欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

温控技术论文(合集7篇)

时间:2022-04-06 23:22:19
温控技术论文

温控技术论文第1篇

关键字处理器;动态功耗;温度监控

1引言

随着CPU集成度和运行速度的不断提高,其功耗也越来越大,导致CPU的运行温度越来越高,并成为CPU技术发展的瓶颈。CPU的温升不仅影响CPU技术的进一步快速发展,而且直接影响CPU的稳定性和使用寿命。如何抑制CPU的温升和迅速降低CPU的温度成为CPU设计和使用的一个重点。

CPU设计者主要从体系结构设计、集成电路半导体材料选择、CPU内功能电路布局、CPU几何尺寸等方面把握CPU的理论功耗和表面散热途径。CPU在完成设计并成为产品以后,在使用的过程中,它的实际功耗和散热效率会因不同的使用环境而有所不同。CPU的使用环境包括周围温度、气压、通风、供电电压、时钟频率、散热措施、负荷特点等。本文重点讨论各种温控技术,并且给出解决降温的各种措施。

2影响CPU温升的因素

CPU的温升取决于两大方面,一个方面是CPU工作不断产生的热量累积;另一个方面是对CPU产生的热量的导散。热量增加和散热不畅都会导致CPU的温度上升,并造成对CPU的损伤。

CPU的热量来源于它的功耗,根据CPU功耗与供电电压和工作频率的关系可以看到供电电压和工作频率是影响CPU温升的两个重要因素。

CMOS电路CPU的动态功耗为P=CV2f,其中C表示电路负载大小,V表示供电电压,f为工作频率。可见工作频率f与芯片的动态功耗成线性正比例关系,供电电压V的平方与芯片的动态功耗成线性正比例关系,对于一颗CPU来说,电压越高,时钟频率越快,则功率消耗越大。因此,在能够满足功能正常的前提下,尽可能选择低电压工作的CPU能够在总体功耗方面得到较好的效果。对于已经选定的CPU来讲,降低供电电压和工作频率,也是一条节省功率的可行之路。

3CPU的温控技术[1][4][5]

3.1外部温度监控技术

对CPU温度监控通过“外部监测”措施—即通过主板CPU插座下面的热敏电阻来监测CPU工作时的温度。CPU插座内采用立式或贴片式的热敏电阻。整个监测过程全部是由主板来负责,热敏电阻直接将所监测到的数据传给主板上的温控电路,如果监测到CPU的工作温度超过在BIOS中的预设值时就会自动断电关机或报警。采用此种方式的优点是体积小、价格低,使用方便,不过在监控处理器温度时明显存在缺陷,比如用此类监测方式得到的温度往往是CPU底面的温度,而不是内核温度,温度读数是由监控芯片根据温敏电阻的阻值变化计算得出,而且此类接触式测试受外部环境影响较大。如果热敏电阻与微处理器接触不够紧密,微处理器的热量不能有效地传送到,所测量温度会有很大误差。有些主板上采用SMD贴片热敏电阻去测量微处理器温度,其测量误差比直立式热敏电阻误差更大,因为这种贴片元件很难紧密接触到微处理器。故此类CPU温控结果误差性极大、反应不灵敏,所得结果仅仅只供参考。这就带来了一个十分严重的问题∶表面温度不能及时反映微处理器核心温度变化,从而形成一个时间滞后的问题。因为核心温度变化之后要经过一段时间才能传送到微处理器表面。相比之下,表面温度反应十分迟钝,其升温速度远不及核心温度,当核心温度发生急剧变化时,表面温度只有“小幅上扬”。Pentium4和AthlonXP等最新的微处理器,其核心温度变化速度达30~50℃/s,核心温度的变化速度越快,测量温度的延迟误差也越大。在这种背景之下,如果再以表面温度作为控制目标,保护电路尚未做出反应,微处理器可能早已烧坏。因此曾提出“TemperatureOffsetCorrection”(温度偏差修正)的CPU内核心温度监测温度修正方案来纠正此种CPU温控所带来的偏差。所谓“温度偏差修正”就是指当系统采用外部测量法时,必须在测量结果的基础上增加一个温度偏差值:即BIOS中显示的温度值=实际测试值+温度偏差值。这个偏差值由主板热敏电阻、临界温度等因素来决定,当系统设定以后它就是一个常量(通过刷新BIOS可以改变这个值)。这些措施在一定程度上可以减小误差值。但是,问题仍不能得到根本性解决,比如对于突发事件(如风扇脱落)所带来的温度急剧提升完全不能及时做出反应。为此我们考虑采用内部温控技术。

