欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

统计学标准差(合集7篇)

时间:2023-08-16 17:05:43
统计学标准差

统计学标准差第1篇

(陕西学前师范学院,陕西 西安 710100)

摘 要:平均差优于标准差这一观点一直以来都存在一定支持者,但仔细分析不难发现这一观点根本不能成立。从计算方式、数学关系、敏感性和正态分布下的换算公式推导四个方面对标准差与平均差展开研究,可以得出以下结论:第一,标准差与平均差有着统一公式和数学关系。第二,平均差计算过程有低估变异性问题。第三,平均差难于动摇标准差在统计学中的重要地位。

关键词 :统计学;平均差;标准差

中图分类号:O212文献标识码:A文章编号:1673-260X(2015)08-0003-02

1 问题的提出

标准差与平均差都是人为构造出来,使用统计学手段,反映统计样本或总体的离散程度的统计指标。一般来说,标准差在实际应用中要比后者广泛一些。多数国内统计学教材在编写时对两者采取了平行介绍的方式进行处理,并从实用角度出发,偏重介绍应用更广的标准差,并认为平均差计算存在不便。对此,十余年来一直有学者提出反驳意见,认为平均差优于标准差,相关论文和著作较多但观点较为相似,试总结如下:

(1)认为在数字计算时,平均差计算不存在乘方和开方计算,计算量低于标准差,由此认为平均差更简便,并使用例题举证;

(2)从自己的实际工作经验出发,发现标准差计算结果往往大于平均差,由此提出观点,认为标准差存在高估变异性的问题,并使用例题举证;

(3)从测量离差一般水平的思路出发,进而认为标准差是平均差的代替,所以标准差不如平均差;

(4)认为在高性能计算机大量普及的情况下,平均差即使有计算不便,但两者在计算上的差异是可以被忽略的,使用哪种区别不大。

由以上观点,进一步得出了平均差优于标准差,并且应当大力推广平均差的结论。

2 平均差优于标准差的观点不能成立

对于此种观点,笔者作为一名从事高校统计学教学的教师,委实不敢苟同,现将以上所列论点进行逐条分析:

(1)对于平均差计算更简便的问题,上述论证只能说明平均差在进行具体数字的手工算术计算时计算量要小于标准差,而对代数计算只字不提,对于具体数字来说,绝对值计算不需要讨论正负问题,当然计算量要小,但对于不涉及具体数字的代数计算来说,绝对值的讨论当然要复杂一些。平均差计算更简便的观点只在算术领域成立,在代数领域难以成立。

(2)标准差计算结果往往大于平均差是一个实际计算观察的结果,而且也确实符合实际情况,后面笔者也会对此进行代数证明。但是标准差计算结果大于等于平均差这一现象其实无法得出标准差存在高估变异性的问题的结论,只能说明两者对变异性的测量存在差异,到底是标准差高估了变异性还是平均差低估了变异性,这一现象是不足以说明的。

(3)与其说是标准差代替了平均差,不如说是由于标准差的优点获得了广泛使用,变异指标的意义在于衡量分布的变异性,并不是说越接近离差的一般水平变异指标就越好。

(4)即使在高性能计算机大量普及的情况下,平均差与标准差的差异也是不能忽视的。首先是标准差函数可导,平均差函数不可导,这一区别导致两者在微积分处理上存在巨大差异。其次,标准差对应的是二阶矩,对所有平方可积的函数适用,平均差对应的是另一种范数,其适用函数的空间不同于平方可积函数的空间。而平方可积函数的空间具有许多更好的性质。平均差与标准差函数的可导性和可积空间上有很大差异,没有了导数存在且连续的标准差,大量的数学推导都无法展开,所以建立在标准差基础上的数理统计体系很难使用平均差代替。因此平均差与标准差的差异不光在算术计算上,更重要的是在数理推导上的差异,而后者与计算机性能的高低并没有太大关系。

综上所述,认为平均差优于标准差的观点无法成立。

3 平均差与标准差的数理关系分析

3。1 平均差与标准差的计算方式的联系

平均差和标准差的计算方式都是以离差概念为基础的,离差是单项数值与平均值之间的差,公式可写作,离差是一个向量,其绝对取值代表了单项数值偏离平均值的程度,正负号代表了单项数值偏离平均值的方向,如果想要构造一个衡量总体变异性的统计指标,使用离差来作为构造的基础是很自然的选择,但是也很容易证明,由于离差取值的方向性,其数学期望恒为零。因此,取消离差的正负号后再来构造统计指标才有意义,从这个角度出发,我们可以构造出方差和标准差两种指标,即和。前者是离差平方的数学期望,后者是离差绝对值的数学期望,而方差本身计算出来的指标要比统计量高一阶,所以可以对其求平方根进行标准化,就得到了标准差。由此可见,平均差和标准差的计算方式存在着密切联系,其中,平均差的计算公式可以转化为,而标准差的计算公式可以转化为,所以,平均差和标准差的计算公式可以统一为:,其中平均差为该统计量取一阶的结果,标准差为该统计量取二阶的结果。因此,平均差和标准差应当看作同源、同类但不同阶的统计量,不存在谁是谁的替代品的问题。

3。2 平均差与标准差的相互关系

在得出平均差与标准差的一般公式之后,我们可以看出两者的计算过程存在比较紧密的关联,但两者呈现的数量关系却无法直接显现,前面提到,实际数据观察似乎支持标准差大于等于平均差的观点,但直接对两者进行相减的话,绝对值号又影响了进一步的讨论。但是,既然平均差和标准差都大于等于零,如果可以证明标准差的平方即方差与平均差的平方之差大于等于零,其实也就证明了标准差大于等于平均差。计算如下:,所以标准差确实大于等于平均差,其中只有在离差绝对值的方差等于零时两者相等。但这一结果不能说明标准差高估了变异性,前面的证明可以看出,方差之中包含了平均差包含的所有用离差反映的变量值的变异性信息之余,还包含了离差本身的变异性信息,进一步来说,既然方差可以被分解为变量值的平均差的平方与离差绝对值的方差之和,那么离差绝对值的方差也可以被分解为离差平均差的平方与离差的离差绝对值的方差之和,由此可以形成一个关于平均差的无穷级数,而这一无穷级数之和收敛于变量值的方差。由此可以看出,其实方差包含了变量值各级离差的平均差所反映的所有变异性,而且这些变异性之间不存在重复计算问题,而标准差正是方差的标准化,所以,并非是标准差高估了变量的变异性,而是平均差只测量出了变量值包含的所有变异性的一部分。

3。3 平均差函数与标准差函数对变异性敏感程度的比较

如果从平均数的角度观察平均差函数与标准差函数,不难发现其中的一些区别,平均差函数可做如下变化:A.D.=,可以看出平均差函数即离差的简单算术平均数,离差的大小并不影响其权重,所以对于平均差来说,极端变量值的变异性被同等看待了。而标准差可做如下变化:,可以看出根号内的公式可以看成以离差本身大小为权重的加权算术平均数,所以越极端的变量值会被给予越多的关注,这一点更符合人们对于数据变异性的直接感觉。可以直观的构造如下两组数说明这种区别:1,1,0,-1,-1和2,0,0,0,-2,两者拥有相同的均值0和平均差0。8,但直观感觉前者的变异性较小,如果使用标准差,则前者标准差为0。89,后者为1。26,就有效的衡量出了这种变异性。

3。4 在正态分布下平均差与标准差的取值讨论

如假设X服从正态分布,,则有,由此可以看出,在正态分布下,平均差与标准差的取值存在稳定的倍数关系。同理其实不难证明,在参数确定的特定分布下,平均差与标准差的取值都存在该分布特有的稳定关系。至于是否可以在具体数字计算时结合这种稳定关系,使用平均差估算标准差,还有待后续研究证明其可靠性。

4 总结

由以上分析可见,标准差与平均差是有着统一公式和数学关系的两种变异指标,并不存在排他性问题,其中平均差在具体数字计算时有一定优势,但不利于代数运算和数学推导,同时平均差在计算变异性时存在信息损失低估变异性的问题,因此难于动摇标准差在统计学中的重要地位。

参考文献:

(1)韩兆洲,杨林涛。极差、平均差和标准差之间测度关系研究[J]。统计与信息论坛,2008(04)。

(2)桂文林,伍超标。标准差和平均差的内在关系及应用研究[J]。数理统计与管理,2005(02)。

(3)赵海燕,陈立秋,张晓方。平均差和标准差在变异指标中的代表性浅议[J]。统计与咨询,2002(04)。

统计学标准差第2篇

【关键词】会计专业统计学教学审计财务管理管理会计

统计学原理是高等院校经济类和管理类专业(以下简称经管专业)的一门核心课程。大统计学是一门搜集、整理和分析统计数据的方法论科学,其目的是探索数据的内在数量规律性。统计学广泛应用于各学科中,在商业以及工业中,统计被用来了解与测量系统变异性,程序控制,对决策提供数据支持;在第一产业方面,可运用统计计算出各种农产品的需求情况及价格分布,从而指导生产;在生产行业中,统计学可以运用在产品开发、营销、财务管理等方面,从而提高企业的营运能力;在服务行业中,例如在金融行业中,运用统计技术将各种交易资料加以分类、整理,从而得到如客户贡献度、客户偏好、存款变动趋势、产品分析、行业发展等数据,从而为管理层提供决策依据,等等。特别是在会计专业中,统计学更是发挥了不可估量的贡献。在对会计专业学生的统计学教学中,大致可以从审计学、财务管理和管理会计几方面入手,将统计学教学与会计专业有机结合。笔者经过了多年的统计学专业学习,并经过了长时间的高校会计专业学生的实践教学,对统计学教学过程有了更深刻的感受,在这里本人谈谈对会计专业统计学教学的一些改革创新思路。

一审计学——审计统计抽样

审计抽样是指审计人员在实施审计测试时,从被审总体中选取一定数量的样本进行审查,通过样本的审查结果来推断被审总体特征的一种审计技术方法,审计统计抽样是审计抽样的一种方法,它是相对于非统计抽样而言的。统计抽样是指在审计抽样中,审计人员根据概率论和数理统计的原理,按照一定方法确定样本数量,并以样本审查结果推断评估总体的审计抽样技术。它运用的数学运算包括两个过程:样本规模和推算总体。统计抽样的思想方法是以假设检验为前提,设定抽样参数,确定抽样规模,无人为偏见的随机抽取样本进行审核,根据需要扩大样本,逐次逼近总体特征,根据样本特征经计算推导,得出总体结论。根据抽样测试的目标不同,统计抽样方法可分为3大类:用于符合性测试的属性抽样和用于实质性测试的变量抽样以及货币单位抽样。审计中常用的统计抽样技术有属性抽样(包括固定样本量抽样、停—走抽样、发现抽样)、变量抽样(包括单位平均数估计抽样、差额估计抽样、比率估计抽样、分层抽样)、货币单位抽样等。统计抽样的方法很多,每一种方法都有其特定的优点和局限,既没有某一种方法一无是处,也没有哪一种方法在任何情况下都是最优的。因此依照何种标准来选择适当的统计抽样方法很重要,应重点考虑审计目标、审计效果、审计效率、审计成本等因素。要确定哪种统计抽样方法最为适宜是不容易的,这要求审计人员对每一种可供选择的统计抽样方法都要有所了解,掌握它们各自的优点和运用条件,充分了解实际情况,再与丰富的审计实践经验相结合,才能做出正确的选择。

二财务管理——收益和风险

财务管理中的收益和风险,在统计学中即表现为描述统计中的算术平均数和标准差(标准差系数)。例如:期望现金流量的计算方法中,如果影响资产未来现金流量的因素较多,不确定性较大,使用单一的现金流量可能并不能如实反映资产创造现金流量的实际情况。在这种情况下,采用期望现金流量法更为合理的,企业应当采用期望现金流量法预计资产未来现金流量。在期望现金流量法下,资产未来每期现金流量应当根据每期可能发生情况的概率及其相应的现金流量加权计算求得,此种方法即加权算术平均数的计算方法;货币时间价值的计算是假定没有风险和通货膨胀,但在财务活动中,经营风险带来的财务风险是客观存在的,而且风险和收益密切相关,所以财务管理者必须研究风险和收益。如果不考虑收益的前提下,可以直接用标准差来衡量财务活动中的风险,若考虑收益,则不能直接用标准差,需要用标准差系数来衡量风险,即用标准差与收益的比值来衡量。

