。有人发现,枯否氏细胞 IL6 mRNA表达的增高与NAFLD纤维化形成有关,提示NAFLD中枯否氏细胞起源程序 IL6可能有促进胶原形成的作用[13]。另外,离体的 ILla、IL6细胞毒性实验发现,单独或联合将 ILla或(和)IL6作用于肝炎细胞不会引起细胞毒性反应[14]。目前,关于 ILla、IL6在NAFLD发病中的作用途径还在研究中。

4.转化生长因子β(TGFβ)与NAFLD

TGFβ广泛存在于哺育动物所有组织中,以血小板和骨组织中表达水平最高。在人体内存在 TGFβ1、2、3三种异构体。TGFβ起着调节细胞生长和分化的作用[15]。NAFLD患者,肝内TGFβ主要来源于枯否氏细胞。目前认为,TGFβ在NAFLD的主要作用是通过诱导细胞外基质的形成,抑制细胞外基质降解,导致肝纤维化形成[16]。从脂肪性肝纤维化大鼠肝脏分离得到的枯否氏细胞作用于肝星状细胞,可以发现肝星状细胞产生胶原。为了进一步证实TGFβ的作用,将抗TGFβ IgG预先与枯否氏细胞一起培养,然后去除多余的IgG,此时枯否氏细胞刺激肝星状细胞产生胶原的作用被抑制,表明脂肪性肝损伤中枯否细胞产生TGFβ是促进胶原形成的重要细胞因子[17]。另外,离体培养的肝窦内皮细胞上的受体可与TGFβ快速结合。肝窦内皮细胞上这种高亲和力受体的存在可能是TGFβ作用的重要途径[18]。研究显示,增殖细胞核抗原(PCNA)单克隆抗体,停滞于G1/S期的肝窦内皮细胞数量与NAFLD的严重程度明显相关。TGFβ通过与肝窦内皮细胞受体结合抑制其增殖,使其分化为平滑肌样细胞,后者在肝纤维化中起一定的作用。肝窦内皮细胞增殖抑制还可能通过产生另一些中间介质刺激肝星状细胞分泌细胞外基质。人体内三种形式的TGFβ在NAFLD中均增高,并且随病变严重程度而增加,其mRNA表达水平明显增高。肝内TGFβ二聚体具有生物活性,还原剂可使二聚体分离,活性完全丧失,酸性微环境对于激活TGFβ有着重要意义。枯否氏细胞可能首先分泌非活性TGFβ,后者在细胞外或靶细胞表面激活,转化为活性形式的TGFβ而发挥作用[19]。

此外,本病还受遗传、环境、免疫和药物等因素影响,总之,NAFLD的发病机制具有多样性,仍有广阔的研究空间。我们坚信随着对本病研究的不断深入,其发病机制将会得到进一步的阐明,并为其有效的防治提供措施。

参考文献

[1]Bitencourt AG,Cotrim HP,Alves E,et al.Nonalcoholic fatty liver disease:clinical and histological characteristics in obese who underwent bariatric surgery[J].Acta Gastroenterol Latinoam,2007,37(4):224-230.

[2]农乐根,钟秋红,李振忠,等.百色市机关事业单位职员脂肪肝发病情况调查[J].广西医学,2006,28(12):1924-1926.

[3]Adams LA.Nonalcoholic fatty liver disease and diabetes mellitus[J].Endocr Res,2007,32(3):59-69.

[4]Marovi D.Ultrasonography findings of liver in textile workers for diagnosing nonalcoholic fatty liver disease[J].Srp Arh Celok Lek,2007,135(9-10):532-535.

[5]Chavez-Tapia NC,Sanchez-Avila F,Vasquez-Fernandez F,et al.Non-alcoholic fatty-liver disease in pediatric populations[J].J Pediatr Endocrinol Metab,2007,20(10):1059-1073.

[6]Yoneda M,Yoneda M,Mawatari H,et al.Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD)[J].Dig Liver Dis,2007,13(2):123-126.

[7]Mitry RR,De Bruyne R,Quaglia A,et al.Noninvasive diagnosis of nonalcoholic fatty liver disease using serum biomarkers[J].Hepatology,2007,46(6):2047-2048.

[8]Tahan V,Imeryuz N,Avsar E,et al.Effects of rosiglitazone on methionine-choline deficient diet-induced nonalcoholic steatohepatitis[J].Hepatology,2007,46(6):2045-2046.

[9]Guha IN,Parkes J,Roderick P,et al.Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers[J].Hepatology,2008,47(2):455-460.

[10]Zamora-Valdés D,Méndez-Sánchez N. Experimental evidence of obstructive sleep apnea syndrome as a second hit accomplice in nonalcoholic steatohepatitis pathogenesis[J].Ann Hepatol,2007,6(4):281-283.

[11]de Oliveira CP,de Mello ES,Alves VA,et al.Changes in histological criteria lead to different prevalences of nonalcoholic steatohepatitis in severe obesity[J].Ann Hepatol,2007,6(4):255-261.

[12]Duseja A,Thumburu KK,Das A,et al. Insulin tolerance test is comparable to homeostasis model assessment for insulin resistance in patients with nonalcoholic fatty liver disease[J].Indian J Gastroenterol,2007,26(4):170-173.

[13]Marchesini G,Babini M.Nonalcoholic fatty liver disease and the metabolic syndrome[J].Minerva Cardioangiol,2006,54(2):229-239.

[14]Ahmed MH,Saad RA,Osman MM.Ezetimibe: effective and safe treatment for dyslipidaemia associated with nonalcoholic fatty liver disease.Response to: Toth PP, Davidson MH: simvastatin and ezetimibe:combination therapy for the management of dyslipidaemia[J].Expert Opin Pharmacother,2005,6(1):131-139.

[15]Yoneda M,Fujita K,Iwasaki T,et al.Treatment of NASH: nutritional counseling and physical exercise[J].Nippon Rinsho,2006,64(6):1139-1145.

[16]Carvalheira JB,Saad MJ.Insulin resistance/hyperinsulinemia associated diseases not included in the metabolic syndrome[J].Arq Bras Endocrinol Metabol,2006,50(2):360-367.

[17]Church TS,Kuk JL,Ross R,et al.Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease[J].Gastroenterology,2006,130(7):2023-2030.