3.2内部温控技术

针对外部温度监控技术的不足,CPU厂商在CPU内核里面加入了一个专门用于监测CPU温度的热敏二极管,将CPU温度来引了“内部温控”时代。在这里整个处理器温度监控系统可分为外部控制型和内部控制型两种基本结构。外部控制型监控系统,其实就是主板的温度监控电路,它有三种基本存在形式∶一种是采用独立的控制芯片,,这些芯片除了处理温度信号,同时还能处理电压和转速信号;第二种形式是在BIOS芯片中集成了温度控制功能;第三种形式是南桥芯片中集成温度控制功能,目前新一代南桥芯片都有温度监控功能。而内部控制型监控系统则是指CPU内核心中整合的热敏二极管,这个热敏二极管的正负两极作为CPU两个针脚直接来通过主板CPU插座和主板的温度监控电路相连。在整个监控过程中,当CPU工作时,热敏二极管就将感应到的数据变化传输给主板的温控电路,由主板的一个特定逻辑运算电路通过所接收到的数据计算出CPU的内核温度,如果计算出来的温度高于预设温度警戒线时,系统就会自动在瞬间切断CPU核心电压,使CPU停止工作并让系统挂起来,从而可以很好地保护CPU不被烧毁。P2、P3及AthlonXP处理器都是采用了此种技术。这种方法反馈回来的温度并不是很准确,往往要比CPU核心温度低5度左右。为防止它的处理器过热烧毁推出了S2K总线断开技术:即当处理器内核温度过高时,系统会发出一个HALT指令(HALT改指令的意思是在没有要处理的指令和数据时将处理器挂起),当CPU接收到HALT指令时,处理器会转到相应的等待模式,这种模式只需要消耗较小的功率。

通过在CPU内核整合热敏二极管来控温已经是一种能很准确监控CPU核心温度的方法了,而且配合主板的温控电路就能即时保护过热的CPU,使其不至于在风扇突然停转或意外脱落时CPU被烧掉。但此类内部温控技术存在一个弊端,那就是在CPU温度过高时通过直接关闭电脑来达到保护的目的,这样会导致数据因为未能及时保存而丢失,忽略了数据的价值往往要比一个CPU的价值要高的可能性。而且热量不稳定可能导致系统不稳定,如果电脑死机或程序进入死循环,就会失去监控作用,也就无法保护微处理器了。

3.3热量控制电路

为弥补第一代内部温度监控技术的不足,Intel在Northwood核心P4中引入了第2代内部温度监控技术—热量控制电路(ThermalControlCircuit,英特尔又将它命名为热量监视器(ThermalMonitoring))。P3、AthlonXP的温控电路的特点是内部仅拥有一个热敏二极管不同,而Northwood核心P4的热量控制电路拥有两套热敏二极管。其中一套热敏二极管侦测CPU的温度值并传输给主板上的硬件监控系统,这套装置像传统的内部温控技术一样通过关闭系统来保护CPU,不过只是在紧急情况才会自动关闭。第二套热敏二极管放置在CPU内核温度最高的部位,几乎触及ALU单元,并作为热量控制电路的一个组成部分。在CPU工作中,这两套热敏二极管的电阻会因温度而变化,因此通过它的电流也会随着CPU的核心温度而变化,通过与内设参考电流的比较,系统能够判断当前电流是否达到了临界点。如果CPU最热的地方超过一定值,第二套热量温控装置会发送一个PROCHOT#信号使热量控制电路系统开始工作,通过减小CPU的负载来降温,其实这套热敏二极管起到波动调节作用。Pentium4的热量控制机制并非是减少时钟频率,而是减少其输出的有效工作频率。当温度正常的时候,ALUs(算术逻辑运算器)将会接受到一定的频率。但当主板检测到CPU的核心温度达到一个特定的临界值时,热量控制电路就开始发送PROCHOT#信号,将空置的时钟周期插入到正常的时钟周期内,发送到CPU的调节信号如图1所示。