除此之外,在财务管理中,需要对资金需要量等指标进行预测,为统计学中的预测方法提供了多种思路。

可以按照时间序列的组成因素,可以选择平滑法预测、回归法预测等,这些方法都是会计专业中常用的预测方法。例如,在财务预测中,资金需要量预测的主要方法有销售百分比法、线性回归分析法和预计资产负债表法。线性回归分析法是假定资金需要量与业务量之间存在线性关系并建立数学模型,然后根据历史有关资料,确定参数从而用回归直线预测资金需要量的一种方法。其预测的数学模型为y=a+bx,式中y为资金需要量;a为不变资金;b为单位业务量所需要的变动资金;x为业务量。不变资金是指在一定的营业规模内,不随业务量增减的资金。变动资金是指随营业业务量变动而同比例变动的资金。根据企业历史资料,运用线性模型,在确定a、b数值的基础上,即可预测一定业务量x所需的资金量y。用于销售预测的常用方法有判断分析法、趋势外推分析法、因果预测分析法和产品寿命周期推断法等。趋势外推分析法在销售量预测中的应用较为普遍,其具体应用形式包括平均法(简均法、移动平均法和趋势平均法)和修正的时间序列回归法。

三管理会计

按成本性态可以将企业的全部成本分为固定成本和变动成本。固定成本与变动成本只是经济生活中诸多成本性态的两种极端类型,多数成本是以混合成本的形式存在的。混合成本是指那些“混合”了固定成本和变动成本两种不同性质的成本,对混合成本的分解方法有历史成本法、账户分析法和工程分析法。历史成本法的基本做法就是根据以往若干时期(若干月或若干年)的数据所表现出来的实际成本与业务量之间的依存关系来描述成本的性态,并以此来确定决策所需要的未来成本数据。历史成本法通常分为高低点法、散布图法和回归直线法3种。回归直线法运用最小二乘法的原理,对所观测到的全部数据加以计算,从而勾画出最能代表平均成本水平的直线y=a+bx,这条通过回归分析而得到的直线就称为回归直线,它的截距就是固定成本a,斜率就是单位变动成本b,这种分解方法也称作回归直线法。又因为回归直线可以使各观测点的数据与直线相应各点误差的平方和最小,所以这种分解方法又称为最小二乘法。

管理会计中的标准成本法是指通过制定标准成本,将标准成本与实际成本进行比较获得成本差异,并对成本差异进行因素分析,据以加强成本控制的一种会计信息系统和成本控制系统。标准成本法便于企业编制预算和进行预算控制;可以有效地控制成本支出;可以为企业的例外管理提供数据;可以帮助企业进行产品的价格决策和预测;可以简化存货的计价以及成本核算的账务处理工作。标准成本是在正常生产经营条件下应该实现的,可以作为控制成本开支,评价实际成本、衡量工作效率的依据和尺度的一种目标成本。可分为理想标准成本、正常标准成本和现实标准成本。成本差异是指实际成本与标准成本之间的差额,也称标准差异。按成本的构成分为直接材料成本差异、直接人工成本差异和制造费用差异。直接材料成本差异、直接人工成本差异和变动制造费用差异都属于变动成本,决定变动成本数额的因素是价格和耗用数量。制造费用差异(即间接制造费用差异)按其形成的原因和分析方法的不同又可分为变动制造费用差异和固定制造费用差异两部分。例如:直接材料成本差异是指一定产量产品的直接材料实际成本与直接材料标准成本之间的差异。直接材料成本差异=直接材料实际成本-直接材料标准成本。直接材料成本是变动成本,其成本差异形成的原因包括价格差异和数量差异。价格差异是实际价格脱离标准价格所产生的差异。数量差异是单位实际材料耗用量脱离单位标准材料耗用量所产生的差异。计算公式如下:材料价格差异=(实际价格-标准价格)×实际用量;材料数量差异=(材料单位实际耗用量-材料单位标准耗用量)×标准价格;直接材料成本差异=材料价格差异+材料数量差异。此种计算方法是统计学中加权综合指数体系中的相对数形式和绝对数形式。在学习和工作中比较常用的是基期权数加权的数量指数和报告期权数加权的质量指数形成的指数体系。

综上,会计专业中的统计学教学应结合自身特点,注重对统计思想的挖掘和传递,注重对学生统计思维能力的培养和塑造,以培养应用能力为主线,与会计专业老师深入沟通,对现有统计学教材的课程设置及传统的教学手段进行大胆改革,从而使会计专业的学生增强学习统计知识的兴趣,真正认识到统计学的重要性,学到真正能指导实践的现代化统计知识。通过一段时间的实践,会计专业学生对统计学和会计学科的关系有了深刻的认识,增加了学习统计学的主动性,并对会计专业课程有了不同角度的解读。

参考文献

〔1〕白日荣、苏永明.非统计专业统计学教学的改革与创新〔J〕.统计教育,2007(12)

〔2〕杨绪忠.财经类非统计学专业的统计学课程教学探讨〔J〕.统计与决策,2002(05)

统计学标准差第3篇

[关键词]总体标准差;参数估计;无偏估计;系统误差;随机误差;综合误差;测量不确定度;自由度;标准差系数

[中图分类号]O 212 [文献标识码]A [文章编号]1005-6432(2013)10-0023-011

1 引 言

在科学实验中,测量可分为常量测量和变量测量两大类。物理量的变化量远小于测量仪器误差范围的测量称为常量测量(又称经典测量、基础测量),其核心理论是误差理论[1-3],误差理论的基本单元是误差元(测量值减真值)。测量仪器误差范围远小于物理量的变化量的测量称为变量测量(又称统计测量),其核心理论是数理统计理论(概率论是其理论基础),数理统计理论的基本单元是偏差元(又称离差元,测量值减数学期望)。标准差(standard deviation,又称标准偏差、均方差,其英文缩写词为SD,此术语1893年由卡尔·皮尔逊首创)是用来衡量一组测量数据的离散程度的统计量,它反映了随机变量的取值与其数学期望的偏离程度。经典测量学只能处理常量测量问题,而当今频域界的频率稳定度测量(常用阿伦方差表示)则属于变量测量。

等精度测量(equally accurate measurement)是指在测量条件(包括测量仪器的准确度、观测者的技术水平、环境条件影响及测量方法等)不变的情况下,对某一被测物理量所进行多次测量的一种方法。在实际测量工作中,由相同设备、相同人员、相同环境和相同方法所获得的各测量值可视为是等精度测量值。文献[4]介绍了流量计量中的计量学基本原则——等精度传递理论。

在测量实践中,有时为了获得准确度更高的测量结果,往往要求在不同的测量环境条件下,使用不同的测量仪器,选用不同的测量者和不同的测量次数,采用不同的测量方法进行对比测量,这种测量方法称为不等精度测量(unequally accurate measurement)。不等精度测量的不确定度应采用加权方式计算[5-6]。

若无特别说明,本文中所涉及的测量均指等精度测量。

2 误差的种类和应用

误差公理认为误差自始至终存在于一切科学实验和测量之中,是不可避免的,即误差无处不在,真值是不可知的。在实际应用工作中,可用约定真值或相对真值来代替理论概念中的理想真值。约定真值一般包括约定值、指定值和最佳估计值三种类型。

测量误差最基本的表示方法有如下三种:①绝对误差=测量值-真值,绝对误差通常简称为误差(即真误差);②相对误差=绝对误差/真值≈绝对误差/测量值;③引用误差=示值误差/测量范围上限(或全量程)。残差(又称剩余误差)=测量值-估计值,残差可认为是真误差的估计值。绝对误差和相对误差通常用于单值点测量误差的表示,而对于具有连续刻度和多档量程的测量仪器的误差则通常采用引用误差来表示。

按误差的特点和性质可将其分为粗大误差(parasitic error)、系统误差(systematic error)和随机误差(random error)三大类。可消除的粗大误差(又称过失误差,没有规律可循)应予全部剔除,系统误差(又称规律误差、理论误差或方法误差,一个定值或服从函数规律)反映测量的正确度(correctness),随机误差(旧称偶然误差、不定误差,服从统计规律,大多数服从正态分布规律)反映测量的精密度(precision),测量的准确度(accuracy,又译为精确度)则是用综合误差(即测量不确定度)来衡量的,有时也用极限误差来衡量测量的准确度。逐项获得测量的系统误差和随机误差,采用误差合成的方法(各系统误差绝对值相加得系统误差范围,各随机误差均方根合成则得随机误差范围。系统误差范围加随机误差范围可得综合误差范围)合成综合误差,它表征了测量结果与真值的不一致程度。

泛指性的“精度”一词常被用作“精确度(即准确度)”或“精密度”的替代词,因其并无明确和严格的科学定义,故在学术论文中应慎用或弃用。

下面简要介绍一下随机误差所遵循的一些基本统计规律,首先需要介绍中心极限定理:

当测量次数n无限增大时,在真误差序列中,若比某真误差绝对值大的误差和比其绝对值小的误差出现的概率相等,则称该真误差为或然误差(probable error,又称概率误差,它在衡量射击精密度时尤其显得重要),记作ρ。

作为精密度的评定指标,中误差最为常用,因为它反映了真误差分布的离散程度。

通常以2倍或3倍的中误差作为随机误差的极限误差(limit error),其置信概率分别是9544%(2σ准则)和9973%(3σ准则)。如果某个误差超过了极限误差,就可以认为它是粗大误差而被剔除,其相应的测量值应舍弃不用。

对于某个测量值,通常采用相对中误差(即中误差和测量值之比,又称相对标准差)配合中误差来衡量,它能更全面地表达测量值的好坏。

英国物理学家、化学家和数学家瑞利勋爵(Lord Rayleigh,1842—1919)以严谨、广博和精深而著称,他善于利用简单的设备做实验而能获得十分精确的数据。他因对气体密度的精确研究并因此参与发现稀有气体(旧称惰性气体)氩而荣获1904年诺贝尔物理学奖。1892年瑞利在研究氮气时发现[7]:从液态空气中分馏出来的氮,其密度为12572 kg/m3,而用化学方法直接从亚硝酸铵中得到的氮,其密度则为12508 kg/m3(现在的最权威数据125046 kg/m3是基于0 ℃和01 MPa时),前者比后者大05117%,因实验中已排除了粗大误差的可能,这一差异已远远超出随机误差的正常范围(现在通过t检验准则可以判定当时瑞利测得的空气中氮的密度数据是存在系统误差的)。英国物理化学家和放射化学家拉姆赛(Sir William Ramsay,1852—1916,1904年诺贝尔化学奖获得者)注意到这个问题并要求与瑞利合作对此问题展开共同研究,最终他们利用光谱分析法于1894年8月13日发现了第一种稀有气体─氩(Ar)。氩元素的发现是科学家们注意测量结果中的微小误差(实际上是系统误差)而取得重大科学发现的经典范例,是名副其实的“第三位小数”的胜利[8]。随后,其他稀有气体氦(He,1895年3月)、氪(Kr,1898年5月)、氖(Ne,1898年6月)、氙(Xe,1898年7月)、氡(Rn,1899年,继钋Po、镭Ra和锕Ac之后第4个被发现的天然放射性元素)陆续被拉姆赛等人所发现,稀有气体的发现完善和发展了俄国化学家门捷列夫(1834—1907)的元素周期表(1869年)。

3 统计量的概率分布类型

离散型统计量服从的概率分布类型主要有:①退化分布(又称单点分布);②伯努利(瑞士数学家,Jocob Bernoulli,1654—1705)分布(又称两点分布);③二项分布:包括超几何分布(又衍生出负超几何分布)、β-二项分布和离散均匀分布;④泊松分布:包括帕斯卡(法国数学家和物理学家,Blaise Pascal,1623—1662)分布(又称负二项分布)和几何分布;⑤对数分布等。

