欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

医学影像后处理(合集7篇)

时间:2023-09-26 09:30:31
医学影像后处理

医学影像后处理第1篇

关键词:医学影像;后处理技术;方法;流程

针对医学影像,利用全网服务器向患者提供医学影像后处理技术,有效解决了大规模数据网络传递等重难点技术问题,为临床诊断和治疗提供了便捷。医学影像后处理技术在临床会诊中心、手术室、内外科中广泛应用,使得医学影像技术更好地服务于诊疗工作,进一步提升了医疗技术水平。

1 医学影像的简介

医学影像技术是当代医学主要的构成部分,而且是当前医学技术中发展最迅速的技术之一。其主要由医学影像分析处理技术、医学成像显示技术和医学图像压缩传输技术构 成[1]。传统医学成像技术是以现代电子计算机技术和物理学技术为理论指导,以成像机理将其划分为X射线计算机断层成像、X射线成像、放射性核素、超声成像、磁共振成像、红外线成像及放射性核素等。随着计算机技术的日益成熟,利用三息摄影为基础的三维成像技术被广泛应用,在很大程度上提高了医学诊断技术的准确度和清晰度。

2 医学影像后处理技术处理方法及流程介绍

在临床疾病诊断过程中,不管是采用功能影像技术还是结构影像技术,随着计算机技术的发展、网络信息技术的日益成熟,医学影像后处理技术在临床医学诊断中发挥着无法替代的作用。医学影像后怎样开展后处理,这是医学科研人员和临床工作人员重点思考的课题之一。

2.1医学影像后处理技术处理方法 医学影像后处理技术是在影像学检查结束后,为了对患者病情进行更加全面、准确的分析,应该对影像进行后续处理与加工的技术。后处理技术主要是全面分析、识别、分割、分类及解释医学影像技术呈现出的结果。该技术的额目的在于更好地分析患者病情,为临床诊断和治疗提供可靠、准确的影像识别。

医学影像后续处理方法主要分为两类,①直接处理技术,这一技术在患者影像学检查完成后,在影像设备上采用软件技术直接进行处理,例如在MRI和CT设备上直接生成血管成像等。但是这一处理方法的缺点在于无法改变影像,只有检查人员基于自身多年处理经验对病理学进行处理。②脱机应用工作站处理,该处理方法是在工作站或把胶片通过扫描仪对已经生成的医学影像进行数字化处理后,再对其进行影像后处理。例如多维影像(以MRI/PET/CT,SPECT)进行融合,同时采用专门软件自动识别、分割影像图。这种影像后处理方法的优势在于处理后的结果对于医护人员而言可靠性、准确性较高。

2.2医学影像后处理技术处理 对于医学影像技术而言,其同数字图像处理技术密切相关,尤其是在医学图像分析处理和图像压缩传递环节中,这一关系表现得更加密切。医学图像分析处理的流程示意图,见图1。

图1 医学图像分析处理的基本流程

3 医学影像后处理技术具体介绍

善于利用计算机软件处理医学影像,其目的在于为临床医学提供更加精确、可靠的判断依据,从而才能更加深入分析患者病情。按照医学影像特点和后处理的目的,医学影像的常见方法包括影像增强、影像分割、影像配准与融合、影像可视化、影像数据压缩等。

3.1医学影像增强 通过相关设备获取的医学影像主要分为CT片、X线片、MRI、B超等,然而这些医学影像成像普遍都是灰度图像。对于临床专业技能强、经验丰富的专家而言,便能够从图像中总结分析出患者准确的病情情况。然而,由于成像设备及其他因素的影响,在一定程度上造成医学影像质量的降低;即便是获得了高品质医学影像资料,但是对于临床技能和经验不足的医护人员而言,便难以从中分析出患者具体病情。所以,应该利用t学影像增强技术。医学影像增强主要是开展信噪比增强操作,对感兴趣对象区域或边缘予以突出,从而为患者病情分析和相关计算提供依据。

3.2医学影像分割 在医学临床实践和研究过程中,为了获取患者组织的功能或病理相关信息,一般需要准确测量人体某一种器官和组织的截面面积、边界、形状及体积等方面。医学影像分割操作过程中需要考虑到不同人体解剖结构不同,且采用设备获得的医学影像具有不均匀和模糊特征。基于此,采取分割技术重点突出医学影像中能够体现出患者病理的重要信息,从而有助于医护人员按照医学影像分析患者病理状况。

3.3医学影像配准与融合 医学影像成像模式较多,不同成像模式的影响包含了不同的病理、生理、解剖学或功能等方面的信息[2]。为了增强诊断可行性和效率,采用计算机图像处理方法对包括不同信息的医学影像进行人工综合方法,这就是医学影像配准和融合。

将具有不同信息来源的影像通过配准后融合在一起,便形成了多模式图像,便可以获得更多的信息,从而为医护人员在临床诊疗、治疗方案设计、外科手术和疗效评价方面更加准确、全面。例如,把密度分辨率最高、显示钙化和骨质结构最佳的CT同软组织对比分辨率最高的MRI,或者把解剖结构显示清晰的CT或MRI与显示功能和代谢改变的SPECT或PET影像进行融合,形成一种新的图像,增加了更多有价值的诊断信息,更加准确定位了病灶,或者更加直观地显示了形态结构,使得医务人员能够从代谢功能和心态学两方面全面判断患者的病灶。

3.4医学影像可视化及压缩 对于医学影像处理技术而言,医学影像可视化是一种价值较大的模块[3]。医学影像可视化的过程便是把CT、MRI等数字化成像技术获得人体信息在计算机上以三维模式呈现出来,利用三维模拟表现出传统手段难以获取的结构信息是该技术的最终目的。医学影像可视化是一种有效的辅助方法,能够有效弥补影像成像设备在成像方面的缺陷,在辅助医务人员诊断、引导治疗和手术仿真等方面发挥着重大价值。

当前,多排螺旋CT的广泛应用,CT/MRI在临床应用的范围越来越广,尤其是在数据采集与传输技术在三维世界中实现可视化的影像成为可能。为了适应CT/MRI技术的改革浪潮,作为临床医生和放射科医务人员必须深入了解医学影像后处理技术,并灵活运用到临床实践中。医学影像后处理技术是医学影像有效的补充,将其同传统影像诊断技术有机结合起来,进一步提高医疗技术水平。

参考文献:

[1]宁春玉.医学影像后处理技术的研究及其在X线影像优化中的应用[D].吉林大学,2011.

