欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

概率论教学论文(合集7篇)

时间:2023-03-02 15:09:41
概率论教学论文

概率论教学论文第1篇

关键词:概率论;教学;思维方法

在数学的历史发展过程中出现了3次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“阳春白雪”,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18世纪,为解决天文观测误差而提出的.在17、18世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“拟合”误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A.Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ代数[3]

这一概念:设Ω为样本空间,若Ω的一些子集所组成的集合?满足下列条件:(1)Ω∈?;(2)若A∈?,则A∈?;(3)若∈nA?,n=1,2,??,则∈∞=nnA∪1?,则我们称?为Ω的一个σ代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ代数.几何概型是19世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899年,法国学者贝特朗提出了所谓“贝特朗悖论”[3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1的圆,随机取它的一条弦,问:

弦长不小于3的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3种答案针对的是3种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“随机”、“等可能”、“均匀分布”等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ-代数的概念:对同一个样本空间Ω,?1={?,Ω}为它的一个σ代数;设A为Ω的一子集,则?2={?,A,A,Ω}也为Ω的一个σ代数;设B为Ω中不同于A的另一子集,则?3={?,A,B,A,B,AB,AB,BA,AB,Ω}也为Ω的一个σ代数;Ω的所有子集所组成的集合同样能构成Ω的一个σ代数.当我们考虑?2时,就只把元素?2的元素?,A,A,Ω当作事件,而B或AB就不在考虑范围之内.由此σ代数的定义就较易理解了.2广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“玛丽莲问题”:十多年前,美国的“玛利亚幸运抢答”

电台公布了这样一道题:在三扇门的背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?

由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“必然寓于偶然之中”的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε,0<ε<1,不管ε如何小,如果把这试验不断独立重复做任意多次,那么A迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε)n,前n次A都不出现的概率为1?(1?ε)n,当n趋于无穷大时,此概率趋于1,这表示A迟早出现1次的概率为1.出现A以后,把下次试验当作第一次,重复上述推理,可见A必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3积极开展随机试验随机试验是指具有下面3个特点的试验:

(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A)>0时,P(B|A)未必等于P(B).但是一旦P(B|A)=P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B)>0时,若P(A|B)=P(A),就称事件B的发生不影响事件A的发生.因此若P(A)>0,P(B)>0,且P(B|A)=P(B)与P(A|B)=P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:

定义1:设A,B是两个随机事件,若P(A)>0,P(B)>0,我们有P(B|A)=P(B)且P(A|B)=P(A),则称事件A与事件B相互独立.接下来,我们可以继续引导学生仔细考察定义1中的条件P(A)>0与P(B)>0是否为本质要求?事实上,如果P(A)>0,P(B)>0,我们可以得到:

P(B|A)=P(B)?P(AB)=P(A)P(B)?P(A|B)=P(A).但是当P(A)=0,P(B)=0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB?A,AB?B,因此P(AB)=0=P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A)>0,P(B)>0,即如下定义事件的独立性:

定义2:设A,B为两随机事件,如果等式P(AB)=P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B相互独立.很显然,定义2比定义1更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5结束语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.

总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法.通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.

[参考文献]

[1]C·R·劳.统计与真理[M].北京:科学出版社,2004.

[2]朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.

[3]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.

[4]张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.

概率论教学论文第2篇

例如卡方分布,当自由度n比较大时,趋向于正态分布。:类似的例子还有二项分布XB(n,p),当参数n(n≥100)较大,p较小,np≤10时,二项分布近似泊松分布,CknPk(1-p)n-k≈λkk!e-λ(λ=np),t分布当n较大时趋向于正态分布,大数定理,中心极限定理也都可以通过图形演示来让学生信服。

二、上哪个专业的课,就举与这个专业相关的例子。比如,同样是学习单样本假设检验,在为给排水监测与评价专业学生上课时。

我举例如下:例1.已知某标准水样中CaCO3的含量为20.7mg/L,现在某方法测定该水样10次,结果为:20.99mg/L、20.41mg/L、20.10mg/L、20.00mg/L、20.99mg/L、20.91mg/L、20.60mg/L、20.00mg/L、23.00mg/L、22.00mg/L,问该法测定结果与真值之间有无显著差别?为食品营养与检测专业学生上课时,举例如下:例2.根据营养学要求,成年女性每日摄取食物的推荐平均热量为7725kcal。现在随机抽取11名20岁至30岁成年女性,其每日摄取食物的热量如下:5260,5470,5640,6180,6390,6515,6805,7515,7515,8230,8770问现今20岁至30岁成年女性每日摄取食物的热量是否足够?针对学生的专业,选取具有专业背景的案例。这样学生才会觉得以后工作离不开概率统计,现在必须学好它。这样,学生的学习态度自然也就端正了。