随机误差大多服从正态分布或标准正态分布,服从正态分布的随机误差具有单峰性、对称性、有界性和抵偿性。正态分布是随机误差遵循的最普遍的一种分布规律,但不是唯一的分布规律。随机误差服从的常见非正态分布(又称偏态分布)主要有:①均匀分布(又称矩形分布、等概率分布);②伽马分布(Γ-分布):包括指数分布(两个相互独立且都服从指数分布的随机变量之和服从广义指数分布)、厄兰(丹麦数学家和统计学家,Agner Krarup Erlang,1878—1929)分布和τ-分布(χ2-分布是其特例)等特例;③χ-分布:包括反射正态分布、瑞利分布和麦克斯韦(英国物理学家和数学家,James Clerk Maxwell,1831—1879)分布等特例,广义瑞利分布又称莱斯(美国通信理论专家,Stephen " Steve" Oswald Rice,1907—1986)分布(Rice distribution or Rician distribution),当v=0时莱斯分布退化为瑞利分布;④贝塔分布(B-分布);⑤F-分布:1934年美国数学家和统计学家斯内德克(George Waddel Snedecor,1881—1974)首创,为彰显英国统计学家和遗传学家费歇尔(Sir Ronald Aylmer Fisher,1890—1962,方差分析的发明者)的贡献,后来以其名字命名;⑥t-分布(又称学生氏分布):1908年由英格兰统计学家戈塞特(William Sealy Gosset,1876—1937)首创,因他以Student为笔名而得名;⑦对数正态分布;⑧极值分布:包括重指数分布和威布尔(瑞典数学家,Ernst Hjalmar Waloddi Weibull,1887—1979)─格涅坚科分布(参见本文第73节“极差法”)等;⑨柯西(法国数学家,Augustin Louis Cauchy,1789—1857)分布;⑩辛普森(英国数学家,Tomas Simpson,1710—1761)分布(又称三角形分布)等。此外还有反正弦分布、截尾正态分布、双峰正态分布、梯形分布、直角分布、椭圆分布和双三角分布等。多维概率分布则主要有:①多项分布;②均匀分布;③n(n≥2)维正态分布等。

因彼得斯公式法、极差法、最大误差法、最大残差法和最大方差法均只给出了正态分布下的标准差估计的系数因子,故它们一般不适用于非正态分布时的情形。

4 统计推断

统计推断是指根据随机性的观测数据(样本)以及问题的条件和假设(模型),对未知事物作出的、以概率形式表述的推断。统计推断是由样本的信息来推测总体(又称母体)性能的一种方法,它是数理统计学的主要任务,其理论和方法构成数理统计学的主要内容。统计推断分为参数估计和假设检验两大类问题。参数估计是假设检验的前提,没有参数估计,也就无法完成假设检验。

41 参数估计

运用从总体独立抽取的随机样本对总体分布中的未知参数做出估计,称为数理统计学上的参数估计,它是统计推断的一种基本方法。参数估计方法主要分为点估计法(根据样本构造一个统计量,用以对总体参数进行估计)和区间估计法(又称范围估计法,主要是根据置信度求置信区间)两大类。点估计构造统计量(估计量)的常用方法有:①顺序统计量法(又称次序统计量法):主要包括最大顺序统计量法和最小顺序统计量法两种。②贝叶斯法(又称贝叶斯公式、逆概率公式、事后概率公式或原因概率公式):1763年英国统计学家贝叶斯(Thomas Bayes,1702—1761)在其遗作《论有关机遇问题的求解》一文中首先提出。③最小二乘估计法(又称最小平方估计法):它可使残差的平方和为最小,1795年德国数学家、天文学家和物理学家高斯(Johann Carl Friedrich Gauss,1777—1855)首先提出其方法,1806年法国数学家勒让德(Adrien-Marie Legendre,1752—1833)首先用公式表示出最小二乘原理,1900年由俄国数学家马尔科夫(Andrey Andreyevich Markov,1856—1922)加以发展。④矩估计法(又称矩法估计、数字特征法):以样本矩的某一函数代替总体矩的同一函数来构造估计量的方法称为矩估计法,1894年英国数学家和统计学家卡尔·皮尔逊(Karl Pearson,1857—1936,被誉为“现代统计学之父”)首先提出。一个样本可确定一个经验分布函数,由这个经验分布函数可确定样本的各阶矩。称统计量S=1nni=1Xi为子样一阶原点矩(简称一阶矩,即子样均值);称统计量Sk=1nni=1Xki为子样k阶矩;称统计量S=1nni=1(Xi-)2为子样二阶中心矩(即子样方差);称统计量Sk=1nni=1(Xi-)k为子样k阶中心矩。⑤最小χ2法:χ2检验由卡尔·皮尔逊于1900年首先提出,故χ2统计量又称皮尔逊公式。⑥最大似然估计法(maximum likelihood estimation method,又称极大似然估计法):一种重要而普遍的统计量估计方法,其基本思想始于1821年高斯提出的误差理论,1912—1922年英国统计学家和遗传学家费歇尔首先将其应用于参数估计并证明了它的一些性质[9-10],其后他在工作中加以发展并使其臻于完善[11]。该估计方法在统计推断中无须有关事前概率的信息,克服了贝叶斯法(Bayes estimation method)的致命弱点,是统计学史上的一大突破。标准差σ的最大似然估计值是=1nni=1(xi-)2=1nni=1v2i, 其中=1nni=1xi。与最大似然估计法相类似的统计估计方法还有极小极大后验估计法、最小风险法和极小化极大熵法等。

常用于衡量点估计法是否优良的五大准则是:无偏性[12]、有效性、一致性(又称相合性)[13]、渐近性和充分性。无偏估计和一致估计(又称相合估计、相容估计)都属于优良点估计法。衡量区间估计法的优良准则有一致最精确准则、一致最精确无偏性准则和平均长度最短准则等。如果把参数估计用于统计决策,还可采用统计决策理论中的优良准则(如容许性准则、最小化最大准则、贝叶斯准则和最优同变性准则等)。

标准差的现代统计估计方法通常可将其归纳为一般估计方法和稳健估计(robust estimation,又称抗差估计)方法两大类[14]。一般估计方法(均属标准不确定度分量的A类评定方法)主要包括贝塞尔公式法、彼得斯公式法、极差法、最大误差法、最大残差法、较差法和最大方差法等,其中贝塞尔公式法最为常用,极差法、彼得斯公式法和最大残差法次之,最大误差法特别适用于比较特殊的场合(如一次性破坏实验等),较差法和最大方差法的应用场合则相对较少。稳健估计方法基本上可分为三类:M估计(经典最大似然估计法的推广,称为广义最大似然估计法)、L估计(即顺序统计量线性组合估计)和R估计(即秩估计,来源于秩统计检验)。

估计量的数学期望等于被估计参数,则称其为无偏估计,否则就是有偏估计。无偏估计的系统误差为零,其误差用随机误差来衡量;有偏估计的误差则用系统误差和随机误差的合成(即综合误差)来衡量。如今,随着计算机的日益普及和各类数学统计软件(包括专用数学统计软件,如SPSS、SAS和BMDP等)的广泛应用,数据计算繁琐一些已无技术障碍可言。实验测量数据的获得都要付出一定的人力、物力和财力,追求其准确可靠才是其最高目标,因此有偏估计的系统误差应尽可能地予以剔除。对于无偏估计来说,其统计量的方差越小则越好(表示其精密度和有效性越高)。

42 假设检验

假设检验(又称显著性经验、统计检验)一般分为参数检验(适用于总体分布形式已知的情形)和总体分布类型检验(又称分布拟合检验)两大类。参数检验方法主要有u检验法(又称z检验法,即正态分布检验法)、t检验法、χ2检验法(又称皮尔逊检验法)和F检验法(又称费歇尔检验法)等;总体分布类型检验方法主要有概率纸法(包括正态概率纸、对数正态概率纸、威布尔概率纸和二项概率纸等)和χ2检验法(适用于任意分布)等。在正态性检验法中,以夏皮罗(美国统计学家,Samuel Sanford Shapiro,1930—)─威尔克(加拿大统计学家,Martin Bradbury Wilk,19221218—)检验法(1965年,又称W检验,适用于样本数n≤50时的情形)[15]、达戈斯提诺(美国生物统计学家,Ralph BDAgostino, Jr,19290331—20010818)检验法(1971年,又称D检验,一种比较精确的正态检验法)[16]和夏皮罗─弗朗西亚(Shapiro-Francia)检验法(1972年,又称W′检验,适用于样本数50 两个样本是否来自于同分布总体的假设检验方法主要有符号检验法和秩和检验法等。

当未知总体标准差σ时,判别粗大误差的准则(即异常数据取舍的检验方法)主要有:①格拉布斯准则:1950年由美国统计学家格拉布斯(Frank Ephraim Grubbs,1913—2000)首创[18],并于1969年加以发展[19];②狄克逊准则(又称Q检验准则):1950年由美国统计学家狄克逊(Wilfred Joseph Dixon,1915—2008)首创[20],并于1951年和1953年加以改进[21-23];③偏度─峰度检验准则:偏度检验法适用于单侧情形,峰度检验法则适用于双侧情形[24];④罗曼诺夫斯基准则(又称t检验准则、3S检验准则):前苏联数理统计学家、塔什干数学学派创始人罗曼诺夫斯基(Vsevelod Ivanovich Romanovsky,1879—1954)首创,其检验效果最好[25];⑤3σ准则:仅早期采用,只适用于大样本数时的情形,因其理论上欠严谨且样本数n

估计标准差s=1n-2ni=1(y-)2主要应用于回归分析和假设检验中[34]。

5 测量不确定度

测量不确定度(measurement uncertainty,简称不确定度)是测量结果带有的一个非负参数,用以表征合理地赋予被测量值的分散性。它是说明测量水平的主要指标,是表示测量质量的重要依据。不确定度越小,测量结果的质量就越高,使用价值就越大。“不确定度”一词起源于1927年德国理论物理学家和哲学家海森堡(Werner Karl Heisenberg,1901—1976,1932年度诺贝尔物理学奖获得者)在量子力学中提出的不确定度关系,即著名的测不准原理(uncertainty principle)。自国际计量委员会CIPM(法文Comité International des Poids et Mesures)授权国际计量局BIPM(法文Bureau International des Poids et Mesures)于1980年10月提出《实验不确定度表示建议书INC-1》(1992年被纳入国际标准ISO 10012,1997年和2003年分别予以修订,中国国家标准GB/T 19022—2003等同采用ISO 10012 ∶ 2003[35])以后,经过30多年的研究和发展,现代不确定度理论现已形成较为完整的理论体系。

根据2008年版《测量不确定度表示指南》(GUM=Guide to the Expression of Uncertainty in Measurement)中的规定:不确定度可以用测量结果的标准差(即标准不确定度,它具有可传播性。当一个测量结果用于下一个测量时,其不确定度可作为下一个测量结果不确定度的分量,这就是不确定度的可传播性)表示,也可以用标准差的倍数或说明其置信水平区间的半宽度(即扩展不确定度expanded uncertainty,曾译为延伸不确定度、伸展不确定度)表示。无论采用哪种方法,都需要获得标准差的数值。

不确定度一般由若干分量组成,其中一些分量可根据一系列测量值的统计分布,按不确定度的A类评定方法进行评定(标准不确定度基于统计方法所进行的评定称为A类评定,又称统计不确定度),并用实验标准差(即有限次测量时总体标准差的估计值,又称样本标准差、子样标准差,主要应用于抽样推断和假设检验中)和自由度表征(必要时应给出其协方差)。而另一些分量则可根据经验或其他信息假设的概率分布,按不确定度的B类评定方法进行评定[标准不确定度基于非统计方法(技术规范、实践经验和科学知识等)所进行的评定称为B类评定,又称非统计不确定度],也用实验标准差表征(必要时应给出其协方差),一般情况下可以不给出其自由度。