图1发送到CPU的调节信号

PROCHOT#激活的无效周期会将某些正常时钟周期省略掉,使得最终发送给CPU逻辑运算单元的信号频率就会有所降低,从而通过降低CPU的工作效能来达到降温的目的。随着温度的降低,热量控制电路将会开始减少空时钟周期的数量以使CPU返回它原来的工作模式。只要CPU核心温度比临界值低1度时,热量监视器就会停止发送过热信号。热量控制单元就会停止产生空的时钟周期,CPU的性能也就恢复到正常值,过热保护系统被激活只需十几亿分之一秒,我们还可以在Pentium4主板的BIOS中选择超警戒温度来进行控制。当处理器的任务周期(dutycycle)占全部周期的比例越大说明处理器的工作效率越高,其可以调节的比例在12.5%到87.5%之间,选择的数值越小,则任务周期的比例越小,效率降幅反而越大,我们还可以利用PROCHOT#引脚功能保护主板的其它元件。当供电模块的温度超出警戒温度时,监控电路输出低电平到PROCHOT#,从而激活TCC,通过降低微处理器功耗来达到保护供电模块及主板其它元件的目的。

4抑制CPU温升的措施

4.1风冷散热系统

风冷散热系统由散热片和风扇构成,判断散热片的好坏的重要依据是表面积的大小,采用众多的鳍片来提高散热效果。散热片的内部和边缘需要设置合理的导风通道,散热片的切割面要磨光,以使其能与CPU表面完全结合。滚珠轴承的寿命、噪音、发热量远较含油轴承好。工作电压为12v,耗电量在十瓦之内。不少人认为风扇转速越高,那么在同一时间内,从CPU上带走的热量就越多,这样CPU就越容易冷却,事实并不是如此。如果风扇的转速超过其标准值,那么风扇在长时间超负荷情况下运行时,从CPU上带走的热量就比在高速转动过程中产生的热量小,这样时间运行得越长,热量差也就越大,高速运转的风扇不但不能起到良好的冷却效果,反而使CPU温度大幅提升;况且,散热风扇的转速越高,可能在运转过程中产生的噪音就越大,严重的话可能让风扇或者CPU报废;另外,要想让风扇高速运转,还必须有较大的功率来提供动力源,而高动力源是从主板和电源中的高功率中获得的,主板和电源在超负荷功率下就会经常引起系统的不稳定。所以,风扇转速越高冷却效果越好的说法是不成立的。从理论上分析,风扇功率越大散热效果应该越好,但这样的理论成立是在一定的前提之下的,也就是说在风扇的运行功率不超过额定运行功率的条件下,功率越大的风扇通常它的风力也越强劲,散热的效果也越好。而风扇的功率与风扇的转速又是直接联系在一起的,也就是说风扇的转速越高,风扇也就越强劲有力。不能片面地强调高功率,这需要同计算机本身的功率相匹配,如果功率过大,不但不能起到很好的冷却效果,反而可能会加重计算机的工作负荷,从而会产生恶循环,最终缩短了CPU风扇的寿命。因此,用户在选择CPU风扇时,不能错误认为风扇功率大其散热效果肯定会好,而应该根据够用原则来选择与自己电脑相匹配的风扇。并且在选择好风扇之后能够根据实际情况选择合适的机箱,从而更好地降低CPU的温度。

4.2半导体散热系统

半导体制冷器由许多N型和P型半导体材料排列组成,N、P之间是铜、铝等金属材料,外面是绝缘和导热良好的陶瓷片。通电后,电子由负极出发,经P型半导体吸收热量,至N型半导体放出热量。冷端接到CPU,热端接到散热片,由风扇将热量排出。这种散热系统消耗功率为10w至50w,增加了微机电源负担,本身产生大量热,容易造成半导体散热片的高温烧毁,低温一面容易产生露。

4.3液氮散热系统

液氮散热系统的工作原理是将主板、CPU等部件密封于一个空间里并抽成真空,CPU被内部充满液态氮的玻璃容器密封。进行类似水冷的循环散热。,它的特点是冷却能力强,但制造工艺复杂,容易结霜产生露水。

4.4软件降温

软件降温利用了CPU“空闲挂起”指令进行工作,从而实现了CPU的降温及功耗的降低。“空闲挂起”就是指在一段时间内没有接收到指令,CPU自动进入低耗能的休眠状态,降温软件缩短了CPU进入休眠状态的等候时间,从而减少了热量的产生。降温软件占用约1%至3%的系统资源,使CPU下降3至10℃。但是当CPU进行实时多任务的工作时,CPU能够得到“空闲挂起”的机会不大,这种情况下,软件降温的作用便失去了。