三、使用统计软件辅助教学。

目前,统计软件有很多,有SAS,SPSS,Mathematic,Matlab等,究竟应该选择哪个软件呢?其实,每个软件都有它的优缺点,关键在于我们要根据学生的水平和课时情况,选择最适合他们的软件。比如SAS软件命令和函数烦琐难懂,太专业,入门不易,普及性就低;matlab软件系统配置要求高,不适合安装运行在公共使用的多媒体教室的计算机上。对于非统计专业学生来说,SPSS,Mathematic是不错的选择,SPSS一般是英文版本,中文版本还不够成熟,学生在使用时有一定语言障碍。但是它最显著的特点是绝大多数操作仅靠鼠标击键就可完成,无需学习专门的程序语言;Mathematic软件基本数学运算命令简单易学,对于难度大的算法构造,计算机编程学生就可以适当忽略了。比如例1和例2,用SPSS做,只需选择工具栏中AnalyzeCompareMeansone-SampleTTest就可以了;用Mathematic做,首先要调用假设检验软件包的命令<<StatisticsHypothesisTests.m,然后MeanTest[data,u,SignificanceLevel0.05,TwoSidedTrue,FullReportTrue]此过程还算简单,但和SPSS比较起来,还是要麻烦一些。

四、结合学生考证来教学,“设置双证兼顾”的课程体系。

高职双证书制度,指的是学历证书+职业资格证书。学生除了重视毕业以外,对于考取职业资格证书也是非常积极的。教师应在教学中结合考证要求来授课,助学生一臂之力,将职业教育的实用性、职业性完整表现出来。我所教的环境监测与评价专业、食品营养与检测专业学生,一般会考取污水化验工、固定污染源(烟气或废水)连续自动监测系统上岗证、化学检验工、ISO9000内审员、食品检验工等证书。要考取这些证书就要用到很多概率统计知识,在教学中,按照考证的专业类别和级别层次,整理出职业资格证书覆盖的知识点,并以此为基础优化组合概率统计课程,形成对应初级、中级资格两个层次的模块组合,会使学生学习积极性大大提高。

五、注重在教学过程中融入数学建模思想。

从数学建模竞赛的题目来看,与概率统计有关的知识较多。例如:2000年的DNA序列的分类问题,2005年DVD在线租赁问题,2007年的中国人口增长预测问题,北京奥运会馆的人流分布问题,2013年的公共自行车系统研究等都不同程度地涉及概率统计相关知识。教师在教学中,指导学生利用已有的概率统计知识解决相关问题,不但加强了学生对所学知识的理解,激发了学生的求知欲,又拓宽了学生的知识面,培养了学生的建模能力,具有非常重要的意义。

六、总结

概率论教学论文第3篇

关键词:概率论;教学;思维方法

在数学的历史发展过程中出现了3次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.

1将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“阳春白雪”,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18世纪,为解决天文观测误差而提出的.在17、18世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“拟合”误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A.Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ代数[3]

这一概念:设Ω为样本空间,若Ω的一些子集所组成的集合?满足下列条件:(1)Ω∈?;(2)若A∈?,则A∈?;(3)若∈nA?,n=1,2,??,则∈∞=nnA∪1?,则我们称?为Ω的一个σ代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ代数.几何概型是19世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899年,法国学者贝特朗提出了所谓“贝特朗悖论”[3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1的圆,随机取它的一条弦,问:

弦长不小于3的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3种答案针对的是3种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“随机”、“等可能”、“均匀分布”等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ-代数的概念:对同一个样本空间Ω,?1={?,Ω}为它的一个σ代数;设A为Ω的一子集,则?2={?,A,A,Ω}也为Ω的一个σ代数;设B为Ω中不同于A的另一子集,则?3={?,A,B,A,B,AB,AB,BA,AB,Ω}也为Ω的一个σ代数;Ω的所有子集所组成的集合同样能构成Ω的一个σ代数.当我们考虑?2时,就只把元素?2的元素?,A,A,Ω当作事件,而B或AB就不在考虑范围之内.由此σ代数的定义就较易理解了.2广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“玛丽莲问题”:十多年前,美国的“玛利亚幸运抢答”

电台公布了这样一道题:在三扇门的背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?