贝塞尔公式法和极差法是两种主要的标准不确定度分量的A类评定方法[36-43],其中文献[39]给出的结论是:①当A类评定不确定度分量不是合成标准不确定度中唯一占优势的分量时,则无论测量次数多少(笔者注:因合成时采用方差相加的方法),(修正前)贝塞尔公式法优于极差法。②当A类评定不确定度分量是合成标准不确定度中唯一占优势的分量时,则两种方法的优劣与测量次数有关:当测量次数n10”则更为准确),(修正前)贝塞尔公式法优于极差法。

标准不确定度分量的B类评定方法主要有倍数法、正态分布法、均匀分布法(修约误差、修约前的被修约值、数字仪表的量化误差等均服从此类分布)、反正弦分布法、二点分布法、梯形分布法、三角分布法和投影分布法等[44-46],它更多的是依赖于经验的积累和判断。B类评定方法常应用于计量基准标准、仪器研制和在无法对比测量的情况下。

不确定度报告应该包括测量模型、估计值、测量模型中与各个量相关联的测量不确定度、协方差、所用的概率密度函数的类型、自由度、测量不确定度的评定类型和包含因子等。

在实际应用工作中,有效数字的正确取位十分重要,但这个问题却往往被忽视。测量结果总是以数字形式出现的,而能准确反映测量结果的是其有效数字。有效数字的末位数总是由下一位数进位或舍去而得来的,这就是数字修约。有效数字的定义是:一个数的修约误差不大于其末位数的半个单位,则该数的左边第一个非零数字起至右边最末一位数字都是其有效数字。不确定度的有效数字只能取1位或2位[47-49]。

6 自由度

自由度(degrees of freedom)的定义是:在方差的计算中,和的项数减去对和的限制数[36,50]。自由度反映了实验标准差的可信赖程度,自由度越大,实验标准差的可信赖程度就越高。由于不确定度是用标准差来表征的,故自由度可用于衡量不确定度评定的质量,它也是计算扩展不确定度的依据。当对标准差σ取A类评定的标准不确定度s的值时,不确定度的自由度计算公式为[46]:

式(6-1)是自由度估计值的计算公式(此估计值与理论值相比偏小,随着样本数n的增大,其估计值越来越接近于理论实际值),其中D(X)/E(X)为统计量X的相对标准差,u(x)为被测量x的标准不确定度,u[u(x)]为标准不确定度u(x)的标准不确定度。显然,自由度与标准不确定度的相对标准不确定度有关,即自由度与不确定度的不确定度有关,或者说自由度是一种二阶不确定度。

不确定度是测量结果的一个参数,而自由度则是不确定度的一个参数,它表征了所给不确定度的可信赖程度。算术平均值标准差的自由度和单次测量标准差的自由度是相同的。

自由度具有尺度变换下的不变性(即随机变量乘以非零常数,其自由度不变)。对于合并样本标准差,其自由度为各组自由度之和,即v=m(n-1)。当用测量所得的n组数据按最小二乘法拟合的校准曲线确定t个被测量值时,其自由度v=n-t;若t个被测量值之间另有r个约束条件,则其自由度v=n-t-r。

各种估计总体标准差方法的自由度如下表所示。

每个不确定度都对应着一个自由度,按A类评定的标准不确定度分量的自由度就是实验标准差的自由度。合成标准不确定度uc(y)的自由度称为有效自由度veff,它说明了评定uc(y)的可信赖程度,veff越大,表示评定的uc(y)越可信赖。一般情况下,按B类评定的标准不确定度分量可以不给出其自由度。但在以下情况时需要计算有效自由度veff:①当需要评定扩展不确定度Up为求得包含因子kp时;②当用户为了解所评定的不确定度的可信赖程度而提出此要求时。

7 标准不确定度的A类评定方法

标准差是评定测量结果精密度的一个极其重要的参数,关于各种估计总体标准差统计方法的精密度分析,前人已多有研究[52-56],但都缺乏深度和广度,其系统性和准确性也不够(有时甚至出现一些差错和遗漏,详见下文中的相关描述)。下面笔者将详细阐述各种估计总体标准差统计方法的由来和原理,严谨推导出其标准差系数的计算公式,力图以科学、严谨和求实的态度,分别对其系统地做出全面而准确的评介、对比和分析。

71 贝塞尔公式法

贝塞尔公式法(Bessel formula method)[57-63]是一种最为常见的估计总体标准差的统计方法。根据nj, k=1j≠kδjδk=0来推导贝塞尔公式长期以来被一些学者所认同,现已证明其为伪证[64-65]。笔者现根据误差理论、概率论和数理统计学中的基础知识,从误差和标准差的本质和作用入手,利用数学期望和方差公式,采用算术平均值的标准差来推导出贝塞尔公式。

n次测量值的算术平均值为:=1nni=1xi

算术平均值是μ的一致最小方差无偏估计,且不存在比它一致性更好的其他估计量。

德国天文学家和数学家贝塞尔(Friedrich Wilhelm Bessel,17840722—18460317)是天体测量学的奠基人之一,以其专著《天文学基础》(1818年)为标志发展了实验天文学,他重新订正布拉德雷(英国天文学家,James Bradley,1693—1762)星表并编制基本星表(后人加以扩充后成为《波恩巡天星表》),测定恒星视差(1838年)并预言暗伴星的存在,导出修正子午环安装误差的贝塞尔公式[即式(71-4)],导出用于天文计算的内插法贝塞尔公式(此式中的系数被称为贝塞尔系数),编制大气折射表并导出大气折射公式。首创贝塞尔岁首(又称贝塞尔年首)、贝塞尔假年(又称贝塞尔年)、贝塞尔日数(又称贝塞尔星数)和贝塞尔要素等概念,沿用至今。其研究成果还有贝塞尔方程(1817—1824,一类二阶常微分方程)、贝塞尔不等式(1828年)和贝塞尔地球椭球体(1841年)等。1938年2月24日发现的国际编号为1552(1938DE)号的小行星后被命名为“贝塞尔星(Bessel)”,这是对他最好的纪念和褒奖。

贝塞尔方程两个独立的解分别称为第一类贝塞尔函数Jn(x)和第二类贝塞尔函数Yn(x),Hn(x)=Jn(x)±iYn(x)则称为第三类贝塞尔函数,其中第二类贝塞尔函数又称为诺伊曼(Carl Gottfried Neumann,1832—1925)函数或韦伯(Heinrich Martin Weber,1842—1913)函数,第三类贝塞尔函数又称为汉克尔(Hermann Hankel,1839—1873)函数。诺伊曼、韦伯和汉克尔均为德国数学家。

在规范化的常规测量中,若在重复性条件下对被测量X作n次测量,并且有m组这样的测量结果,由于各组之间的测量条件可能会稍有不同,因此不能直接用贝塞尔公式对总共m×n个测量值计算其实验标准差,而必须计算其合并样本标准差(又称组合实验标准差)[77],即:

上式中,xjk是第j组第k次测量值,j是第j组n个测量值的算术平均值。

当各组所包含的测量次数不完全相同时,则应采用方差的加权平均值,权重(即自由度)为(nj-1),此时的合并样本标准差为:

上式中,nj是第j组的测量次数,s2j是第j组nj个测量值的样本方差。

在一些常规的日常校准或检定工作中,采用合并样本标准差往往会取得良好的效果[79-81]。

以下选用最为常用的修正前后贝塞尔公式法作为其他各种估计总体标准差统计方法的比较基准。

参考文献:

[1]费业泰误差理论与数据处理[M].北京:机械工业出版社, 2000(第4版).

[2]冯师颜误差理论与实验数据处理[M].北京:科学出版社, 1964

[3]周秀银误差理论与实验数据处理[M].北京:北京航空学院出版社, 1986

[4]贾克军,石军广,贾文轩,等等精度传递理论在流量计量中的应用[J].工业计量, 2012,22(4):9-11

[5]魏诺,史彭,张伯乾,等非等精度测量不确定度表示两种方法的比较[J].高校实验室工作研究, 1999(2):35-36

[6]彭靖不等精度直接测量不确定度的评定[J].中国计量, 2003,8(3):58-59

[7]郭奕玲,沈慧君诺贝尔物理学奖(1901—2010)[M].北京:清华大学出版社, 2012

[8]杨正一氩元素发现的启迪[J].西安石油学院学报, 1989,4(4):89-93

[9]RAFisherOn an absolute criterion for fitting frequency curves[J].Messenger of Mathematics, 1912,41∶155-160

[10]RAFisherOn the mathematical foundations of theoretical statistics[J].Philosophical Transactions of the Royal Society of London, Series A, 1922,222∶309-368

[11]RAFisherTheory of statistical estimation[J].Mathematical Proceedings of the Cambridge Philosophical Society, 1925,22(5):700-725

[12]孙翠先,步金芳正态总体方差和标准差的无偏估计[J].唐山学院学报, 2012,25(3):5-6,9

[13]盛骤,谢式千,潘承毅概率论与数理统计[M].北京:高等教育出版社, 2001(第3版).

[14]林洪桦测量误差与不确定度评估[M].北京:机械工业出版社, 2010

[15]SSShapiro, MBWilkAn analysis of variance test for normality(complete samples)[J].Biometrika, 1965,52(3/4):591-611

[16]RBDAgostinoAn omnibus test of normality for moderate and large size samples[J].Biometrika, 1971,58(2):341-348

[17]SSShapiro, RSFranciaAn approximate analysis of variance test for normality[J].Journal of American Statistical Association, 1972,67(337):215-216

[18]Frank EGrubbsSample criteria for testing outlying observations[J].Annals of Mathematical Statistics, 1950,21(1):27-58

[19]Frank EGrubbsProcedures for detecting outlying observations in samples[J].Technometrics, 1969,11(1):1-21

[20]WJDixonAnalysis of extreme values[J].The Annals of Mathematical Statistics, 1950,21(4):488-506

[21]WJDixonRatios involving extreme values[J].The Annals of Mathematical Statistics, 1951,22(1):68-78

[22]Robert BDean, WJDixonSimplified statistics for small numbers of observations[J].Analytical Chemistry, 1951,23(4):636-638

[23]WJDixonProcessing data for outliers[J].Biometrics, 1953,9(1):74-89

[24]田禹基于偏度和峰度的正态性检验[D].上海:上海交通大学硕士学位论文, 2012

[25]王文周未知σ,t检验法剔除异常值最好[J].四川工业学院学报, 2000,19(3):84-86

[26]张敏,袁辉拉依达(РайTа)准则与异常值剔除[J].郑州工业大学学报, 1997,18(1):84-88

[27]王承双3σ准则与测量次数n的关系[J].长沙电力学院学报(自然科学版), 1996,11(1):73-74

[28]William ChauvenetA manual of spherical and practical astronomy VolII(Theory and use of astronomical instruments)[M].Philadelphia:JBLippincott & Co, London:Trübner & Co, 1863

[29]王玺,罗旭微机在化学分析逸出值检验中的应用[J].沈阳药学院学报, 1991,8(1):52-57

[30]吴拥政重标极差法及其应用[J].统计与决策, 2004(8):23-24

[31]KRNairThe distribution of the extreme deviate from the sample mean and its studentized form[J].Biometrika, 1948,35(1/2):118-144

[32]吕恕正态样本异常Nair检验统计量的近似分布[J].东北师大学报(自然科学版), 1990,22(3):41-45

[33]GB/T 4883—2008, 数据的统计处理和解释——正态样本离群值的判断和处理[S].

[34]邹传忠关于标准差三种表现形式的应用[J].江西煤炭科技, 2004(2):66

[35]GB/T 19022—2003, 测量管理体系——测量过程和测量设备的要求[S].

[36]全国法制计量管理计量技术委员会JJF105911—2011,测量不确定度评定与表示[S].