医学影像后处理第2篇

影像融合是大势所趋

“影像融合”是近来被国内医学影像界提及频率很高的一个词,7月19日,由中国医科院主办的“首届医学影像高峰论坛”在北京举行,该会议的主题即为“融合共赢”。复旦大学副校长、中华医学会放射学分会主任委员冯晓源在会议间隙接受《e医疗》专访时说:“影像医学必然要以影像为根本,但这个‘影像’不是CT、核磁等单种技术的图像,而是多种影像的融合。从目前以形态(解剖)为基础的诊断向功能诊断、分子水平诊断的发展过程中,影像融合是必经的阶段。”同样的内容,他在2012年的中华医学会放射学分会年会上也提到过。

中国医科大学附属盛京医院院长郭启勇认为,以内、外科为代表的临床学科对影像检查的依赖性日益增加;以产前诊断为代表的特殊学科对影像检查的需求认识不断加深;综合影像诊断的重要性被临床广泛认知……知识附加值在影像诊断中将日益显现。

诚然,影像对于临床有着非常重要的作用,而影像医学的发展也必须围绕临床进行,因为作为“医技科室”的影像科,其终极目的必然是为“医”提供服务。

影像融合概念的提出,与医学的发展方向有着直接的关系。未来医学的发展将朝着以预测(Predictive)、预防(Preventive)、个性化(Personalized)和参与性(Participatory)为特征的P4医学方向进行,这正在逐渐成为医学界的共识。冯晓源认为,个性化医学将是新医学模式的核心之一,而影像医学检查技术,将可能是个性化医学的核心和基础。改变诊断模式,适应新医学发展的要求,不仅能改变影像医学式微的趋势,更能让其走向具有广阔前景的康庄大道。影像融合,是大势所趋。

随着科学技术的发展,越来越多的影像检查设备开始提供标准DICOM格式的影像数据,从技术上解决了影像融合的问题。而影像学科因细分而导致的碎片化,却在阻碍着影像融合的进行。中国影像医学奠基人之一、中国工程院院士刘玉清教授一直提倡“大影像”,他呼吁所有的影像部门一起工作,把基于不同成像原理组成的图像放在一起,并在此基础上提取有用的信息进行融合。冯晓源认为,影像的融合更应该是学术上的融合,是各学科知识点在融合的图像上的呈现。他说:“影像医学应该从原来提供单纯的影像学信息――主要是形态学信息――向提供生物学信息进行转变。”

事实上,影像融合现在已经不仅仅只是影像医学的愿景,有些医院已经开始了相应的实践,中国医科大学附属盛京医院就是其中的一个先行者。目前,该院已经尝试将不同学科领域(如化学、计算机、生物工程)的人才引入影像学科,企图打造一个全新的融合影像学科。

三维重建与PACS

根据医学图像所提供的信息,可将图像分为解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)。解剖图像以较高的分辨率提供了脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像分辨率较差,无法提供脏器或病灶的解剖细节,但它提供的脏器功能代谢信息是解剖图像所不能替代的。由于成像原理的不同所造成的图像信息局限性,使单独使用某一类图像的效果并不理想。这就需要对影像进行包括图像融合在内的图像后处理,三维重建是其中的内容之一。

所谓图像后处理,是指对获取的图像进行处理、使之满足各种需要的一系列技术的总称,最典型的技术包括图像分割和三维重建。通过一定的图像分割操作,切除任意不感兴趣的数据集,仅保留要处理的部分。分割技术可以使医生排除无关图像的干扰,看得更清楚,自然得出的诊断结论也更准确。而三维重建则是根据一系列二维的医学图像,经过多重处理,提取不同物体的边界数据,得出物体的三维模型,并允许对模型进行显示、旋转、缩放等操作。三维模型的重构可以为医生提供多角度立体的视角,从而使医生方便、快捷地对病灶进行定量的分析和处理,提高诊疗水平和效率。

三维影像的获取有两种方式:设备获取和PACS获取,设备获取可分为CT、MR等设备自带工作站和专业的三维影像工作站。专业三维影像工作站功能强大,能够提供信息更丰富、品质更精细的三维图像,而另外两种途径获取的图像品质相对较差。

PACS作为一个获取、存储并提供调阅医学图像的综合应用平台,其看图模块能对图像进行各种二维处理,而三维处理功能并不是所有医疗信息化厂家提供的PACS产品都支持的功能。PACS可以集成三维后处理功能,这样就可以进行影像的三维重建。PACS是一个数字运行的平台,是一个更大的概念,重建后的三维影像可以通过PACS进行存储、传输和查看。

融合了三维影像后处理功能的PACS,以所获取的DICOM图像为基础,对其进行重建、分割等处理操作,使医生可以更全面地观察医学影像,从而扩充了PACS看图模块的功能,取得了更理想的诊疗效果。把图像分割和三维重建技术结合起来使用,将最大限度地发挥后处理功能。诊断医生通过医学PACS系统得到患者的图像信息,在看图模块中进行简单的处理之后,如果发现还不足以做出确切的诊断,就可以利用三维影像后处理系统先重建出患者检查部位的三维立体模型,分割操作可以去除不感兴趣的干扰部分,各种旋转平移操作可以给医生更多的信息,最终做出合理的诊断。

综上所述,三维影像后处理系统处理的影像来源主要是PACS,各方面都要得到PACS的良好支持,既可以成为PACS的辅助模块,也可以单独成为一个独立的软件系统。

三维重建的医学应用

三维影像的应用主要体现在临床上,比如在做手术时查看病灶和周围血管及组织之间的关系,帮助临床医生进行手术计划的制订。《中国放射学杂志》编辑部主任高宏说:“3D影像技术在疾病的诊断、治疗和基础研究方面有着广泛的应用,在肿瘤疾病上的应用更为广泛,很多肿瘤的介入治疗和放射治疗都是通过三维成像引导来完成治疗计划的制订的。”

除了高宏提到的肿瘤疾病的治疗,三维影像在骨科、心血管等临床外科的应用也较普遍。北京大学第一医院泌尿外科要求每个肾癌病例都要进行三维重建,有着一套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等等。该院呼吸内科开创了用呼吸内镜把肺气肿病变切除的手术,该院影像科主任王霄英评价:“内科把外科的活干了,开拓了一个全新的领域。”