由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利中奖问题,等等[4].

概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“必然寓于偶然之中”的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε,0<ε<1,不管ε如何小,如果把这试验不断独立重复做任意多次,那么A迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε)n,前n次A都不出现的概率为1?(1?ε)n,当n趋于无穷大时,此概率趋于1,这表示A迟早出现1次的概率为1.出现A以后,把下次试验当作第一次,重复上述推理,可见A必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3积极开展随机试验随机试验是指具有下面3个特点的试验:

(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A)>0时,P(B|A)未必等于P(B).但是一旦P(B|A)=P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B)>0时,若P(A|B)=P(A),就称事件B的发生不影响事件A的发生.因此若P(A)>0,P(B)>0,且P(B|A)=P(B)与P(A|B)=P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:

定义1:设A,B是两个随机事件,若P(A)>0,P(B)>0,我们有P(B|A)=P(B)且P(A|B)=P(A),则称事件A与事件B相互独立.接下来,我们可以继续引导学生仔细考察定义1中的条件P(A)>0与P(B)>0是否为本质要求?事实上,如果P(A)>0,P(B)>0,我们可以得到:

P(B|A)=P(B)?P(AB)=P(A)P(B)?P(A|B)=P(A).但是当P(A)=0,P(B)=0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB?A,AB?B,因此P(AB)=0=P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A)>0,P(B)>0,即如下定义事件的独立性:

定义2:设A,B为两随机事件,如果等式P(AB)=P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B相互独立.很显然,定义2比定义1更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5结束语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.

[参考文献]

[1]C·R·劳.统计与真理[M].北京:科学出版社,2004.

[2]朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.

[3]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.

[4]张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.

概率论教学论文第4篇

在教学内容的选编中,所选内容应突出“厚基础”“重应用”的应用型特色。综合考虑学生的就业方向,侧重论述概念、方法、原理的历史背景和现实背景在金融等方面的应用,对于冗长难懂的理论证明可以用直观易懂的现实背景来解释。例如讲解全概率公式时,学生虽可以比较容易地应用,但不容易理解公式的本质,所以并不觉得引入这些公式有什么必要性,大大降低了学生的学习兴趣。但如果在课堂引入“敏感事件调查”这个例子,会对经管类的文科学生具有很强的吸引力,从而为学生提高市场调查和问卷设计能力提供有益借鉴。在介绍贝叶斯公式时,可以根据经管类专业,引入贝叶斯公式应用在风险投资中的例子。在介绍期望的概念时,从游戏介绍概念来源的背景,再将期望用到实际生活中去,可以引入其在投资组合及风险管理等方面的应用。这样能使学生真正理解概率论中许多理论是取之于生活而用之于生活,并能自觉将理论运用到生活中去。在介绍极大似然思想时,可以从学生和猎人一起打猎的案例进行引入。

2设计趣味案例,激发学生学习兴趣2015年1月5日

随着互联网的迅猛发展、电脑的普及、各种游戏软件的开发,很多大学生喜欢在网上玩游戏。教师可以抓住大学生爱玩游戏这一特点,况且概率论的起源就来源于游戏,教师可以在讲授知识时,由一个游戏出发,循循诱导学生从兴趣中学到知识,再应用到生活中去。例如,在讲解期望定义时,可以设计这样的一个游戏案例:假设手中有两枚硬币,一枚是正常的硬币,一枚是包装好的双面相同的硬币(即要么都是正面,要么都是反面,在抛之后才可以拆开看属于哪种)。现在让学生拿着这两枚硬币共抛10次,一次只能抛一枚,抛到正面就可以获利1元钱,反面没有获利,问学生选择怎样一种抛掷组合,才能使预期收益最大?教师留给学生思考的时间,然后随机抽一位同学回答,并解释其理由。大部分学生选择先抛后面那枚硬币,如果发现两面都是正面,那么后面9次都抛这枚,如果是反面,那后面9次都抛前面那枚硬币。这种抛掷组合确实是最优的,但总是说不清其中的道理来。这时教师可以向学生解释,其实大家在潜意识中已经用到了期望,然后利用期望的定义为大家验算不同抛掷组合的期望值来说明大家选的组合确实是最优的,这时学生豁然开朗,理解了期望的真正含义。游戏可以继续,如果将若干个包装好的非正常硬币装入一个盒子里,比如将5枚双面都是反面的、1枚双面都是正面的硬币装入盒子里,学生从中摸一个硬币出来,再和原来那枚正常的硬币一起共抛10次,也可以选择不摸硬币,直接用手中正常硬币抛10次。这个时候,原来那种抛掷组合还是最优的吗;如果再改变箱子中两种硬币的比例,比如9枚双面是反的,1枚双面都是正的,结果又是怎样等等,这些问题可以留给学生课后思考,并作为案例分析测试题。按照上述设计教学案例,不仅让学生轻松学到知识,激发学生学习的能动性,还可以提高学生自己动手解决实际问题的能力,培养学生的创新能力。