[37]柳历波测量不确定度的A类评定的几个问题[J].上海计量测试, 2009,36(4):27-28

[38]林洪桦测量不确定度评定应基于误差理论[J].自动化与信息工程, 2011,33(4):1-4,12

[39]倪育才测量不确定度理解与应用(二):极差法和贝塞尔法之间的比较[J].中国计量, 2004,9(8):78-79

[40]巫业山测量不确定度A类评定的两种方法:贝塞尔法和极差法[J].衡器, 2011,40(4):23-24

[41]李慎安测量不确定度表达百问[M].北京:中国计量出版社, 2001

[42]耿维明测量误差与不确定度评定[M].北京:中国质检出版社, 2011

[43]罗刚不确定度A类评定及不确定度B类评定的探讨[J].计量与测试技术, 2007,34(12):42-43

[44]刘智敏,刘风不确定度的B类评定方法[J].中国计量学院学报, 1995,6(2):51-57

[45]刘智敏不确定度原理[M].北京:中国计量出版社, 1993

[46]王中宇,刘智敏,夏新涛,等测量误差与不确定度评定[M].北京:科学出版社, 2008

[47]张少伟有效数字的正确取位[J].电力标准化与计量, 1997(3):38,45

[48]李谦关于测量不确定度的有效位数和修约间隔[J].电力标准化与计量, 1998(1):4,19

[49]李谦数字修约间隔和修约规则[J].电力标准化与计量, 1998(2):5-7

[50]李维明测量不确定度自由度的评定方法及一般取值范围的探讨[J].工业计量, 2007,17(5):52-53

[51]山内二郎統計数値表(Statistical Tables and Formulas with Computer Applications, JSA-1972)[M].東京:日本規格協会JSA(Japanese Standards Association), 1972

[52]王正向标准偏差估值之极限分布及其应用[J].数学的实践与认识, 1983,13(1):20-33

[53]徐扬光关于总体标准偏差σ的估计精度分析[J].中国质量管理, 1983(2):19-21,31,18

[54]黄景祥几种标准差估计方法的精密度比较和评价[J].中国计量学院学报, 1995,6(S1):93-97

[55]周富臣,孙玉莲总体标准差σ的五种估计及估计精密度[J].计量技术, 2006(12):60-64

[56]周富臣标准偏差的六种估计及其精密度[J].上海计量测试, 2007,34(1):10-13

[57]陈树祥,朱洪海,杭雪珍正确认识贝塞尔公式[J].计量与测试技术, 2003,30(1)32,37

[58]庄正辉,吴先球,陈浩贝塞尔公式的推导及其物理意义探讨[J].大学物理实验, 2010,23(4):80-82

[59]林景星贝塞尔公式计算实验标准差的探讨[J].上海计量测试, 2011,38(2):44-45

[60]朱洪海关于随机误差标准差的几点思考[J].盐城工学院学报, 2001,14(4):20-21,28

[61]谷秀娥关于标准误差和标准偏差的讨论[J].大学物理实验, 2006,19(3):66-67,101

[62]邓永和中误差贝塞尔公式的推导[J].大地测量与地球动力学, 2009,29(3):128-130

[63]邓永和中误差贝塞尔公式推导的进一步研究[J].铁道勘察, 2009(5):8-9

[64]朱洪海对贝塞尔公式证法的探讨[J].计量与测试技术, 2001,28(6):8-9

[65]马美娟贝塞尔公式推导的再研究[J].佳木斯大学学报(自然科学版), 2011,29(2):290-291,295

[66]张本良贝塞尔公式用于估算函数误差的论证及其使用范围[J].武汉工学院学报, 1992,14(4):56-61

[67]朱安远用彼得斯公式估计总体标准差的误差分析[J].中国市场(物流版), 2012,19(19):28-31

[68][波兰]M费史概率论及数理统计[M].王福保,译.上海:上海科学技术出版社,1962

[69]周概容概率论与数理统计[M].北京:高等教育出版社, 1984

[70]张世英,刘智敏测量实践的数据处理[M].北京:科学出版社, 1977

[71]何永政质量检验不确定度与应用数理统计[M].北京:中国计量出版社, 2009

[72]樊顺厚正态分布的子样标准差过低估计了总体标准差[J].纺织基础科学学报, 1994,7(3):242-244

[73]樊顺厚,刘树琪子样标准差过低估计总体标准差[J].纺织高校基础科学学报, 1996,9(1):27-42

[74]黄景祥标准偏差的无偏估计及贝塞尔公式修正系数的简便计算[J].计量技术, 1990(6):36-38

[75]何克明贝塞尔公式修正系数的准确简便计算[J].计量技术, 2000(12):49

[76]王文周标准偏差的标准偏差有多大相对误差[J].四川工业学院学报, 2002,21(1):86-88

[77]倪育才实用测量不确定度评定[M].北京:中国计量出版社, 2009(第3版).

[78]陈成仁,刘智敏,王永泉实验标准(偏)差和平均值实验标准(偏)差意义解析[J].中国计量, 2010,15(1):96-98

[79]朱安远线性传感器静态性能指标的计算[J].冶金计量, 1990(4):32-35

[80]朱安远线性传感器的静态校准及其基本性能指标的计算[A].钢铁工业自动化——应用电子技术改造钢铁工业学术会议论文集[C].北京:冶金工业出版社, 1993:821-830

统计学标准差第4篇

【关键词】会计专业 统计学教学 审计 财务管理 管理会计

        统计学原理是高等院校经济类和管理类专业(以下简称经管专业)的一门核心课程。大统计学是一门搜集、整理和分析统计数据的方法论科学,其目的是探索数据的内在数量规律性。统计学广泛应用于各学科中,在商业以及工业中,统计被用来了解与测量系统变异性,程序控制,对决策提供数据支持;在第一产业方面,可运用统计计算出各种农产品的需求情况及价格分布,从而指导生产;在生产行业中,统计学可以运用在产品开发、营销、财务管理等方面,从而提高企业的营运能力;在服务行业中,例如在金融行业中,运用统计技术将各种交易资料加以分类、整理,从而得到如客户贡献度、客户偏好、存款变动趋势、产品分析、行业发展等数据,从而为管理层提供决策依据,等等。特别是在会计专业中,统计学更是发挥了不可估量的贡献。在对会计专业学生的统计学教学中,大致可以从审计学、财务管理和管理会计几方面入手,将统计学教学与会计专业有机结合。笔者经过了多年的统计学专业学习,并经过了长时间的高校会计专业学生的实践教学,对统计学教学过程有了更深刻的感受,在这里本人谈谈对会计专业统计学教学的一些改革创新思路。

        一 审计学——审计统计抽样

        审计抽样是指审计人员在实施审计测试时,从被审总体中选取一定数量的样本进行审查,通过样本的审查结果来推断被审总体特征的一种审计技术方法,审计统计抽样是审计抽样的一种方法,它是相对于非统计抽样而言的。统计抽样是指在审计抽样中,审计人员根据概率论和数理统计的原理,按照一定方法确定样本数量,并以样本审查结果推断评估总体的审计抽样技术。它运用的数学运算包括两个过程:样本规模和推算总体。统计抽样的思想方法是以假设检验为前提,设定抽样参数,确定抽样规模,无人为偏见的随机抽取样本进行审核,根据需要扩大样本,逐次逼近总体特征,根据样本特征经计算推导,得出总体结论。根据抽样测试的目标不同,统计抽样方法可分为3 大类:用于符合性测试的属性抽样和用于实质性测试的变量抽样以及货币单位抽样。审计中常用的统计抽样技术有属性抽样(包括固定样本量抽样、停—走抽样、发现抽样)、变量抽样(包括单位平均数估计抽样、差额估计抽样、比率估计抽样、分层抽样)、货币单位抽样等。统计抽样的方法很多,每一种方法都有其特定的优点和局限,既没有某一种方法一无是处,也没有哪一种方法在任何情况下都是最优的。因此依照何种标准来选择适当的统计抽样方法很重要,应重点考虑审计目标、审计效果、审计效率、审计成本等因素。要确定哪种统计抽样方法最为适宜是不容易的,这要求审计人员对每一种可供选择的统计抽样方法都要有所了解,掌握它们各自的优点和运用条件,充分了解实际情况,再与丰富的审计实践经验相结合,才能做出正确的选择。

        二 财务管理——收益和风险

        财务管理中的收益和风险,在统计学中即表现为描述统计中的算术平均数和标准差(标准差系数)。例如:期望现金流量的计算方法中,如果影响资产未来现金流量的因素较多,不确定性较大,使用单一的现金流量可能并不能如实反映资产创造现金流量的实际情况。在这种情况下,采用期望现金流量法更为合理的,企业应当采用期望现金流量法预计资产未来现金流量。在期望现金流量法下,资产未来每期现金流量应当根据每期可能发生情况的概率及其相应的现金流量加权计算求得,此种方法即加权算术平均数的计算方法;货币时间价值的计算是假定没有风险和通货膨胀,但在财务活动中,经营风险带来的财务风险是客观存在的,而且风险和收益密切相关,所以财务管理者必须研究风险和收益。如果不考虑收益的前提下,可以直接用标准差来衡量财务活动中的风险,若考虑收益,则不能直接用标准差,需要用标准差系数来衡量风险,即用标准差与收益的比值来衡量。

        除此之外,在财务管理中,需要对资金需要量等指标进行预测,为统计学中的预测方法提供了多种思路。 

可以按照时间序列的组成因素,可以选择平滑法预测、回归法预测等,这些方法都是会计专业中常用的预测方法。例如,在财务预测中,资金需要量预测的主要方法有销售百分比法、线性回归分析法和预计资产负债表法。线性回归分析法是假定资金需要量与业务量之间存在线性关系并建立数学模型,然后根据历史有关资料,确定参数从而用回归直线预测资金需要量的一种方法。其预测的数学模型为y=a+bx,式中y 为资金需要量;a 为不变资金;b 为单位业务量所需要的变动资金;x 为业务量。不变资金是指在一定的营业规模内,不随业务量增减的资金。变动资金是指随营业业务量变动而同比例变动的资金。根据企业历史资料,运用线性模型,在确定a、b 数值的基础上,即可预测一定业务量x 所需的资金量y。用于销售预测的常用方法有判断分析法、趋势外推分析法、因果预测分析法和产品寿命周期推断法等。趋势外推分析法在销售量预测中的应用较为普遍,其具体应用形式包括平均法(简单平均法、移动平均法和趋势平均法)和修正的时间序列回归法。

        三 管理会计

        按成本性态可以将企业的全部成本分为固定成本和变动成本。固定成本与变动成本只是经济生活中诸多成本性态的两种极端类型,多数成本是以混合成本的形式存在的。混合成本是指那些“混合”了固定成本和变动成本两种不同性质的成本,对混合成本的分解方法有历史成本法、账户分析法和工程分析法。历史成本法的基本做法就是根据以往若干时期(若干月或若干年)的数据所表现出来的实际成本与业务量之间的依存关系来描述成本的性态,并以此来确定决策所需要的未来成本数据。历史成本法通常分为高低点法、散布图法和回归直线法3 种。回归直线法运用最小二乘法的原理,对所观测到的全部数据加以计算,从而勾画出最能代表平均成本水平的直线y=a+bx,这条通过回归分析而得到的直线就称为回归直线,它的截距就是固定成本a,斜率就是单位变动成本b,这种分解方法也称作回归直线法。又因为回归直线可以使各观测点的数据与直线相应各点误差的平方和最小,所以这种分解方法又称为最小二乘法。