5结论

本文从CPU升温的因素说起,接着详细地介绍了当前几种主要的CPU温控技术,并分析每种温控技术的优缺点,接着介绍了当前的几种主要的CPU降温措施。

参考文献

[1]C.M.Krishna,Yann-HangLee.Voltage-Clock-ScalingAdaptiveSchedulingTechniquesforLowPowerinHardReal-TimeSystems.IEEETRANSACTIONSONCOMPUTERS,VOL.52,NO.12,DECEMBER2003

[2]Jung-HiMin,HojungChaandVasonP.Srim.AnEfficientPowerManagementMechanismforWiFi-basedHandheldSystems.WirelessCommunications,NetworkingandMobileComputing,2006.WiCOM2006.InternationalConferenceon

[3]BishopBrockandKarthickRajamani.DynamicPowerManagementforEmbeddedSystems.SOCConference,2003.Proceedings.IEEEInternational[Systems-on-Chip]

温控技术论文第2篇

烟叶仓库根据类型不同,面积大小不一(标准库每层面积在120m2)。烟叶包通常打包为80×60×40cm3,烟叶堆的堆叠大小没有明确限定,通常不高于2m,烟叶堆之间预留至少2m的通道。根据烟叶仓库的堆放格局,结合物联网技术的烟叶存储温湿度控制系统电气布置如图1所示,系统由3部分组成:射频传感标签、阅读控制器和烟叶存储上位机监控平台。射频传感标签由两部分组成:固定在电气外包装顶端的射频标签和固定在传感轴上的温湿度传感器。射频标签设置在顶端可以有效避免干扰和物理机械损伤,用于获取位置和时间信息,并进行射频通信。传感器通过电气连接线连接,用于获取每一个烟叶堆中心轴的温湿度分布。阅读控制器通过有线和无线方式完成射频传感标签与上位之间的数据通信。烟叶存储监控系统的上位机采用PC机,完成信息通信、数据分析处理等功能。

2射频传感模块

射频传感模块各个功能组成采用分离放置,通过接地固定底座和电气外包装固定,经电气连接线完成布局布线。如图1所示,距离地面最近的一个温湿度传感器与地面距离为20cm,高度低于2m的温湿度传感器以50cm的间距布局,其主要依据是烟叶包的大小及温湿度控制需求。烟叶包将围绕着每一个烟叶堆放中心轴进行堆放,通过射频技术完成对每一个烟叶堆中心轴的温湿度采集,以确定是否存在安全隐患。

2.1模块硬件设计射频传感模块由射频模块(nRF24LE01)、温湿度传感模块(SHT75)及电路组成,分为四个功能模块:微处理器(8051内核)、射频模块(nRF24L01+)、温湿度传感模块(SHT75)和电源管理模块。nRF24LE01提供2.4GHz无线收发模块(nRF24L01+)和微处理器(增强型8051内核)完成数据处理和射频通信,其μm级CMOS工艺满足系统模块设计需要[3]。温湿度传感器采用集成一体化传感器SHT75,相较于其他温度传感器(如DS18B20),该传感器的优势在于具备通过传感标签I/O端口识别传感器功能,在更换传感器是不需要重新定位写入地址[4]。

2.2模块软件构架射频模块nRF24LE01提供了增强型8051单片机完成对温湿度数据的接收和处理后,送入A/D转换模块,完成数据打包,然后经nRF24L01+射频模块完成发送,发射配置流程图如图2所示。模块基于C语言进行模块化软构建开发,射频收发模式采用EnhancedShockBurstTM模式,进行4种工作模式、6种状态的调配,状态图如图3所示。

3阅读器设计

阅读控制器射频模块采用nRF24LE01,与射频传感标签的软构建复用。微处理器选择MSP430F449,MSP430F449提供A/D转换模块,通过SPI串口与nRF24LE01进行信息通信。

3.1阅读控制器的拓扑结构设计大型烟草仓库会有不同类型的烟叶仓库组群而成,且仓库之间、仓库与监控中心之间都有一定的传输距离。为了降低数据传输干扰,提供数据处理效率,系统阅读控制器采用2层网络拓扑结构,如图4所示。

3.2阅读控制器的MultiCeiver模式设计nRF24LE01提供MultiCeiver接收模式,可连接6路独立的并行数据通道,每路数据通道都能够完成增强型shockburst功能,每个数据通道有固定的物理地址,如表1所示[5]。