3精选实用型案例,引导学生学以致用

如在讲解全概率公式时引入摸彩模型,中奖的概率是否与抽奖的先后顺序有关。利用全概率公式可以证明与顺序无关,大家机会是平等的。又如讲解事件独立性可以引入比赛局数制定的案例,如果你是强势的一方,是采取三局两胜制还是五局三胜制,这个例子也可以用大数定理来解释,n越大,越能反映真实的水平。又如设计车门高度问题,公共汽车车门的高度是按成年男性与车门顶头碰头机会在0.01以下来设计的:设某地区成年男性身高(单位:cm)X~N(170,36),问车门高度应如何确定?这个用正态分布标准化查表可解决。合理配备维修工人问题:为了保证设备正常工作,需配备适量的维修工人(工人配备多了就浪费,配备少了又要影响生产),现有同类型设备300台,各台工作是相互独立的,发生故障的概率都是0.01。在通常情况下一台设备的故障可由一个人来处理(我们也只考虑这种情况),问至少需配备多少工人,才能保证设备发生故障不能及时维修的概率小于0.01?这样的问题在企业和公司经常会出现,我们用泊松定理或中心极限定理就可以求出。学生参与到实际问题中去,解决了问题又学到了知识,从而有成就感,学习就有了主动性。

4运用多媒体及统计软件进行经典案例分析

在概率统计教学中,实际题目信息及文字很多,需要利用统计软件及现代化媒体技术。其一,采用多媒体教学手段进行辅助教学,可以使教师节省大量的文字板书,避免很多不必要的重复性劳动中,从而教师就可以将更多的精力和时间用于阐释问题解决的思路,提高课堂效率和学生学习的实际效果,有效地进行课堂交流。其二,使用图形动画和模拟实验作为辅助教学手段,可以让学生更直观地理解一些抽象的概念和公式。如采用多媒体教学手段介绍投币试验、高尔顿板钉实验时,可以使用小动画,在不占用过多课堂教学时间的同时,又能增添课堂的趣味性。而在分析与讲解泊松定理时,利用软件演示二项分布逼近泊松分布,既形象又生动。如果在课堂教学中使用Mathematica软件演示大数定律和中心极限定理时,就可将复杂而抽象的定理转化为学生对形象的直观认识,以使教学效果显著提高。在处理概率统计问题过程中,我们经常会面对大量的数据需要处理,可以利用Excel,SPSS,Matlab,SAS等软件简化计算过程,从而降低理论难度。不仅如此,在教师使用与演示软件的过程中,学生了解到应用计算机软件能够将所学概率论与数理统计知识用于解决实际问题,从而强烈激发学生学习概率知识的兴趣。

5结合实验教学,培养学生应用技能

概率论教学论文第5篇

关键词:概率统计数学教学文化性

数学的文化性特征应该具有多元性、开放性和动态性等特点。概率论是研究大量随机现象规律性的一门数学分支。而随机现象的两个重要特征即不确定性和规律性,却经常使得学生在直觉与科学之间无所适从,给学习与教学带来一定的困难。正是因为如此,从文化的角度重新审视概率统计的教学,既能促进教学,又符合新课程的理念。

1.概率统计理论的发展史略

纵观历史,自文艺复兴时期的数学家,医学教授Cardan在其热衷的游戏中开始思考获得7点和在一副牌中获得“A”的概率开始,数学的一个新的分支——概率论,便在对游戏的思考中展开了它的宏伟画卷。我们知道,在自然界和现实生活中,随机现象十分普遍,它表面上杂乱无章,但在多次实验后却隐藏着规律性。续Cardan之后大约100年,另一位赌徒Mere继续研究了上述问题,但是由于他数学知识的局限性,不得不求助当时数学奇才Pascal,而Pascal在与Fermat的通讯讨论中逐步明确了概率值的确定方法等理论问题,从而将游戏问题上升到了数学问题。而十七、十八世纪之后,由于商业保险、产品检验,以及军事、选举、审判调查和天气预报等大量随机问题的涌现,概率论逐步从最初为给赌徒提供咨询,转变成为急需解决的数学理论问题。自1713年Bernouli到1917年Kolmogorov,以及十九世纪二三十年代的凯特勒更是将概率统计理论不断系统化、公理化,从而确立了概率统计成为数学的一个逻辑严谨的分支。