不仅仅是在临床,目前三维重建在诊断、教学和科研方面的应用也已经初具规模。郭佑民认为,三维影像在放射科的应用会越来越多,“对于放射科医师而言,除了观察断面图像之外,结合3D技术可以为临床提供更多更丰富的诊断依据。”他说。

并不是所有的影像从业者都认可郭佑民的观点,在采访中部分放射科主任认为,作为诊断工具来讲,三维影像对放射科的帮助并不大。放射科医生一直都是通过二维影像做诊断,经过多年的专业训练之后,他们已经可以透过二维影像在脑海中重建三维结构,此外,三维影像并没有提供更多与诊断相关的信息。倒是对临床医生而言,三维影像更能帮到他们。

青岛大学医学院附属医院副院长董则在科研方面进行了探索,国家“十二五”科技支撑计划课题“小儿肝脏肿瘤手术治疗临床决策系统开发” 就是由他领衔的。董和他的团队希望在国际上首次将中国各年龄阶段儿童和成人肝脏进行数字化虚拟测量,建立中国儿童肝脏数据库和小儿肝脏肿瘤立体模拟手术系统。

在教学方面,郭佑民认为3D影像与2D影像相结合,有利于学生对影像学结构图像的理解和应用。“因为医学生从学习人体解剖课程开始,就逐步地建立了人体组织和结构的空间概念,而对横断面的2D图像理解不够透彻。借助3D图像可以更好地对照和理解每一幅2D图像与3D图像的关系,为后续的学习奠定基础。”他说。

三维重建的发展方向

三维重建在医学上的应用已经较为普遍,其重要性正在越来越多地得到认可。如何充分利用三维影像的优势,更好地为医学服务,学术、临床及产业界都在进行着积极的探索。

影像引导的放射治疗

影像引导的放射治疗(IGRT)是一种前沿技术,通过放疗前以加速器自带的CT进行扫描,采集并重建三维图像,与治疗计划图像配准后再实施治疗。这样可以克服因治疗摆位和肿瘤位置移动所造成的误差,确保在精确照射肿瘤的同时,将对其周围正常组织的损伤降到最低限度,全方位提高效果。它在三维放疗技术的基础上加入了时序的概念,可以说是一种四维技术。

IGRT可从定位、计划到治疗实施和验证等方面创造各种解决方案。它充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸运动、小肠蠕动、膀胱充盈、胸腹水、日常摆位误差、肿瘤增大/缩小等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,在患者进行治疗前和治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时监控,并能根据器官位置的变化调整治疗条件,使照射野紧紧“追随”靶区,做到真正意义上的精确治疗。

高级影像中心

四川大学附属华西医院目前正在计划建立AVC(Advanced Visualization Centre,高级影像中心,也称3D中心或三维中心)。

西门子大中华区影像和知识管理总经理王峻介绍,AVC模式是以临床需求为中心而设计的影像信息系统,其所有的活动都是围绕着临床的某些诊疗需求而设计的。他说:“AVC改变了传统影像科的工作模式,使其更贴近临床科室的需求。AVC把大量之前只有在放射科才能访问到的高级图像处理软件的浏览权限向临床科室开放,使临床医生大为获益。AVC模式还将改变放射科的报告不受临床科室重视的尴尬状态,使得放射科的检查、处理和报告可以全面地为临床治疗服务,并为临床医生提供大量其需要的辅助信息。相信AVC能为医院诊断和治疗这两个重要的医疗行为找到更好的合作模式。”

华西医院放射科高级工程师王跃介绍,AVC所特有的各种结构化报告,能协助放射科在临床科室的亚专业和放射科的亚专业之间形成对接,这种一对一的沟通和协作,可以为临床中的不同疾病和亚专业提供更准确而有用的个性化、专业化报告,在提高放射科医生诊断报告价值的同时,也能提高放射科报告的利用率和实用性。

王跃说:“AVC的建设不仅能够大大加强放射科与临床科室的互动,使得临床更加需要放射科的工作以便更好地为患者服务,而且能够提升放射科自身的实力和水平。AVC代表了未来的放射科-临床科室工作模式,完全可以称为诊疗模式的一次革命。”

3D医学打印

据《健康报》今年7月报道,北京大学第三医院骨科刘忠军带领的团队在脊柱及关节外科领域研发出了几十个3D打印脊柱外科植入物,其中包括颈椎椎间融合器 、颈椎人工椎体及人工髋关节在内的三个产品已经进入了临床观察阶段。报道称,已经有近40位颈椎病患者和髋关节病患者在签署知情同意之后,植入了3D打印出来的骨骼。

3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。3D打印技术又称“增材制造”,长期以来被应用于制造珠宝、电子产品和汽车部件模型,然而如今的工业3D打印机也在造福医疗领域,它们已经可以定制人体肝脏和肾脏的模型,而科学家们也正在研究如何用3D打印机打印胚胎干细胞和活体组织,目标是制造出能够直接移植到受体者身上的人体部位,先进的3D打印机目前已经开始走进医院。

医疗行业(尤其是修复性医学领域)存在大量的定制化需求,难以进行标准化、大批量生产,而这恰是3D打印技术的优势所在。目前,3D打印技术在助听器材制造、牙齿矫正与修复、假肢制造等领域已经得到了成功应用,且应用已经相对比较成熟。

但是,要想走进全球各地成千上万的医院手术室,3D打印技术还面临许多障碍:第一,用于制造器官模型的3D打印机售价在25万美元至50万美元,小医院难以负担;第二,大多数医生不会使用3D打印机,所以医院还需要技术人员来操作3D打印机并把医疗图像转换为可以打印的3D数据。

医学影像后处理第3篇

高性能高质量的HP工作站

无论是门诊医生和护士的应用终端,还是放射科大夫所需要的强大的3D图像后处理工作站,都需要安全稳定、高效兼容的应用终端作为支持。而惠普工作站凭借30多年的研发经验,秉承“专业、创新、绿色”的理念打造的由惠普Z系列台式工作站和EliteBook W系列移动工作站组成的惠普工作站医疗行业解决方案,能全面满足医院不同业务的应用需求。