        管理会计中的标准成本法是指通过制定标准成本,将标准成本与实际成本进行比较获得成本差异,并对成本差异进行因素分析,据以加强成本控制的一种会计信息系统和成本控制系统。标准成本法便于企业编制预算和进行预算控制;可以有效地控制成本支出;可以为企业的例外管理提供数据;可以帮助企业进行产品的价格决策和预测;可以简化存货的计价以及成本核算的账务处理工作。标准成本是在正常生产经营条件下应该实现的,可以作为控制成本开支,评价实际成本、衡量工作效率的依据和尺度的一种目标成本。可分为理想标准成本、正常标准成本和现实标准成本。成本差异是指实际成本与标准成本之间的差额,也称标准差异。按成本的构成分为直接材料成本差异、直接人工成本差异和制造费用差异。直接材料成本差异、直接人工成本差异和变动制造费用差异都属于变动成本,决定变动成本数额的因素是价格和耗用数量。制造费用差异(即间接制造费用差异)按其形成的原因和分析方法的不同又可分为变动制造费用差异和固定制造费用差异两部分。例如:直接材料成本差异是指一定产量产品的直接材料实际成本与直接材料标准成本之间的差异。直接材料成本差异=直接材料实际成本-直接材料标准成本。直接材料成本是变动成本,其成本差异形成的原因包括价格差异和数量差异。价格差异是实际价格脱离标准价格所产生的差异。数量差异是单位实际材料耗用量脱离单位标准材料耗用量所产生的差异。计算公式如下:材料价格差异=(实际价格-标准价格)×实际用量;材料数量差异=(材料单位实际耗用量-材料单位标准耗用量)×标准价格;直接材料成本差异=材料价格差异+材料数量差异。此种计算方法是统计学中加权综合指数体系中的相对数形式和绝对数形式。在学习和工作中比较常用的是基期权数加权的数量指数和报告期权数加权的质量指数形成的指数体系。

        综上,会计专业中的统计学教学应结合自身特点,注重对统计思想的挖掘和传递,注重对学生统计思维能力的培养和塑造,以培养应用能力为主线,与会计专业老师深入沟通,对现有统计学教材的课程设置及传统的教学手段进行大胆改革,从而使会计专业的学生增强学习统计知识的兴趣,真正认识到统计学的重要性,学到真正能指导实践的现代化统计知识。通过一段时间的实践,会计专业学生对统计学和会计学科的关系有了深刻的认识,增加了学习统计学的主动性,并对会计专业课程有了不同角度的解读。

参考文献

〔1〕白日荣、苏永明.非统计专业统计学教学的改革与创新〔j〕.统计教育,2007(12)

〔2〕杨绪忠.财经类非统计学专业的统计学课程教学探讨〔j〕.统计与决策,2002(05)

统计学标准差第5篇

【关键词】会计专业 统计学教学 审计 财务管理 管理会计

统计学原理是高等院校经济类和管理类专业(以下简称经管专业)的一门核心课程。大统计学是一门搜集、整理和分析统计数据的方法论科学,其目的是探索数据的内在数量规律性。统计学广泛应用于各学科中,在商业以及工业中,统计被用来了解与测量系统变异性,程序控制,对决策提供数据支持;在第一产业方面,可运用统计计算出各种农产品的需求情况及价格分布,从而指导生产;在生产行业中,统计学可以运用在产品开发、营销、财务管理等方面,从而提高企业的营运能力;在服务行业中,例如在金融行业中,运用统计技术将各种交易资料加以分类、整理,从而得到如客户贡献度、客户偏好、存款变动趋势、产品分析、行业发展等数据,从而为管理层提供决策依据,等等。特别是在会计专业中,统计学更是发挥了不可估量的贡献。在对会计专业学生的统计学教学中,大致可以从审计学、财务管理和管理会计几方面入手,将统计学教学与会计专业有机结合。笔者经过了多年的统计学专业学习,并经过了长时间的高校会计专业学生的实践教学,对统计学教学过程有了更深刻的感受,在这里本人谈谈对会计专业统计学教学的一些改革创新思路。

一 审计学——审计统计抽样

审计抽样是指审计人员在实施审计测试时,从被审总体中选取一定数量的样本进行审查,通过样本的审查结果来推断被审总体特征的一种审计技术方法,审计统计抽样是审计抽样的一种方法,它是相对于非统计抽样而言的。统计抽样是指在审计抽样中,审计人员根据概率论和数理统计的原理,按照一定方法确定样本数量,并以样本审查结果推断评估总体的审计抽样技术。它运用的数学运算包括两个过程:样本规模和推算总体。统计抽样的思想方法是以假设检验为前提,设定抽样参数,确定抽样规模,无人为偏见的随机抽取样本进行审核,根据需要扩大样本,逐次逼近总体特征,根据样本特征经计算推导,得出总体结论。根据抽样测试的目标不同,统计抽样方法可分为3 大类:用于符合性测试的属性抽样和用于实质性测试的变量抽样以及货币单位抽样。审计中常用的统计抽样技术有属性抽样(包括固定样本量抽样、停—走抽样、发现抽样)、变量抽样(包括单位平均数估计抽样、差额估计抽样、比率估计抽样、分层抽样)、货币单位抽样等。统计抽样的方法很多,每一种方法都有其特定的优点和局限,既没有某一种方法一无是处,也没有哪一种方法在任何情况下都是最优的。因此依照何种标准来选择适当的统计抽样方法很重要,应重点考虑审计目标、审计效果、审计效率、审计成本等因素。要确定哪种统计抽样方法最为适宜是不容易的,这要求审计人员对每一种可供选择的统计抽样方法都要有所了解,掌握它们各自的优点和运用条件,充分了解实际情况,再与丰富的审计实践经验相结合,才能做出正确的选择。

二 财务管理——收益和风险

财务管理中的收益和风险,在统计学中即表现为描述统计中的算术平均数和标准差(标准差系数)。例如:期望现金流量的计算方法中,如果影响资产未来现金流量的因素较多,不确定性较大,使用单一的现金流量可能并不能如实反映资产创造现金流量的实际情况。在这种情况下,采用期望现金流量法更为合理的,企业应当采用期望现金流量法预计资产未来现金流量。在期望现金流量法下,资产未来每期现金流量应当根据每期可能发生情况的概率及其相应的现金流量加权计算求得,此种方法即加权算术平均数的计算方法;货币时间价值的计算是假定没有风险和通货膨胀,但在财务活动中,经营风险带来的财务风险是客观存在的,而且风险和收益密切相关,所以财务管理者必须研究风险和收益。如果不考虑收益的前提下,可以直接用标准差来衡量财务活动中的风险,若考虑收益,则不能直接用标准差,需要用标准差系数来衡量风险,即用标准差与收益的比值来衡量。

除此之外,在财务管理中,需要对资金需要量等指标进行预测,为统计学中的预测方法提供了多种思路。

可以按照时间序列的组成因素,可以选择平滑法预测、回归法预测等,这些方法都是会计专业中常用的预测方法。例如,在财务预测中,资金需要量预测的主要方法有销售百分比法、线性回归分析法和预计资产负债表法。线性回归分析法是假定资金需要量与业务量之间存在线性关系并建立数学模型,然后根据历史有关资料,确定参数从而用回归直线预测资金需要量的一种方法。其预测的数学模型为y=a+bx,式中y 为资金需要量;a 为不变资金;b 为单位业务量所需要的变动资金;x 为业务量。不变资金是指在一定的营业规模内,不随业务量增减的资金。变动资金是指随营业业务量变动而同比例变动的资金。根据企业历史资料,运用线性模型,在确定a、b 数值的基础上,即可预测一定业务量x 所需的资金量y。用于销售预测的常用方法有判断分析法、趋势外推分析法、因果预测分析法和产品寿命周期推断法等。趋势外推分析法在销售量预测中的应用较为普遍,其具体应用形式包括平均法(简均法、移动平均法和趋势平均法)和修正的时间序列回归法。

三 管理会计

按成本性态可以将企业的全部成本分为固定成本和变动成本。固定成本与变动成本只是经济生活中诸多成本性态的两种极端类型,多数成本是以混合成本的形式存在的。混合成本是指那些“混合”了固定成本和变动成本两种不同性质的成本,对混合成本的分解方法有历史成本法、账户分析法和工程分析法。历史成本法的基本做法就是根据以往若干时期(若干月或若干年)的数据所表现出来的实际成本与业务量之间的依存关系来描述成本的性态,并以此来确定决策所需要的未来成本数据。历史成本法通常分为高低点法、散布图法和回归直线法3 种。回归直线法运用最小二乘法的原理,对所观测到的全部数据加以计算,从而勾画出最能代表平均成本水平的直线y=a+bx,这条通过回归分析而得到的直线就称为回归直线,它的截距就是固定成本a,斜率就是单位变动成本b,这种分解方法也称作回归直线法。又因为回归直线可以使各观测点的数据与直线相应各点误差的平方和最小,所以这种分解方法又称为最小二乘法。

管理会计中的标准成本法是指通过制定标准成本,将标准成本与实际成本进行比较获得成本差异,并对成本差异进行因素分析,据以加强成本控制的一种会计信息系统和成本控制系统。标准成本法便于企业编制预算和进行预算控制;可以有效地控制成本支出;可以为企业的例外管理提供数据;可以帮助企业进行产品的价格决策和预测;可以简化存货的计价以及成本核算的账务处理工作。标准成本是在正常生产经营条件下应该实现的,可以作为控制成本开支,评价实际成本、衡量工作效率的依据和尺度的一种目标成本。可分为理想标准成本、正常标准成本和现实标准成本。成本差异是指实际成本与标准成本之间的差额,也称标准差异。按成本的构成分为直接材料成本差异、直接人工成本差异和制造费用差异。直接材料成本差异、直接人工成本差异和变动制造费用差异都属于变动成本,决定变动成本数额的因素是价格和耗用数量。制造费用差异(即间接制造费用差异)按其形成的原因和分析方法的不同又可分为变动制造费用差异和固定制造费用差异两部分。例如:直接材料成本差异是指一定产量产品的直接材料实际成本与直接材料标准成本之间的差异。直接材料成本差异=直接材料实际成本-直接材料标准成本。直接材料成本是变动成本,其成本差异形成的原因包括价格差异和数量差异。价格差异是实际价格脱离标准价格所产生的差异。数量差异是单位实际材料耗用量脱离单位标准材料耗用量所产生的差异。计算公式如下:材料价格差异=(实际价格-标准价格)×实际用量;材料数量差异=(材料单位实际耗用量-材料单位标准耗用量)×标准价格;直接材料成本差异=材料价格差异+材料数量差异。此种计算方法是统计学中加权综合指数体系中的相对数形式和绝对数形式。在学习和工作中比较常用的是基期权数加权的数量指数和报告期权数加权的质量指数形成的指数体系。

综上,会计专业中的统计学教学应结合自身特点,注重对统计思想的挖掘和传递,注重对学生统计思维能力的培养和塑造,以培养应用能力为主线,与会计专业老师深入沟通,对现有统计学教材的课程设置及传统的教学手段进行大胆改革,从而使会计专业的学生增强学习统计知识的兴趣,真正认识到统计学的重要性,学到真正能指导实践的现代化统计知识。通过一段时间的实践,会计专业学生对统计学和会计学科的关系有了深刻的认识,增加了学习统计学的主动性,并对会计专业课程有了不同角度的解读。

参考文献

〔1〕白日荣、苏永明.非统计专业统计学教学的改革与创新〔j〕.统计教育,2007(12)

〔2〕杨绪忠.财经类非统计学专业的统计学课程教学探讨〔j〕.统计与决策,2002(05)

统计学标准差第6篇

【摘要】  目的:探讨医学 研究 中方差 分析 常用的效应量标准均数差的 计算 方法 . 方法:针对不同的实验设计类型,给出标准均数差的计算方法. 结果:不同设计的研究间,相同干预的标准均数差具有可比性. 结论:生物医学论文报道效应量是未来的 发展 趋势,研究者应正确计算和解释标准均数差,避免和减少效应量的误用.