在教学中,特别是讲授概率统计概念的教学中,还原它的文化性,将历史再现出来,既能够让学生在有趣的游戏中了解概率统计的源头,也可以让学生体验到概率统计源于生活,服务于生活的科学本质,并了解人类在认识这一问题的过程中所付出的巨大努力,从而在学习知识的同时潜移默化地感受到数学文化的存在性。

2.概率统计教学文化性的外部表现

2.1丰富有趣的生活问题,为概率统计教学的文化性增加了多元性元素。

概率统计的生活背景可谓丰富多彩,这为课堂教学提供了十分丰富的情景基础。

在概率定义理解教学中,游戏的下注问题、赎金分配问题、比赛优先权问题、无法投递信件比例问题、商场结账快慢问题等。

古典概型教学中,抛硬币问题、生日问题、天气预报问题、男女出生比例问题等。

几何概型教学中,有转盘中奖问题、蒲风投针实验问题、会面问题等。

随机变量及分布教学中,有中奖问题、银行卡密码问题、感冒指数问题等。

正态分布教学中,智力分布问题、线段测量误差问题、一天的气温平均值问题等。

这些问题来自我们生活的方方面面,而且许多问题都是历史经典问题,因此问题本身的数学思维性加上历史背景性,其文化的气息更加浓厚,甚至童年故事“狼来了”问题,成语故事“三个臭皮匠顶个诸葛亮”问题,评分术语“去掉一个最高分,去掉一个最低分”问题,等等,都渗透着概率统计的思想,这无不体现着数学来源于生活,服务于生活的文化思想。

2.2大量动手操作性的实验学习活动,是概率统计教学文化性的又一体现。

在抛硬币实验中,学生在抛掷中收集数据,通过操作方式学习数学的结论。

在义务教育阶段,通过收集同学的体质健康情况,年龄,身高数据进行数据学习。

在变量的相关关系教学中,收集同学使用计算机时间,物理成绩与数学成绩等,学习变量的相关性。

在随机抽样教学中,设计调查问卷等。

可以看到,以上这些实验性学习方式,是其他数学学习中较少出现的,然而正是这些带有操作性的学习方式,丰富着学生的思维,增加着他们的心理感受,认识到所学的东西有用,能解决现实问题,学习热情高涨,从情感上丰富着他们对数学的感受。超级秘书网

3.概率统计教学文化性的内部表现

3.1科学思维的深刻提升。

概率统计的核心是认识隐藏在随机现象背后的统计规律性,强调随机现象的个别观察的偶然性与大量观察中的统计规律性之间的联系。必然性通过偶然性表现出来,偶然性背后总是隐藏着必然性。通过这种必然性去认识和把握随机现象,而不确定与确定,可能与不可能的集中体现,更是辩证思想的体现,是人类思维成熟的体现。因此概率统计的学习实际上是对学生过去习惯的确定性思维的一次挑战,是一次思维文化的碰创。例如抛一次硬币的结果是无法确定的,学生可以理解,但是大量抛掷的结果却是一个概率确定值,这里具有辩证统一的思想,为了让学生能够理解这样的事实,实验是必不可少的,这又使得学生经历了从具体到抽象及归纳的逻辑思维形式。在学生使用概率模型解决问题的同时,归纳思维、合情推理等思想方法与随机思想方法的交融,都是数学化意识的体现,它深入到内部,不断完善他们的思维,使其日趋成熟,这正是数学的学科特征。

3.2人文精神的不断升华。

概率统计的产生就像它的理论那样带着大量的偶然因素,但是因为有众多优秀数学家的钻研,其产生与发展又是一个必然的结果,并不断系统化、条理化。如今,概率统计已经渗透到了自然科学和社会科学的方方面面,而对于大量来源于生活的概率统计问题,必将教会学生主动利用所学的知识去认识世界、改造世界,有助于培养学生将数学理论应用于解决实际问题的能力和创新意识。

参考文献:

[1]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学必修3[M].人民教育出版社,2004.

[2]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学选修系列(2-3)[M].人民教育出版社,2004.