究竟什么是工作站?工作站与普通电脑有什么不同?惠普工作站销售总经理方治先生说:工作站是为专业应用而专门设计的产品,经过应用软件的严格测试认证,比普通电脑具有更好的稳定性,更高性能,更强扩展性,最佳兼容性的特点;与服务器相比,工作站具有部分服务器的特点,如Xeon处理器,ECC内存,SAS硬盘,Raid功能,同时又支持专业的显卡与低噪音的设计。工作站与普通电脑就好比F1赛车与普通汽车的区别,工作站为专业应用提供高性能及坚如磐石的安全保障。

医学影像后处理专家――ViTAL

总部设在美国的ViTAL Images公司20年来一直专注于医学影像后处理软件的研发,与东芝医疗全球战略性的合作,使得ViTAL产品能够更完美地贴合高精尖CT硬件的应用,且一直走在世界前列。多年来, ViTAL坚持为用户提供一流医学影像后处理工作站产品,惠普工作站以其卓越的性能和领先世界的尖端科技,一直是ViTAL产品高效稳定运行的首选平台。

“ViTAL公司的设计和研发的宗旨,始终致力于让放射科医生用最快捷、最简单的方式完成复杂、繁重的影像处理工作。”ViTAL中国区总经理郭欣亮先生表示,“ViTAL与惠普工作站的合作从早期的产品开发、测试环节就已经开始,惠普工作站的快速稳定和兼容性是ViTAL高性能后处理工作站系统的基石,也是我们全球战略合作的根本。”

北京某大型心血管病专科医院的放射科大夫也曾坦言:“日益增加的病人和扫描数据使我们需要存储和处理的数据成倍增长,这一切都对数据存储和图像处理设备提出了及其严格的要求。ViTAL后处理工作站系统操作简单,加上惠普工作站的稳定兼容,免去了我们对处理设备的后顾之忧,也节约了时间,从而让我们将更多的时间和精力用于为病人服务。”

高效易用,医生的“好帮手”

医学影像后处理第4篇

关键词 医学影像技术后处理实验室 实验教学 医学影像 技术专业

中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkz.2016.09.024

Research on the Application of the Laboratory of Medical Imaging

Technology in the Experimental Teaching of Image Technology

LIU Nian[1], HUANG Xiaohua[2], LEI Lixing[2]

([1] Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637007;

[2] Medical Imaging Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007)

Abstract Objective: To explore the teaching value of the laboratory of Medical imaging technology in the experimental course of Medical imaging technology. Methods: Under the premise of the reform of teaching idea, we research and develop the experiment software of Medical imaging technology and use computer simulation technology to execute resource optimization on the existing experimental teaching. Creating a distinctive, digital and multi-functional laboratory, on the basis of the experimental teaching of Medical imaging technology ,we will reform the experimental model .Results: The professional teaching quality of Medical imaging technology was improved, and the experimental teaching method was reformed to promote the training of students' practical ability. Conclusion: We should reform the experimental teaching mode and build innovation laboratory, improve experimental curriculum system, in order to arouse the students' subjective initiative and strengthen students' practical ability. This is not only the need of medical imaging technology curriculum construction and talent training, but also medical image diagnosis and postgraduate education need.

Key words laboratory of medical imaging technology; experimental teaching; medical imaging technology

随着循证医学的发展和精准医学的提出,医学影像学在临床医学的作用越来越重要,它为临床提供了更加精准的诊断信息,指导临床医生的诊断和治疗。而医学影像技术学在其中发挥着非常重要的作用,它不仅决定着不同疾病的不同影像学检查方法,更是临床诊疗获取优质图像的保障。①医学影像检查技术学是一门将多个影像设备综合应用,且具有扎实的专业理论和丰富的实践经验的交叉应用学科。随着医学影像技术日新月异的发展,为了适应影像技术新理论和新方法的不断更新,避免与临床脱节,学校应该注重学生理论知识和实践技能的培养和更新。因此,加强学生医学影像技术实验课程的实践技能尤为重要。改革医学影像技术实验教学理念和教学模式,创建提升学生自主学习能力和实践能力的实验平台,是全面提高医学影像技术学课程教学质量的主要趋势。②本研究通过建设医学影像技术后处理实验室,改革既往的影像技术实验教学思维和手段,以计算机网络为实验环境,将普通X线、CT、磁共振、核医学、超声等检查的图像及后处理信息导入计算机网络系统,从而实现医学影像信息资源共享。本平台是构建“以临床能力为导向的多学科、阶段性、模块化、综合式的临床实践教学课程体系”的医学影像专业教学平台。学生或师生可以通过实验室网络平台进行互动交流,激发学生自主学习的兴趣,提高医学影像技术设备操作实验的效率、质量,节约教学资源,创造个性化学习的环境。

1 医学影像后处理实验室平台建设

医学影像技术后处理实验室是以计算机为硬件基础,Windows 操作系统为平台,联合开发的仿真实验操作系统为应用软件的实验室。本实验室的主要功能有:(1)该软件操作完全模拟医院普通X线、CT、MRI操作流程,让学生身临其境地实践医学影像图像后处理技术,有助于激发学生学习的兴趣和积极性;(2)该实验室共配置24台学生电脑和1台教师电脑,可让每个学生单独上机完成操作,有利于对学生的学习情况进行有效的评价;(3)仿真软件的数据均来源于我院附属医院,有真实可靠的图像,与临床病例无缝连接;(4)该后处理软件不仅包含基本教材上的常规后处理技术,还包含最新、最近的科研软件,根据医学影像检查技术的进展,即时对软件进行升级,为教师和学生开展科研提供有效的应用工具,有利于提高师生的科研创新能力;(5)该实验室对学生全天开放,学生可自行安排时间随时进行实验操作、复习、做科研;(6)避免了大量学生同时到医院见习出现的安全隐患,提高了学习效率和工作效率。

2 应用结果

(1)实验教学方式的改变。通过医学影像技术实验课程在医学影像技术后处理实验室中的应用,原来的教学手段有了明显改变,已由人工教学变成网络化计算机教学,简化并优化了教学流程;过去用胶片展示教学,其图像较小、图像质量参差不齐,数量有限,管理困难,无法满足大量的学生教学和个性化学习。此外,实验教学方式由原来的临床医、技人员现场教学转变成网络化仿真模拟教学,避免了学生只能看不能动手的情况;学生在带教老师的指导下可以对医学影像技术学的相关知识进行网络化搜索、阅读、自学及复习,数字化仿真模拟教学几乎改变了以往了学习模式。第三,原来以教师讲解为主的实验教学方法转变成了以学生自学为主的模式,每个学生可以通过计算机模拟操作,完成实验要求,同时提高学生的自学能力。通过医学影像技术后处理实验室的使用大大增加了课堂与课外的教学信息量。