4温湿度控制平台设计

上位机基于VS平台、C#语言,结合GDI+图像处理功能与数据库管理技术,完成6大功能模块设计,提供实时数据串口通信、监测数据接收、存储,以及温度值超限报警等功能。通信模块:提供串口参数设置及串口通信功能。监测控制:提供监测方式选定(系统提供了测试数据自动定时上传、手动控制上传、预警过渡区上传等方式)、监测方式转换、监测启止控制等功能。显示控制:系统提供监测数据的数据库显示、二维曲线显示、三维曲线显示。该模块提供了不同模式的选择、切换等功能。数据管理:该模块完成上传的监测数据保存和处理,并提供本地报表生成、本地报表上传等功能。预警、报警程序:根据温度预警区间值,提供预警、报警功能。冗余接口模块:该模块基于软构建设计思路,系统采用模块化设计,并预留模块端口提供与烟草系统其他平台和功能模块的通信、升级和移植设计。

5结语

温控技术论文第3篇

1.1RS-485总线RS-485是串行数据接口标准,1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。杨卫中等(2006)[1]开发了基于现场总线的分布式温室自动控制系统,系统硬件由上位机、智能控制器和智能节点3层组成,采用RS-485总线作为层间通信网络。曹洪太等(2006)[2]提出了一种针对温室环境监测的基于WEB的数据采集和信息系统设计方案,从软、硬件的角度介绍了系统的实现方法。硬件系统通过RS-485总线与数字传感器连接,并与具有联网功能的监控计算机构成温室现场监控系统。韩慧(2012)[3]设计了一套能实时控制温室内温度、湿度以及CO2浓度等多参数的温室环境监测系统,由一台PC机与多个下位机组成主从式分布结构,采用RS-485总线通信网络进行数据传输,可实时采集各环境参数值进而进行远程控制。杨靖等(2013)[4]设计了一种基于RS-485总线和短距离无线通信方式相结合的温室环境监控系统;在每个温室内,由无线传感器网络构成一个测量单元(网关节点),各测量单位通过485总线与计算机连接。RS-485接口具有良好的抗干扰性,按其接口组成的半双工网络一般只需二根连线,长的传输距离和多站能力等优点使其成为首选的串行接口,但是RS-485总线的主从和半双工的工作方式难以实现各节点之间的数据交换,且存在效率低、实时性差等问题。

1.2CAN总线CAN总线(ControllerAreaNetwork)即控制器局域网,是国际上应用最广泛的现场总线之一,是一种有效支持分布式控制或实时控制的串行通信网络。胡真明等(2007)[5]设计了基于CAN总线的温室环境单片机测控系统,系统主要由上位机、CAN现场总线、智能测控节点组成,考虑到一般是几栋温室连成一片以及在大型温室里通常都有若干个测控点,基于CAN总线的优越特性、可以将若干个温室的测控点和具有CAN接口的PC机监控站通过CAN总线连在一起。张颖超等(2009)[6]利用CAN总线的特点和性能优势,提出基于CAN总线的温室监测系统的实施方案,采用主从方式,通过CAN总线将每一个独立的监测节点连接起来,实时采集数据传送到上位PC机进行处理;同时自定义了CAN总线通信协议,并给出数据通信流程。为了提高温室控制系统的效率、性能和智能化水平,李晓静等(2010)[7]基于CAN总线,设计了一种结构简单、实用性、可靠性相对较好的温室群控系统设计方案。张丽红等(2011)[8]基于CAN总线设计了温室节水灌溉控制系统,系统能够实现连栋温室内多小区的灌溉自动控制,可集中管理,也可独立控制。相对于RS-485总线,基于CAN总线的分布式控制系统具有以下优势:①工作于多主方式,无主从之分,数据通信实时性强;②节点在错误严重的情况下具有自动关闭输出功能,总线上其他节点的操作不受影响;③通信直接传输距离可达10km/5kbps,挂接设备数达110个;④报文为短帧格式,并具有硬件CRC校验,传输时间短,出错率极低。

2无线通信方式

与有线方式相比,无线通信网络是一种以数据为中心的自组织无线网络,具有可快速临时组网、拓扑结构可动态变化、抗毁性强、无需架设网络基础设施等优点。常用的无线通信方式有ZigBee、蓝牙、WIFI以及GSM/GPRS技术等。