[3]大连理工大学应用数学系.大学数学文化[M].大连理工大学出版社,2008,(182-212).

[4]施业琼.在概率统计教学中渗透人文精神培养[J].教育研究,2009.7.

概率论教学论文第6篇

关键词:课堂教学;概率论与数理统计;应用能力;教学模式

概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。

1与实际结合,激发学生对概率统计课程的兴趣

概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。

在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。

2运用案例教学法,培养学生分析问题和解决问题的能力

案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。

在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。

3运用讨论式教学法,增强学生积极向上的参与和竞争意识

讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。

保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少?保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。

4运用多媒体教学手段,提高课堂教学效率

传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。

考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。

参考文献

[1]陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.

[2]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.

[3]肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.

概率论教学论文第7篇

为了将“概率论与数理统计”课程教学内容紧密地与各专业培养目标相结合,学校组织相关人员对全校各专业进行了调研,了解了各专业对“概率论与数理统计”课程的需求,及时修订、调整和更新了课程的教学内容,重新制定了教学大纲,增加了突出课程内容的应用性。例如,在经管学院各专业,我们增加了统计内容的学时,达到64学时,有利于学生后续专业课程的学习;在社会工作专业,增设了概率论这门课程,便于学生更好地理解统计方法。“概率论与数理统计”课程在信息与计算科学专业共有80学时,学校开设过本课程的双语教学,使用英文原版教材,使教学内容与国际接轨;曾将本课程分成“概率论基础”与“数理统计”两门课开设。本系教师在上数理统计课时给学生讲了一点SAS软件和SPSS软件知识,起到了较好的效果,之后由于课程整合的需要又合并成一门课程。经过多年教学改革与教学实践,结合长春理工大学专业特点和学生的实际情况,1997年开始使用学校自编的《概率论与数理统计》教材。目前课程组成员编写的《概率论与数理统计》2011年由高等教育出版社出版发行,新教材在本校已经使用了3年,效果很好,2013年获得兵工高校优秀教材一等奖。与教材配套使用的同步练习册每年发行一次,做到实时更新。在校园网上建立了“概率论与数理统计”精品课网站,同学们可以下载与课程同步的PPT、往届的练习题,还可以在网上留言,解决疑难问题。在该课程的改革与实践中也遇到了一些问题。如分类教学改革成果还没有充分显现出来,对理、工、文、经、管、法等不同专业的“概率论与数理统计”课程分类教学还缺乏反馈信息;有些院系缺乏本课程的实践环节,不利于提高学生运用数学知识的实践能力;信息化背景也给教师队伍提出了很高的要求。

二、对课程教学改革中出现的问题的改进

在教学过程中为了更好地解决信息化背景下“概率论与数理统计”课程教学与培养学生创新实践能力和应用能力的关系,实现教学内容与教学模式的改革与学生应用能力培养的统一。下面从三个方面说明进一步的改进措施。

(一)进一步加强“概率论与数理统计”课程的分类教学与课堂教学改革

结合学校学生的实际情况,进一步加强理、工、经管、生命、社会工作等不同专业的分类教学,针对不同专业采取不同学时、内容有所侧重的分类教学模式,加强统计方法的应用教学,对不同专业的分类教学进一步进行探讨。

(二)进一步更新、优化教学内容,完善“概率论与数理统计”精品课网站的建设

定期对全校各专业进行调研,了解各专业对“概率论与数理统计”课程教学的反馈与需求,及时修订、调整和更新课程的教学内容,优化课程体系。目前长春理工大学的“概率论与数理统计”是省级精品课,为了更好地顺应信息化大环境的需求,学校会进一步完善本课程网站的建设,使得学生在自主学习的过程中更加便捷。

(三)增加课程设计、计算机实践环节,鼓励学生申报

创新实验计划项目,参加数学建模竞赛在教学过程中增加课程设计、计算机实践环节,结合较多的应用实例,留一些开放性的案例,要求学生做案例研究,写出合格的研究报告,训练学生的实践能力。鼓励学生申报创新实验计划项目,参加数学建模竞赛。通过创新实验计划项目、数学建模竞赛等活动,提供一个学生、教师课后交流的平台,吸纳部分本科生参与到教师的科研活动当中,最大限度的挖掘学生潜在的能力。“概率论与数理统计”教学,不再是单一的数学理论与方法,而是通过教学,在传授相关数学知识和方法的同时,使学生更多地领悟该门课程的精神实质和思想方法,促使学生自觉地接受数学文化的熏陶,从而提高学生的创新思维能力。