(2)实验教学内容的完善和丰富。目前医学影像技术后处理实验室的完整资料数据库中已有10 000余份,本实验室根据临床信息的发展会不断更新资料,其中包含普通X线、CT、MRI、超声、核医学、DSA等方向的图像资料,完全能满足实验教学的需要,其丰富的图像信息资料不仅能紧密地结合教科书上的知识框架,还能在实验中丰富学生的课余知识。

(3)学习效率的提高。医学影像技术后处理实验室的开放,不仅提高了学生的学习效率,学生的自主学习空间得到充分利用,明显增强了学生学习的兴趣和积极性;而且还能更好地利用该实验软件进行科研分析,取得科研成果。学生可以随时到实验室学习,有利于学生的复习和个性化培养,极大地提高了学生的实践动手能力,使学生有充分的自由学习空间和内容。

(4)教学管理的优化。在校内实验室进行实验教学,不仅提高了教学效率和教学管理水平,还为学校节省了大量的人力、物力及财力。仿真模拟实验教学明显改变了过去复杂繁琐的管理模式,避免了学生在临床实验教学中损坏精密昂贵的设备,减小了学生到医院见习的安全隐患。

(5)教学效果的反馈。学生在实验课堂教学中,能及时将问题和难点提出,教师可及时解答;通过学生在实验教学中的网络留言和讨论发现教学问题,并能及时反馈信息及解答学生的问题,检验实验教学效果。

3 讨论

医学影像技术专业的快速发展,适应了医疗设备迅速更新的发展,满足社会和广大医疗机构的人才需求。医学影像检查技术学是培养医学影像技术专业人才的主干课程之一,是连接理论与实践的重要桥梁,是一门不可或缺的且实践性非常强的课程。③④学生不仅要扎实掌握专业理论知识,更注重实践动手能力的培养。针对医学影像技术学的实验教学模式,通过对医学影像技术后处理实验室的建设和使用,系统地将丰富的教学内容、创新的教学方法和学生的实践培养相结合,让学生通过对实验情景、实验界面和实验程序的模拟操作,加强了学生对实验原理、方法和完整操作流程的理解。⑤⑥

医学影像技术后处理实验室的使用,优化了实验教学资源配置,转变了实验教学模式,提高了实验教学效率,实现了将理论教学内容与实验教学相适应的结合。实验项目覆盖了基础性、创新性和综合性实验,丰富了实验教学内容,实验教学手段的多样化,不仅使实验教学内涵更加深厚,而且使学生在学校能熟练掌握医学影像常规检查技术,具备图像后处理能力,以便在医院实习阶段能更快适应岗位要求。同时学生还可在教师的指导下开展实验室科研项目,进行个性化实验操作,这对启迪学生科学思维和培养创新的科研意识有重要的意义,在培养学生实践能力和创新思维的同时,充分发挥了学生以学习主体的功能,也促进了学生对理论知识的掌握和应用。

综上所述,通过医学影像技术实验课程在医学影像技术后处理实验室的教学,改革了实验教学模式,建设了创新性实验室,完善了实验课程体系,调动了学生的主观能动性,加强了学生的实际动手能力,适应了现代医学的影像技术学的发展,满足了医学教育事业和临床医技岗位的发展要求。这不仅是医学影像技术专业课程建设和人才培养的需要,也是医学影像学专业和研究生培养的需要,对培养高素质医学影像技术专业人才具有非常重要的意义。

*通讯作者:黄小华

基金项目:本文为川北医学院校级科研项目“基于虚拟现实技术开发医学影像技术模拟仿真教学平台”的研究成果之一,项目编号2015-12-13

注释

① 黄小华,游金辉,马雪华.医学影像技术专业发展的几点思考[J].川北医学院学报,2008.23(1):103-105.

② 汪百真,俞曼华,张俊祥,等.CT、MRI仿真操作系统的研发及在实验教学中的应用[J].蚌埠医学院学报,2012.38(2):219-220.

③ 梁明辉,王晓东,夏力丁.数字化仿真实验系统在医学影像学教学中的应用研究[J].中国医药导报,2011.8(11):122-124.

④ 汪百真,俞曼华,张俊祥,等.医学影像检查技术学实验课程的改革与创新[J].蚌埠医学院学报,2013.38(7):919-921.

医学影像后处理第5篇

关键词:医学图像分析;实践教学;教学改革

一、课程背景

医学图像分析是一门医学影像与信息学图像处理相结合的课程。主要学习如何采用图像处理方法对医学图像数据进行增强、勾画、分割、识别等操作[1]。主要授课对象为医工结合专业如生物医学工程、医学信息工程等的本科生或研究生。其主要教学目标是让学生掌握医学图像的采集原理,各种不同类型的医学图像的特点,不同医学图像主要面临的问题,不同医学图像遇到的问题的传统解决方法,并启发学生思考新的解决思路[2]。近几年,由于计算机运算速度的进步以及机器学习算法的快速发展,医学图像分析发展迅速,在医学临床上应用越来越广,例如肺结节的识别、脑灰质白质的分割以及辅助诊断等。总之,医学图像分析在临床上扮演着越来越重要的角色。目前医学图像分析在产业界的发展迅速,相关企业不断涌现,国内目前相关企业超过100家,融资上亿的企业近20家。因此,该课程的重要性也逐渐突显。医工结合是医学与工科学科结合而产生的未来医学的重要发展方向。近几年,综合类大学纷纷创办医学院,其中医工结合是这些综合类大学医学院的重要方面,而医学图像分析又是目前医工结合的优秀范例[3]。然而,目前医学图像分析课程的教学存在重视理论讲述,忽略实践操作的现象。同时医学图像与传统自然图像存在着较大差异,例如信噪比低、图像维度更高、与自然图像纹理显著不一致等问题。因此,医学图像分析与传统图像处理课程存在较大差异。笔者在教学过程发现,学生在学习该门课程后,存在理论与实际脱节的情况。大部分学生反馈在进行课程学习之后,尝试将学会的图像处理方法用于实际医学图像分析时,遇到各种问题,例如:由于数据维度不一,传统二维自然图像处理方法无法用于三维或者四维的医学图像中;由于信噪比的问题,传统自然图像处理方法运用到医学图像上后效果不佳。因此,医学图像分析的教学应该与传统自然图像的处理课程有所区分,需要针对医学图像进行分析与教学。