2.1ZigBee技术ZigBee这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。ZigBee是一种新兴的近距离、低复杂度、低功耗、低速率、低成本的无线网络技术,工作在2.4GHz的ISM频段上,符合802.15.4标准,主要用于近距离无线连接。运用这种技术将温室监测系统中的各种电子设备组成一个无线传感器网络,从而方便快捷地对温室环境参数自动监测,这将是温室环境控制的又一突破,具有重大意义。Zhou等(2007)[9]基于ZigBee技术,设计了一个温室监控系统,温室内传感器使用星形拓扑结构,而温室与管理系统之间使用网络拓扑结构。针对温室布线复杂、扩展性差、维护困难等缺点,江儒秀等(2008)[10]提出基于ZigBee无线通信技术的温室环境群控的解决方案,采用JN5121-DKl03模块设计了基于ZigBee树型网络拓扑结构的分布式温室群控系统,并介绍了整个系统的设计方法。Hwang等(2010)[11]利用无线传感器网络组建立了三层温室红辣椒管理系统,传感器、监控相机等数据采集为物理层,传感器管理、数据库服务等为中间层,WEB应用、PDA应用等为应用层。传感器包含环境传感器和生长传感器,环境传感器用于采集植物生长的环境信息,如照度、温度、湿度、风向、风速、CO2浓度、营养液EC、pH等;生长传感器用于测量叶温、茎秆直径、植株高度、体积等的变化。Park等(2011)[12]开发了基于ZigBee的温室测控系统,采集的环境参数包括作物叶片温湿度、环境温湿度和露点测控系统,所有测量数据存储于数据库服务器,并为远程用户提供查询服务。Fukatsu等(2011)[13]采用智能体(Agent)技术实现无线网络节点与Internet的连接,并开发了基于WEB的农田信息监控管理系统。陈勇等(2012)[14]提出了一种基于物联网的农业灌溉监控系统,采用ZigBee无线通信技术实现对地表下植物根部深度土壤含水率进行立体监测。应用ZigBee技术,可以通过无线传输方式实现每个节点温室环境控制器与管控计算机的组网和灵活的网络数据传输,提高了温室群控系统的可靠性和灵活性,并大幅度降低了成本。

2.2蓝牙通信技术蓝牙(Bluetooth)技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,使各种设备在无线连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,而且不容易受到外界干扰源的影响。杜辉等(2005)[15]将蓝牙无线通信技术和现场总线技术相结合用于温室群控,环境传感器与温室现场控制器之间通信采用蓝牙技术,而温室现场控制器与中央监控计算机的通信使用CAN总线的方式,以提高系统的可靠性、抗干扰性以及灵活性;并以蓝牙芯片EricssonROK101007和CAN总线为例,阐述了基于蓝牙技术的分布式温室气候监控系统的硬件与软件设计方法。Kim等(2008)[16]利用无线传感器技术设计了一个定点精准线性移动灌溉系统,该系统采用蓝牙技术实现无线传感器网络与基站的通信,并利用GPS技术定位灌溉点。黄晓鹏等(2008)[17]设计一种基于DSP和蓝牙无线传输技术的分布式沼气加热温室控制系统,环境传感器与现场控制器的通信采用了蓝牙技术,采用的DSP处理芯片具有CAN总线功能,克服了温室内部管道和线缆布置复杂以及线缆容易老化、损坏的缺点。贾海政等(2009)[18]基于蓝牙技术设计了一套温室温度自动检控系统,测温点与执行机构(加热器、通风窗)实现无线连接,系统根据作物不同时期对温度的需求,将温度控制在适合作物生长的最适宜温度区,使作物快速、高效生长,提高经济效益。

2.3无线WIFI技术/无线局域网WLANWIFI(WirelessFidelity)网络,符合IEEE/802.11b协议,是由AP(AccessPoint)和无线网卡组成的无线网络,组网方式较为简单,主要优点是无线接入、高速传输以及传输距离远。为管理一组温室,Serodio等(2001)[19]开发了一个分布式数据采集和控制系统,并将多种技术用于数据通信。在每个温室内,底层传感器与控制器的连接采用频率为433.92MHz的无线局域网(wirelesslocalareanetwork,WLAN)。Mizunuma等(2003)[20]开发了一个可以在大田和温室使用的基于WLAN技术的作物生长监测系统,并实现了远程控制,他们认为远程控制策略可以极大提高产量和降低劳动量。马增炜等(2011)[21]设计了一套以集成了WIFI功能和ARM内核的智能温室环境控制系统,实现了通过无线网络对智能温室内温湿度、光照和CO2浓度的采集、汇总、显示和记录。Otoniel等(2012)[22]提出了一种自动监测系统,基于一个低成本WIFI技术的图像传感器,周期性的捕捉和发送农田作物的病虫害信息到远程控制站。温室监控系统充分利用现有普及的WIFI网络资源,有效地提高了无线网络的通信距离和覆盖面积,具有成本低、普及性好、兼容性强、传输带宽、传输速度快、标准化等优点。