【关键词】  方差分析;效应量;标准均数差;假设检验

     0引言

    效应量(effect size)是一类用来描述处理效应的统计量. 在20世纪60年代,生物统计学家(cohen, 1965; hays,1963)就强调效应量的 应用 ,认为效应量是假设检验的补充[1]. 然而医学领域的绝大多数的研究者在报道结果时,往往仅提供假设检验的p值[2-3]. 1996年美国心 理学 会(apa)的统计推断机构tfsi建议报道研究结果时应同时提供处理效应的方向、大小及其的可信区间[4]. 1998年wilkinson和tfsi 建议对于主要结果必须报道效应量,即报道p值时同时应报道效应量[5]. 2001年美国心理学会(apa)科研手册上规定:论文的结果部分必须报道效应量[6]. 至今已有24种心理学、医学期刊要求研究者投稿时报道效应量[7]. 国内教科书对meta分析所涉及的效应量作了简单介绍,但对效应量的系统研究很少. 依资料类型和研究设计的不同,效应量又有很多种类,我们主要研究方差分析(anova)模型中常用的一类效应量-标准均数差(standardized mean difference).

    1材料和方法

    1.1材料为研究不同的实验设计类型的标准均数差的计算方法,我们采用了bauman等[1]人的实验数据(表1). 该实验采用前后测量设计研究了66名四年级学生不同阅读习惯对理解能力的 影响 . 阅读习惯(研究干预)分为:单纯朗读(ta),阅读并积极思考(drta),阅读(dra),其中dra为对照组. 理解能力用错误检测任务(edt)的得分表示,干预前后两次测量结果用edt1, edt2表示. 该研究考虑了一个控制因素(即研究前的理解能力):各组前两列的学生研究前理解能力较低,后两列理解能力较高.

    1.2方法在统计分析中,需要解决均数的对比(contrast) 问题 ,即一个研究有j个处理组,则均数的对比可以表示为:

    ψ=c1μ1+c2μ2+…+cjμj(1)

    其中, c1+c2+…+cj=0. ψ=μi-μj是最常见的对比. 对比含有量纲,与反应变量的量纲相同,不能直接用于不同研究间比较;而标准均数差无量纲,可用于不同研究间比较的效应量. 按反应变量的不同,可将标准均数差分为单变量和多变量标准均数差. 不同设计标准均数差计算方法如下:表166名四年级学生接受不同干预后edt得分情况

    1.2.1单变量标准均数差

    1.2.1.1单因素完全随机设计该设计的处理因素有j个水平,实验拟研究的问题可表示为对比(1),其标准均数差为:

    δ=ψ〖〗σ(2)

    总体参数δ的估计方法:用样本均数x估计总体均数μ, σ可以用准则一中的一种方法进行估计. 准则一:a设计中的某个处理组的标准差,常用对照组的标准差;b对比中所有处理组的合并标准差;c设计中所有处理组的合并标准差.

    当对比中包含所有的处理组时,b, c得到的σ估计值相同,并与anova分析中误差均方(mse)正的平方根相等. 当所有处理组满足方差齐性条件时,c法是估计σ的最佳方法;当不满足时,用a法估计. hedges指出按照准则一估计的标准均数差是δ的有偏估计,需要乘以系数1-3/(4df-1)进行校正,其中df为用于估计σ的标准差或合并标准差的自由度[8].

    1.2.1.2多因素设计该设计的因素可为干预因素(处理因素)和控制因素(非研究因素、混杂因素). 当所有因素均为干预因素时,标准均数差的计算与单因素完全随机设计相同. 多因素实验中若含有控制因素,如将控制因素与干预因素不加区别,按照准则一计算标准均数差时,会出现相同干预的效应量在不同实验设计间不可比的问题[1]. 根据所研究对比的特征,标准均数差的计算方法不同,如以2×2析因设计为例,见表2. 设实验含有:处理因素a(a1,a2),控制因素b(b1,b2).

    表2含有控制因素的多因素设计标准均数差的计算方法

    分析目的〖〗对比〖〗标准均数差的计算方法干预因素a的主效应〖〗ψ=1〖〗2(μa1,b1+μa1,b2)-1〖〗2(μa2,b1+μa2,b2)〖〗准则二:a. 按照干预因素分组,计算各组的标准差;b. 用准则一中的一种方法估计σ.干预因素a在b1水平

    的单独效应〖〗ψ=μa1,b1-μa2,b1〖〗同准则二.因素a与b的交互作用〖〗ψ=(μa1,b1-μa2,b1)-(μa1,b2-μa2,b2)〖〗同准则二.控制因素b的主效应〖〗ψ=1〖〗2(μa1,b1+μa2,b1)-1〖〗2(μa1,b2+μa2,b2)〖〗准则三:a. 按照干预因素及对比中含有的控制因素分组,计算各组的标准差;b. 用准则一中的一种方法估计σ. 控制因素b在a1水平的

    单独效应〖〗ψ=μa1,b1-μa1,b2〖〗同准则三.

    多因素实验研究的对比可能仅含有控制因素,不含有处理因素,如在2×2×2析因设计中,对比为:

    ψ=1〖〗2(μb1,c1+μb1,c2)-1〖〗2(μb2,c1+μb2,c2)(3)

    其中,a为处理因素,b, c为控制因素. 仅含有控制因素对比的标准均数差计算方法:a按照实验研究的控制因素分组,计算各组的标准差,在对比(3)中,按照因素b分组;b用准则一估计σ.

    1.2.1.3含有协变量的多因素设计协方差分析(anocva)通过建立协变量与反应变量的线性回归关系,对各组的反应变量的均数进行校正后,再进行假设检验. anocva标准均数差的计算方法为:用样本校正均数xc估计总体均数μ,将协变量作为控制因素,按照准则二来估计σ.

    1.2.1.4含有重复测量因素的多因素设计含有重复测量因素的设计可分为:①仅含有1个或多个重复测量因素的设计;②含有重复测量因素和观测间因素的设计. 因为重复测量因素为处理因素,所以①中不存在控制因素引起的相同处理的效应量在不同实验设计间不可比的问题,标准均数差的计算方法,与因素为处理因素的设计相同. 含有重复测量因素和观测间因素的设计计算标准均数差时,将重复测量因素作为处理因素,如观测间因素含有控制因素按照表2中准则二或三计算.

    1.2.2多变量标准均数差马氏距离在多元方差分析中即是一种多变量标准均数差. 马氏距离公式为:

    d=d′r-1d

    其中,d为单变量标准均数差向量,r为合并的组内相关矩阵. 实际计算中,马氏距离可以由多元检验统计量wilkss λ计算得到:

    d=df(1-λ)σk〖〗i=1c2i/ni〖〗λ(4)

    其中:k为处理组数, ci, ni分别为i组对比系数和样本量. df的计算公式为:df=σni-k.

    1.2.3标准均数差的解释标准均数差的解释准则不多,因为医学 研究 领域所涉及的 内容 很广泛,想给出普遍适用的准则,需要冒很大风险. cohen建议标准均数差为0.2时,效应为小,0.5为中等,0.8为大. 如果样本满足正态分布,总体间重叠的比例(percent of overlap, ol%),有助于标准均数差的解释. 若处理组与对照组的标准均数差为0.70,那么可认为处理组50%的研究对象反应变量值大于对照组76%的研究对象的值(图1).

    图1标准均数差与ol%示意图

    2结果

    bauman等人的研究关心阅读 方法 ta和drta的平均效应与dra的差别(对比ψ1)以及阅读方法ta与drta的差别(对比ψ2).

    ψ1=1〖〗2(μta+μdrta)-μdra, ψ2=μdrta-μta.

    若仅考虑edt2和干预因素(阅读习惯),本例的研究设计为单因素完全随机设计. 表3为各组的均数和标准差,表4为对比ψ1, ψ2的标准均数差. 按照cohen准则,两对比均为中等效应. 校正后ψ2的效应量为0.697,可认为50%阅读并积极思考的学生的edt成绩高于76%的单纯朗读的学生成绩.表3各组edt1, edt2成绩表4单因素完全随机设计标准均数差

    若将edt2作为研究的反应变量,考虑干预因素a和控制因素b(阅读能力),本例为析因设计. 为了便于公式的演算,假设干预因素为两水平(ta, drta),本例研究干预因素、控制因素的主效应、单独效应及两因素的交互作用. 这些效应的可以用表2中相应的对比表示,其标准均数差的 计算 见表5.表5多因素设计各组edt2成绩及标准均数差

    若将edt2作为研究的反应变量,考虑干预因素,并将干预前的测量结果edt1作为协变量,本例为含有协变量的单因素设计(协方差设计). 通过协方差 分析 ,各组校正后的均数见表6. 按照校正均数计算对比ψ1, ψ2的标准均数差,见表6.

    将edt作为研究的反应变量,考虑干预因素和重复测量因素,干预前后edt做了两次,重复测量因素有两水平,本例为含有1个重复测量因素的两因素设计. 不同阅读方式的效 应用 两次测量的差值表示,两对比ψ1, ψ2可以表示为:表6各组edt2成绩及标准均数差

    ψ1=1〖〗2(μedt2,ta-μedt1,ta)+1〖〗2(μedt2,drta-μedt1,drta)-(μedt2,dra-μedt1,dra),

    ψ2=(μedt2,drta-μedt1,drta)-(μedt2,ta-μedt1,ta).

    根据表3,可计算对比ψ1, ψ2的标准均数差分别为1.018, 0.439.

    将edt1, edt2作为研究的反应变量,考虑干预因素,本例为多元单因素完全随机设计. 对比ψ1,ψ2中的μ为均数向量,检验统计量wilkss λ,可以用sas/glm contrast计算得到[9]. 由公式(4)可计算对比ψ1,ψ2的多元标准均数差d分别为1.228, 0.689.

    3讨论

    标准均数差是方差分析模型中常用的一类效应量,也是 目前 心 理学 、医学研究领域和meta分析中最常用到的效应量. 本文按照不同的实验设计,考虑相同干预不同设计间效应量的可比性,介绍了标准均数差的计算方法, 总结 给出了相应的计算准则,并给出了实例. meta分析常遇到研究干预相同、研究设计不同的情况下,效应量的计算 问题 . 本文介绍的标准均数差的计算方法可以很好的解决这一问题. 另外,本文介绍的标准均数差的计算可适用于两组和多分组的情况,有些资料和 文献 上针对两组资料的比较对标准均数差进行介绍. 专用于两组比较的标准均数差有:cohens d,glasss δ,hedgess g和cohens f2 [10].

    尽管apa和24种期刊要求研究者进行假设检验时,必须报道一种或多种效应量作为其补充,但是对效应量能否帮助研究者或读者提供有关干预效应有无实际意义的信息,也有统计学家提出疑问[1]. cohen对标准均数差解释制定的准则,能否适用医学研究领域,也存在争议. cohen也建议统计学者制定其他的准则来解释标准均数差. 目前,国内的生物医学期刊还未要求报道效应量,国外对效应量的研究和报道较多,尤其是在心理测量领域的研究,并有关于效应量误用的分析报道,因此我国生物医学论文要求报道效应量是未来的 发展 趋势.

【 参考 文献】

  [1] olejnik s, algina j. measures of effect size for comparative studies: applications, interpretations, and limitations[j]. contemp educ psychol, 2000,25(3):241-286.

[2] glaser dn. the controversy of significance testing: misconceptions and alternatives[j]. am j crit care, 1999,8(5):291-296.

[3] cohen j. the earth is round (p<0.05) [j]. am psychol, 1994,49(12):997-1003.

[4] /science/tfsi.html.

[5] wilkinson l. task force on statistical inference apa board of scientific affairs. statistical methods in psychology journals: guidelines and explanations[j]. am psychol, 1999,54(8):594-604.

[6] american psychological association. publication manual of the american psychological association[m]. 5th ed. washington: american psychological association press,2001:1-5.

统计学标准差第7篇

【摘要】 目的:探讨医学研究中方差分析常用的效应量标准均数差的计算方法. 方法:针对不同的实验设计类型,给出标准均数差的计算方法. 结果:不同设计的研究间,相同干预的标准均数差具有可比性. 结论:生物医学论文报道效应量是未来的发展趋势,研究者应正确计算和解释标准均数差,避免和减少效应量的误用.