二、现存教学问题分析

在教学完成后,通过学生反馈,获得的教学反馈问题如下:(1)课程中讲授的图像处理方法多基于二维图像,但医学影像中存在大量其他维度影像,如脑电信号为一维图像,CT、磁共振为三维图像,PET、功能磁共振为四维图像,不知如何处理;(2)课程讲授中出现的自然图像大多分辨率较高,而医学图像分辨率较低,将算法运用于图像分析后效果不佳;(3)构建辅助诊断模型时,自然图像样本量较大,而医学影像样本量相对较小,同时数据维度更高,构建出的模型效果较差。如图1所示,笔者分析与总结现存教学问题之后,认为主要是以下三个原因导致出现了上述教学问题。

(一)自然图像与医学图像存在差异

如表1所示,传统自然图像与医学图像存在较大差异,目前医学图像分析课程讲授的大部分课程内容与传统图像处理一致,涉及的医学图像多为与自然图像性质相近的二维X光图像或单层CT图像。这种差异导致课程所学算法难以直接用于医学图像的分析与处理。

(二)学生缺乏对医学图像特性的了解

学生在学习课程的时候对医学图像的采集过程以及图像特性不了解,导致难以对现有图像处理方法进行改进或者提出新的图像处理方法以适用医学图像。图2所示为一个典型的三维大脑MRI医学图像,该图像具有分辨率低、维度高等特点。

(三)缺乏与临床影像科医生的交流

本门课程的教学主要由图像处理相关老师完成,临床医生没有参与教学。这种缺失进一步导致学生对医学图像以及医学图像在临床上遇到的实际问题缺乏了解,难以提出真正解决临床实际问题的医学图像处理方法。

三、教学改革方案

鉴于目前医学图像分析课程教学存在的问题,笔者结合综合类大学医学院基础条件,提出以下五方面的教学改革措施,并设计了一套医学图像分析教学流程。

(一)增加医学成像原理教学

医学成像原理是一门讲解各种医学影像的采集原理、采集方法的课程。该课程可帮助学生深入理解医学图像的由来,从图像成像原理的部分深入理解各种医学图像的特性,例如脑电信号的位置坐标系统、磁共振图像的无标度特性、PET图像如何从四维图像转变为三维图像等。学生通过该部分理论的学习,了解不同医学图像的特点。

(二)图像处理老师与临床影像科医生携手教学

综合类大学医学院教学相对于其他学院的一大重要优势在于学院具有大批一线临床工作者。相对于学校教师而言,一线临床工作者对于目前医学影像在临床实践中需要解决的问题更为熟悉。临床医生参与教学,可进一步让学生了解自己所学知识可用于解决哪些临床实际问题。在了解到这些的基础上,学生能够理清今后工作中的实际问题,对实际问题有了进一步的了解后才能思考如何对所学理论方法进行融会贯通,并在此基础上进行创新改进。

(三)增加医学影像采集教学环节

在完成医学成像原理的理论教学之后,为进一步让学生理解医学影像采集原理及其特点,结合医学院条件,可安排学生进行各种医学影像采集的实践操作。在影像采集实践操作过程中,学生不仅能深入理解各种医学影像的成像原理,还能进一步了解到各种图像常见噪声的来源与特点,例如磁共振图像的运动伪影的由来及其特点。学生在进行图像处理算法学习之后,能够针对性地对各种不同噪声进行处理分析,或者在了解噪声特点的情况下,能够针对性地提出图像处理算法降低噪声的影响。

(四)结合

Octave进行实践算法教学传统图像处理是一门理论性较强的课程,近些年,该门课程的教学更多地提倡理论与实践融合。Octave是一个类似MATLAB的数学计算软件,其语法模仿了MATLAB。MATLAB是目前世界上最常用的数学分析软件之一,其具有强大的图像处理能力,是目前科研界常用的图像处理平台。Octave在继承MATLAB语法的同时,还具有免费开源的优点。在讲授完图像算法理论之后,将要求学生基于医学影像采集环节得到的医学影像数据,基于Octave进行编程实践,在实践过程中学生将切实感受到各种图像处理算法的作用,以及在医学影像数据上与自然图像不一致的效果,从而激发学生继续探索,对算法进行改进以适用医学影像数据。

(五)改变课程考核方式

基于实践教学的医学图像分析课程在考核环节应该更加注重考核实践操作[4]。笔者在教学过程中,最终考核环节题目设置为:基于课程讲授以及实践教学,提出一个医学图像问题,并给出解决方法。答题模板如表2。学生通过回顾与总结本门课程中的医学图像实践采集环节与后续图像处理算法理论,思考一个现实生活中会遇到的医学图像问题,最后选用合适的图像处理方法或者对现有的图像处理方法进行改进来解决该问题。上述考核方式注重考核学生“提出问题”与“解决问题”的能力。

(六)医学图像分析的实践教学流程总结

前面笔者提出了不同的医学图像分析课程的实践教学环节,最后对全部环节进行一个总结,提出一套医学图像分析的实践教学流程,如图3所示。希望上述教学模式能给具备相应条件的综合类大学医学院的医学图像分析课程教学提供一定的帮助与启示。

结语

通过总结与分析医学图像分析课程教学中遇到的问题与学生反馈,结合本单位的实际情况与优势,本文提出在医学图像分析课程教学中增加诸多实践环节,以提升学生对本门课程的认识,增强对医学影像原理及问题的深入理解,在此基础上培养与提高学生“提出问题”的能力。在图像处理教学环节,提出基于Octave的实践教学环节,在图像处理理论学习的同时,增强学生理论结合实践的能力。最终通过实践考核,考核学生“提出问题”与“解决问题”的能力,通过提出并解决医学图像相关问题达到对本门课程教学内容的深入理解,从而培养出能够学以致用,并能解决实际临床医学影像问题的学生。

参考文献:

[1]汤敏,张士兵,沈晓燕.医学图像处理与分析课程的实践教学改革研究[J].中国教育技术装备,2014(2):90-91.