2.4GPRS/GSM通信技术GPRS(GeneralPacketRadioService,通用分组无线服务)是一种分组数据承载业务,具有实时在线、按量计费、快捷登录、高速传输、无距离限制等优点,广泛应用在手持式仪器设备、农业物联网等领域。Mancuso等(2006)[23]在一个番茄温室中设计了一个监控系统,采用无线传感器网络对空气温度、相对湿度、土壤温度等进行测量;并开发了一个基于WEB技术的植物监控应用。当测量快速变化时,报警信息就会通过短消息服务(SMS)或GPRS方式发送到温室管理者手机中。孙忠富等(2006)[24]针对农业对象具有的多样性、多变性、以及偏僻分散等特点,提出了一种基于GPRS和WEB技术的远程数据采集和信息系统方案,将485总线与数字传感器连接,并与监控计算机构成温室现场监控系统,利用GPRS无线通信技术建立现场监控系统与互联网的连接,将实时采集信息发送到WEB数据服务器。李莉等(2009)[25]设计一种结合嵌入式技术、无线传感器网络技术的温室环境信息采集与监测的系统,系统控制终端基于ARM9和嵌入式Linux操作系统进行设计,用于温室环境数据的接收、实时显示和存储,通过GPRS方式实现与远程管理中心的通信。张西良等(2010)[26]构建了三层次无线传感器网络系统,将短距离无线传感器网络通信技术与远程GSM网络技术相结合,以实现无线传感器节点和远程管理计算机之间信息高效无线传输。Antonio等(2011)[27]提出了一个基于无线传感器网络技术的农田信息的数据采集系统,该检测系统由GPRS网络与集成检测电路构成,通过传感器和GPRS通信模块实现数据采集和传输,满足了作物信息实时获取的要求。GPRS通信方式适合远距离并且不具备有线网络的情况下的数据传输,采用包交换的优点是在有数据需要传送时才会占用频宽,而且可以以传输的数据量计价,这对用户来说是比较合理的计费方式。

3常用通信技术比较

上述6种作为温室监控系统常用的通信方式各有特点,在不同的应用场景下可以发挥各自优势,扬长避短,也可以将这6种通信方式进行组合,达到高效、远程传输的目的。常见的是适合近距离的通信方式和远距离传输的GSM/GPRS结合,刘士敏等(2013)[28]设计了针对温室大棚中温湿度、CO2浓度、光照强度和土壤温度等参数的无线实时监控系统,采用WIFI技术的无线传感器网络对环境参数进行采集,当超过预先设定的阈值时,可以通过蜂鸣器报警和GSM短信息报警。李颖慧等(2013)[29]设计了基于ZigBee的营养液电导率实时测量自组织网络,同时系统集成了GPRS模块,实现了营养液电导率与温度信息的远程传输与监控等功能。有线通信具有高可靠性、速度快、稳定等优点,但布线繁琐、成本较高。无线通信方式具有设备移动性好、不需或只需少量布线的优点,但存在易受环境影响和延迟较大的不足。从发展角度而言,WIFI网络因具有带宽较宽、传输速度快、兼容能力强、抗干扰能力强等优点[30],将会成为设施农业温室监控系统重要的信息传输方式,也将是温室信息传输技术的重要研究方向。