【关键词】 方差分析;效应量;标准均数差;假设检验

0引言

效应量(effect size)是一类用来描述处理效应的统计量. 在20世纪60年代,生物统计学家(Cohen, 1965; Hays,1963)就强调效应量的应用,认为效应量是假设检验的补充[1]. 然而医学领域的绝大多数的研究者在报道结果时,往往仅提供假设检验的P值[2-3]. 1996年美国心理学会(APA)的统计推断机构TFSI建议报道研究结果时应同时提供处理效应的方向、大小及其的可信区间[4]. 1998年Wilkinson和TFSI 建议对于主要结果必须报道效应量,即报道P值时同时应报道效应量[5]. 2001年美国心理学会(APA)科研手册上规定:论文的结果部分必须报道效应量[6]. 至今已有24种心理学、医学期刊要求研究者投稿时报道效应量[7]. 国内教科书对Meta分析所涉及的效应量作了简单介绍,但对效应量的系统研究很少. 依资料类型和研究设计的不同,效应量又有很多种类,我们主要研究方差分析(ANOVA)模型中常用的一类效应量-标准均数差(standardized mean difference).

1材料和方法

1.1材料为研究不同的实验设计类型的标准均数差的计算方法,我们采用了Bauman等[1]人的实验数据(表1). 该实验采用前后测量设计研究了66名四年级学生不同阅读习惯对理解能力的影响. 阅读习惯(研究干预)分为:单纯朗读(TA),阅读并积极思考(DRTA),阅读(DRA),其中DRA为对照组. 理解能力用错误检测任务(EDT)的得分表示,干预前后两次测量结果用EDT1, EDT2表示. 该研究考虑了一个控制因素(即研究前的理解能力):各组前两列的学生研究前理解能力较低,后两列理解能力较高.

1.2方法在统计分析中,需要解决均数的对比(contrast)问题,即一个研究有J个处理组,则均数的对比可以表示为:

Ψ=c1μ1+c2μ2+…+cJμJ(1)

其中, c1+c2+…+cJ=0. Ψ=μi-μj是最常见的对比. 对比含有量纲,与反应变量的量纲相同,不能直接用于不同研究间比较;而标准均数差无量纲,可用于不同研究间比较的效应量. 按反应变量的不同,可将标准均数差分为单变量和多变量标准均数差. 不同设计标准均数差计算方法如下:表166名四年级学生接受不同干预后EDT得分情况

1.2.1单变量标准均数差

1.2.1.1单因素完全随机设计该设计的处理因素有J个水平,实验拟研究的问题可表示为对比(1),其标准均数差为:

δ=Ψ〖〗σ(2)

总体参数δ的估计方法:用样本均数x估计总体均数μ, σ可以用准则一中的一种方法进行估计. 准则一:a设计中的某个处理组的标准差,常用对照组的标准差;b对比中所有处理组的合并标准差;c设计中所有处理组的合并标准差.

当对比中包含所有的处理组时,b, c得到的σ估计值相同,并与ANOVA分析中误差均方(MSE)正的平方根相等. 当所有处理组满足方差齐性条件时,c法是估计σ的最佳方法;当不满足时,用a法估计. Hedges指出按照准则一估计的标准均数差是δ的有偏估计,需要乘以系数1-3/(4df-1)进行校正,其中df为用于估计σ的标准差或合并标准差的自由度[8].

1.2.1.2多因素设计该设计的因素可为干预因素(处理因素)和控制因素(非研究因素、混杂因素). 当所有因素均为干预因素时,标准均数差的计算与单因素完全随机设计相同. 多因素实验中若含有控制因素,如将控制因素与干预因素不加区别,按照准则一计算标准均数差时,会出现相同干预的效应量在不同实验设计间不可比的问题[1]. 根据所研究对比的特征,标准均数差的计算方法不同,如以2×2析因设计为例,见表2. 设实验含有:处理因素A(a1,a2),控制因素B(b1,b2).

表2含有控制因素的多因素设计标准均数差的计算方法

分析目的〖〗对比〖〗标准均数差的计算方法干预因素A的主效应〖〗Ψ=1〖〗2(μa1,b1+μa1,b2)-1〖〗2(μa2,b1+μa2,b2)〖〗准则二:a. 按照干预因素分组,计算各组的标准差;b. 用准则一中的一种方法估计σ.干预因素A在b1水平

的单独效应〖〗Ψ=μa1,b1-μa2,b1〖〗同准则二.因素A与B的交互作用〖〗Ψ=(μa1,b1-μa2,b1)-(μa1,b2-μa2,b2)〖〗同准则二.控制因素B的主效应〖〗Ψ=1〖〗2(μa1,b1+μa2,b1)-1〖〗2(μa1,b2+μa2,b2)〖〗准则三:a. 按照干预因素及对比中含有的控制因素分组,计算各组的标准差;b. 用准则一中的一种方法估计σ. 控制因素B在a1水平的

单独效应〖〗Ψ=μa1,b1-μa1,b2〖〗同准则三.

多因素实验研究的对比可能仅含有控制因素,不含有处理因素,如在2×2×2析因设计中,对比为:

Ψ=1〖〗2(μb1,c1+μb1,c2)-1〖〗2(μb2,c1+μb2,c2)(3)

其中,A为处理因素,B, C为控制因素. 仅含有控制因素对比的标准均数差计算方法:a按照实验研究的控制因素分组,计算各组的标准差,在对比(3)中,按照因素B分组;b用准则一估计σ.

1.2.1.3含有协变量的多因素设计协方差分析(ANOCVA)通过建立协变量与反应变量的线性回归关系,对各组的反应变量的均数进行校正后,再进行假设检验. ANOCVA标准均数差的计算方法为:用样本校正均数xc估计总体均数μ,将协变量作为控制因素,按照准则二来估计σ.

1.2.1.4含有重复测量因素的多因素设计含有重复测量因素的设计可分为:①仅含有1个或多个重复测量因素的设计;②含有重复测量因素和观测间因素的设计. 因为重复测量因素为处理因素,所以①中不存在控制因素引起的相同处理的效应量在不同实验设计间不可比的问题,标准均数差的计算方法,与因素为处理因素的设计相同. 含有重复测量因素和观测间因素的设计计算标准均数差时,将重复测量因素作为处理因素,如观测间因素含有控制因素按照表2中准则二或三计算.

1.2.2多变量标准均数差马氏距离在多元方差分析中即是一种多变量标准均数差. 马氏距离公式为:

D=d′R-1d

其中,d为单变量标准均数差向量,R为合并的组内相关矩阵. 实际计算中,马氏距离可以由多元检验统计量Wilkss Λ计算得到:

D=df(1-Λ)Σk〖〗i=1c2i/ni〖〗Λ(4)

其中:k为处理组数, ci, ni分别为i组对比系数和样本量. df的计算公式为:df=Σni-k.

1.2.3标准均数差的解释标准均数差的解释准则不多,因为医学研究领域所涉及的内容很广泛,想给出普遍适用的准则,需要冒很大风险. Cohen建议标准均数差为0.2时,效应为小,0.5为中等,0.8为大. 如果样本满足正态分布,总体间重叠的比例(percent of overlap, OL%),有助于标准均数差的解释. 若处理组与对照组的标准均数差为0.70,那么可认为处理组50%的研究对象反应变量值大于对照组76%的研究对象的值(图1).

图1标准均数差与OL%示意图

2结果

Bauman等人的研究关心阅读方法TA和DRTA的平均效应与DRA的差别(对比Ψ1)以及阅读方法TA与DRTA的差别(对比Ψ2).

Ψ1=1〖〗2(μTA+μDRTA)-μDRA, Ψ2=μDRTA-μTA.

若仅考虑EDT2和干预因素(阅读习惯),本例的研究设计为单因素完全随机设计. 表3为各组的均数和标准差,表4为对比Ψ1, Ψ2的标准均数差. 按照Cohen准则,两对比均为中等效应. 校正后Ψ2的效应量为0.697,可认为50%阅读并积极思考的学生的EDT成绩高于76%的单纯朗读的学生成绩.表3各组EDT1, EDT2成绩表4单因素完全随机设计标准均数差

若将EDT2作为研究的反应变量,考虑干预因素A和控制因素B(阅读能力),本例为析因设计. 为了便于公式的演算,假设干预因素为两水平(TA, DRTA),本例研究干预因素、控制因素的主效应、单独效应及两因素的交互作用. 这些效应的可以用表2中相应的对比表示,其标准均数差的计算见表5.表5多因素设计各组EDT2成绩及标准均数差

若将EDT2作为研究的反应变量,考虑干预因素,并将干预前的测量结果EDT1作为协变量,本例为含有协变量的单因素设计(协方差设计). 通过协方差分析,各组校正后的均数见表6. 按照校正均数计算对比Ψ1, Ψ2的标准均数差,见表6.

将EDT作为研究的反应变量,考虑干预因素和重复测量因素,干预前后EDT做了两次,重复测量因素有两水平,本例为含有1个重复测量因素的两因素设计. 不同阅读方式的效应用两次测量的差值表示,两对比Ψ1, Ψ2可以表示为:表6各组EDT2成绩及标准均数差

Ψ1=1〖〗2(μEDT2,TA-μEDT1,TA)+1〖〗2(μEDT2,DRTA-μEDT1,DRTA)-(μEDT2,DRA-μEDT1,DRA),

Ψ2=(μEDT2,DRTA-μEDT1,DRTA)-(μEDT2,TA-μEDT1,TA).

根据表3,可计算对比Ψ1, Ψ2的标准均数差分别为1.018, 0.439.

将EDT1, EDT2作为研究的反应变量,考虑干预因素,本例为多元单因素完全随机设计. 对比Ψ1,Ψ2中的μ为均数向量,检验统计量Wilkss Λ,可以用SAS/GLM CONTRAST计算得到[9]. 由公式(4)可计算对比Ψ1,Ψ2的多元标准均数差D分别为1.228, 0.689.

3讨论

标准均数差是方差分析模型中常用的一类效应量,也是目前心理学、医学研究领域和Meta分析中最常用到的效应量. 本文按照不同的实验设计,考虑相同干预不同设计间效应量的可比性,介绍了标准均数差的计算方法,总结给出了相应的计算准则,并给出了实例. Meta分析常遇到研究干预相同、研究设计不同的情况下,效应量的计算问题. 本文介绍的标准均数差的计算方法可以很好的解决这一问题. 另外,本文介绍的标准均数差的计算可适用于两组和多分组的情况,有些资料和文献上针对两组资料的比较对标准均数差进行介绍. 专用于两组比较的标准均数差有:Cohens d,Glasss Δ,Hedgess g和Cohens f2 [10].

尽管APA和24种期刊要求研究者进行假设检验时,必须报道一种或多种效应量作为其补充,但是对效应量能否帮助研究者或读者提供有关干预效应有无实际意义的信息,也有统计学家提出疑问[1]. Cohen对标准均数差解释制定的准则,能否适用医学研究领域,也存在争议. Cohen也建议统计学者制定其他的准则来解释标准均数差. 目前,国内的生物医学期刊还未要求报道效应量,国外对效应量的研究和报道较多,尤其是在心理测量领域的研究,并有关于效应量误用的分析报道,因此我国生物医学论文要求报道效应量是未来的发展趋势.

【参考文献】

[1] Olejnik S, Algina J. Measures of effect size for comparative studies: Applications, interpretations, and limitations[J]. Contemp Educ Psychol, 2000,25(3):241-286.

[2] Glaser DN. The controversy of significance testing: Misconceptions and alternatives[J]. Am J Crit Care, 1999,8(5):291-296.

[3] Cohen J. The earth is round (P

[4] apa.org/science/tfsi.html.

[5] Wilkinson L. Task force on statistical inference APA board of scientific affairs. Statistical methods in psychology journals: Guidelines and Explanations[J]. Am Psychol, 1999,54(8):594-604.

[6] American Psychological Association. Publication manual of the American Psychological Association[M]. 5th ed. Washington: American Psychological Association Press,2001:1-5.

[7] coe.tamu.edu/bthompson.

[8] Hedges LV. Distributional theory for Glasss estimator of effect size and related estimators[J]. J Educ Stat, 1981,(6):107-128.