[2]陈跃,杨建茹.医学图像分析实验教学改革的研究与实践[J].中华医学教育杂志,2004(03):45-46.

[3]黄忠江,姜增誉,陈文青,张智星.基于人工智能的医学图像分析在脑肿瘤中的应用进展[J].中国医学影像学杂志,2021(6):626-630.

医学影像后处理第6篇

【关键词】计算机技术;医学影像;利用

医学影像其实是一种依靠计算机进行组建的一种数字化图像,简单的说它是根据电离辐射的自身特点和非电离辐射的自身性质两者相互产生作用下所产生的规律,并用计算机技术所采集而成的一种数据。医学影像在医学中运用广泛,它是医生进行患者医疗诊断的重要工具。而要很好保证一张医学影像的质量,就必须依靠计算机技术进行后期的处理.但是在乡镇医院里这项技术却发展得不是很好,由于多方面的原因,在利用计算机技术时会出现很多问题。

1医学影像的分类

现代医学影像一般包括这样几类;超声成像,主要是对人体的超声回波进行测量,X线成像;测量人体内的X线,例如胸透。光线成像、磁共振成像、发射型计算机断层PET、核医学成像等等,这些影像都是医院的宝贵材料,对于诊断病情有很大的帮助。

2如何利用计算机技术进行医学影像处理提高质量

2.1利用计算机技术进行提高医学影像的分辨率其实不管是X线影像还是CT影像、磁共振影像等等,刚刚出来的成像信息量是非常少的,要想增多的它的信息量就需要后期利于计算机技术提高它的分辨率.医学影像它都是由一个个相连接的像素矩阵所组成的,如果在一个影像的固定面积内所含的像素越高,影像得到的各种信息量就更多,内容更加丰富。要想实现这一点,就的依靠计算机技术进行更改,例如现在设计常用的各种软件photoshop,美图秀秀等都有这方面的功能可以更改一张尺寸固定的影像像素,步骤如下:首先打开photoshop,打开一张未处理过的影像,点击“图像”调整“画布大小”打开对话框,这里就可以调整影像的像素,宽度的像素、高度的像素,宽度和高度是否按比例调整等等。一般来说分辨率的提高是需要增加影像的像素,以此增加更多的信息量,保证影像的质量,通过计算机后期的处理就可以实现。

2.2利用计算机技术进行医学影像的对比度提高对比度也是影响一张医学影像好坏的根本因素,一般计算机图像处理技术中,所谓的对比度,其实是指的是两个相近的像素灰度值之间的一个差异。如果两个相

近的像素灰度值之间的差异截然不同,差异越大,两者的对比度的数字越大,看清医学影像的内容更清晰、更容易。例0和4之间的灰度值比较相邻,就很难讲它们进行区分。而0和150之间的灰度值的差异就非常大,对比度就很强,也使人们对医学影响的内容更容易分辨。而用计算机的软件技术photoshop,美图秀秀等。则可以改变对比度。首先打开photoshop,打开一张未处理过的影像,点击“图像”调整“亮度/对比度”,然后将0和4之间分别乘以20,这样把0和4之间变成了0和40之间,那么医学影像的对比度就会增强,分辨起来也就越容易,也就更能提高医学影像的质量。

2.3利用计算机技术进行医学影像亮度的提高根据一般规律人们对于分辨率值低的图像分辨能力较差,刚刚成像的未经修改的影响就有这样的特点,这张影像的质量就大打折扣了,医生无法看清影像信息的内容,也就无法做出正确的判断,这时就可以利用计算机软件技术photoshop,美图秀秀等改变影响的亮度,首先打开photoshop,打开一张未处理过的影像,点击“图像”调整“亮度/对比度”,其取值范围为0-255,0表示影响全黑暗,255表示全白或者全亮,可以随意进行调整,直到你看清楚整张影像为止。

3如何利用计算机技术对冻结的影像进行处理

由于过去的技术落后,很多影像都是采取冻结处理,如果需要采集这些图像的信息就需要计算机技术。这里介绍一款医学影像处理体统,现在笔者就说说如何利用它来进行医学影像的增加。首先把图片分门别类整理,处理的目的最终是要提高图像的清晰程度。影像的分类并不是能随便分的,而是按照某种特征进行分类。这些特征又是和图像的灰度分布的形式如何息息相关,这种分布又是不定性,X放射科的系统最大问题就是图像的对比度低,在这种情况下,就要使用系统的增强功能,例如前面提到的提高图像亮度、对比度、对比拉伸等等,这样冻结过后的图像影响就会清晰得多。

4如何利用计算机技术处理内窥镜

医学影像,建立三维模型随着医学的发达,例如胃镜、肠镜、咽喉镜等内窥镜技术的运用也越来越广泛,这个技术的出现,给疾病诊断增加了准确性,但是患者却痛苦万分,医生操作也非常不方便。加上传统胶片的落后性,诊断起来也非常困难。这就需要入计算机技术,同过计算机技术对病人相关部位影像进行处理,做一个三维重建,然后构建一个模拟化的相关器官图,这样各种内窥镜就能在其中进行检测,减轻病人的痛苦,增大判断的效果。

5总结

计算机技术的不断发展,给医学领域带来了一次新的革命,计算机不仅在人们的生活中运用广泛,在医学领域中运用也非常广泛,尤其在医学影像方面,由于拍摄刚刚成型的影像存在不足,需要计算机技术进行后期处理,对于年代久远的影响清晰度低,也需要计算机技术进行医学影像后期处理,新的医学技术也需要计算机技术进行医学影响后期处理,这就需要医学人员掌握更多的影像处理技术,懂得如何计算机技术对各种医学影像进行后期处理、后期调整:例如图像增强、对比度的变化、亮度的调整等等,最终帮助医生得到更准确的患者信息,帮助医生做出最正确的医疗诊断。

参考文献

[1]何友全,方磊.医学影像计算机传输与处理[J].西南交通大学学报,2003年6月第3.期

医学影像后处理第7篇

关键词:数字化放射医学影像;质量控制;管理措施

在我国数字技术不断发展的过程中,医学技术也在迅速进步,尤其是数字化放射医学影像技术,医疗管理部门必须根据其实际情况,对影像板扫描仪、影像阅读打印等系统进行严格管理,提升影像质量。

1 数字化放射医学影像技术的组成分析

数字化放射医学影像技术是由影像板、影像板扫描仪与影像后处理等系统组成,其工作原理就是将影像投影在影像板上面,然后进入扫描仪,通过激光扫描技术阅读数据,同时,利用光电途径将数据转换成为数字信号,在影像后处理站处理之后,通过显示器显示出结果,供给医生对其进行观察。目前,医疗机构在应用数字化放射医学影像技术的过程中,不能全面理解其组成理念,无法提升影像质量,甚至会出现临床医疗问题。因此,技术人员必须重视以下几点组成理念的理解:

1.1影像板 影像板是数字化放射医学影像技术中的重要组成部分,其中含有较多的微量元素化合物,包括Eu2等,属于一种晶体结构,在实际使用期间,可以有效记录影像,打破了传统胶片记录影像的局限性,重复使用次数大于一万次[1]。

1.2影像板扫描仪 此类技术可以将影像板记录的影像数据,准确的阅读出来,对于数字化放射医学影像质量的影响较大。影像板扫描仪是影像信息转换的重要依托,可以将其转化成为不同亮度的像素,将平面图像转化成为二维点阵。同时,影像板扫描仪会通过模拟数据方式,将每一个影像像素转化成为数据,将二维点阵转化成为矩阵,然后将矩阵传输到后处理工作站系统中,在对数据进行运算之后,得到不同的影像。影像板扫描仪具有较高空间分辨率优势,可以清晰反映出影像图形,明确影像指标的灰极度。同时影像板扫面衣还可以将数字化转化程度体现出来,扫描速度较高。对于空间分辨率而言,如果影像不清晰,影像板扫描仪就会利用较高的空间分辨率显现出影像。对于灰极度而言,影像板扫描仪会通过数字图像反应影像的呈现效果[2]。对于矩阵而言,影像板扫描仪可以通过亮化的扫描技术,形成良好的像素点阵,然后利用相关模拟技术将其转化为数字化的矩阵。此类运行方式,主要通过计算机实现,因此,必须要对像素点阵进行全面的数字化处理,才能提升影像板扫描仪的应用质量,体现出真实的影像数据信息。对于扫描速度与缓冲平台而言,缓冲平台容量较为重要,影像板扫描仪的处理能力可以通过缓冲平台容量体现出来,大型的影像板扫描仪在一个小时就可以达到100板的扫描效果。技术人员在应用此类技术之前,必须要将扫描IP板放置在缓冲平台上,然后利用机械自动扫描,充分发挥影像板扫描仪IP板功能作用,提升数据输送的自动化效率,以便于下一次对其进行应用[3]。

综上所述,在数字化放射医学影像技术实际应用的过程中,相关技术人员必须要全面控制组合结构的应用质量,制定完善的管理制度,在严格的管理工作下,提升数字化放射医学影像质量,增强其发展效果。

2 打号系统与预视系统的管理

在医疗机构技术人员应用数字化放射医学影像技术的过程中,必须要重视打号系统与预视系统的管理。然而,我国部分医疗机构在实际工作期间,无法提升打号系统与预视系统的管理效率,难以根据其实际要求开展相关工作,导致影像质量降低,因此,技术人员必须注重以下工作流程:打号系统就是将与影像有关的文字信息记录下来,技术人员必须要保证文字信息的准确性。技术人员必须通过电脑键盘输入文字信息,同时,还可以在医院信息库中调取所需要的信息,在此期间,技术人员不需要将全部信息都输入,只需要输入一些关键信息或者词语就可以搜索到所需要的信息。对于预视系统而言,由于影像后处理系统功能较为全面,技术人员可以利用打号系统输入投照,在投照打号的时候,通过投照关键词的搜索,系统就会自动筛选出相关软件包,然后对影像进行处理,医生就可以ζ浣行预,进而得到良好的数字影像[4]。

3 影像阅读与打印管理

数字化反射医学影像技术的应用,需要技术人员重视影像阅读与打印的管理。当前,我国一些医疗机构在应用数字化放射医学影像技术的过程中,不能提升影像阅读与打印管理工作效率,难以优化起管理体系,无法提高影像放映质量,导致临床治疗工作受到影响。因此,技术人员与管理人员必须重视影像阅读与打印系统的管理。首先,技术人员要全面分析数字化放射医学影像设备类型,并且选择配套的阅读与打印系统。其次,为了提升图像质量,增强数字化放射医学影像技术应用效果,技术人员可以利用PACS网络,对其进行终端输出处理,进而提升检验工作效率。最后,数字化放射医学影像质量控制部门必须制定完善的质量控制制度,提升影像管理效率[5]。

4 系统网络化管理

数字化放射医学影像技术的应用,要求技术人员重视系统网络化管理工作。目前,我国部分医疗机构在应用数字化放射医学影像技术的时候,不能对其进行系统网络化管理,难以提升影像质量,无法保证医疗服务的有效性。这就需要技术人员重点关注系统网络化管理工作。首先,在网络社会的发展,人们对网络信息技术的应用逐渐增多,对于数字化放射医学影像质量的要求也开始提升,技术人员必须要全面应用网络信息技术,重视系统网络化管理,树立正确的管理理念。其次,技术人员要通过网络信息技术的应用,提升数字化放射医学影像清晰度,提升影像的质量,增强信息处理效果,同时,还要增加系统网络的兼容性。再次,技术人员在系统网络化管理的时候,还要根据DIcOM使用标准的分析,制定完善的技术应用制度,借助CT、MRI、DSA等图像处理技术,对工作站数字设备进行浏览。最后,在构成影像的时候,技术人员要建立放射科影像存档系统与通信系统,利用存档系统与通信系统对数字化放射医学影像进行处理,进而提升影像图片质量,优化影像处理体系,进而提升医疗服务质量。

在数字化放射医学影像质量控制与管理中,技术人员必须制度完善的技术应用制度,利用完善的管理制度约束技术人员的技术行为,全面提升数字化放射医学影像质量。

参考文献:

[1]邵为景.探讨放射技术工作的全面质量控制管理[J].中国卫生产业,2015(4):94-95.

[2]董海斌,宋少娟,张翼,等.战区医院放射科现状调查与提升卫勤保障能力研究[J].医疗卫生装备,2013,34(12):106,111.

[3]蒋宇宏,张东友,宋少辉,等.探讨数字化医学影像设备质量管理的方法与流程[J].中国中西医结合影像学杂志,2014,12(1):100-101.