4结语

温控技术论文第4篇

(一)具有较广的使用范围

外保温可以适用的建筑非常的广泛,例如会用到采暖和空调的工业与民用建筑都可以运用,它不仅仅能够用于新建工程,还可以用于旧房的改造,可适用范围非常广泛。

(二)利用外保温有助于保护建筑物的主体结构,达到延长建筑寿命的效果

外墙外保温因为其位于建筑物的围护结构的外侧,因此可以有效的对因温度变化而引起的结构变形所产生的应力进行缓冲,还能够有效的对雨、雪、冻融、干、湿循环等对建筑物的结构所造成的破坏进行规避。同时还可以对大气中的有害气体与紫外线进行一定程度的阻隔,从而较少对围护结构所造成的侵蚀。实践证明,墙体与屋面保温隔热材料的选材只要合适,厚度合理,那么通过外保温来有效的防止并减少建筑墙体与屋面因为温度所引起的变形,进而有效的消除顶层横墙常见的斜裂缝或者八字裂缝。因此,通过合理的外保温措施不仅仅是能够减少温度变化对维护结构所带来的应力,同时还能够对建筑主体结构进行保护,有效的提高建筑主体的耐久性。

(三)可以有效的消除“热桥”所带来的各种影响

与内保温相比,外保温的方式将能够更加有效的避免“热桥”,例如利用外保温可以有效的避免在内外墙交界部位、外墙圈梁、构造柱、框架梁、柱、门窗洞口等各处所产生的“热桥”。有统计显示,底层房间所产生的“热桥”其所附加的热负荷占总热负荷的大约23.7%,而处于中间层与顶层的房间则分别是21.7%与24.3%。从这些数据中能看出“热桥”所产生的热负荷的影响比较大。但是如果采用的是内保温或者是夹心保温都很难避免这些“热桥”,而如果是采用的外保温则不仅仅可以有效的防止“热桥”部位产生的结露,同时还能够有效的消除因“热桥”所产生的附加热损失。

(四)能够有效的改善墙体潮湿的情况

通常情况下,内保温都必须要设置隔汽层,而如果是采用的外保温,主体结构材料处于保温层的内测,利用稳态传湿理论进行冷凝分析可以知道,只要保温层所采用的保温材料适当,那么墙体内部通常都是不会发生冷凝现象的,那么也就不用设置隔汽层了。采用外保温措施,可以使得结构层的整个墙身的温度都提高,从而能够降低含湿量,进一步的改善墙体的保温性能。

二、外保温墙面的施工技术要点

(一)施工条件选择

施公前必须要对基层墙体进行验收,只有合格的才可以进行施工,对于旧墙就必须要先对墙面进行必要的处理。如果墙面有水,则不能够直接施工,外部环境如果气温低于5℃,或者是风力超过五级、雨天,这些条件都不能够施工。施工前必须要保证门窗或辅框已安装完毕,其他必要的各种与外墙相关的管线、预埋件、支架等都必须已经安装到位,同时还必须要预留出外保温的余地。外脚手架的拉结已移到门窗洞口处。

(二)施工工艺流程

整个施工工艺流程为:对基层墙体进行清理——对墙体基层界面进行拉毛——吊垂直、套方、弹控制线、冲筋——抹保温浆料——固定四角网——抹抗裂砂浆——外墙粘贴面砖——勾缝。

(三)基层墙体清理

对在施工时墙面遗留下来的各种杂物以及其他干扰物进行清理,例如钢筋头、废模板、各种施工孔洞,墙面的浮灰、油污等等。而对于旧墙面,如果出现了松动或风化的地方,则一定要将这些部分剔除干净。当墙表面凸起墙面大于或等于10cm时应剔除。

(四)墙体基层界面拉毛

对于混凝土以及砌体表面,比要要用相应的界面材料,用按照相关规定中的比例调好的砂浆进行后滚、刷墙、柱面。拉毛作业条件:主体结构工程已经全部完成,并且已经经过验收达到合格标准的;装修外架子必须根据拉毛施工的需要调整好步数及高度,严禁在墙面上预留脚手眼及施工孔洞;常温施工时墙面必须提前浇水,并清理好墙面的尘土及污垢;抹灰前门窗框应提前装好,并检查安装位置及安装牢固程度,符合要求后,用1∶3水泥砂浆将门窗与墙体连接的缝隙塞实、堵严,如果缝隙较大,就应该在砂浆中掺入少量的麻刀进行嵌塞密实。对于那些铝合金门窗与墙体进行连接的缝隙必须要按照设计要求进行嵌填;那些预制混凝土外墙板的接缝处,必须要提前进行处理,同时还必须要对空腔进行检查,看是否畅通。当缝勾好后就进行淋水实验,如果没有出现渗漏现象,那么就可以进行下道工序。在对缺棱掉角的加气混凝土进行处理时,要先洇湿基层的表面,然后刷掺用水量10%的107胶水泥浆一道,接着就跟着抹1∶1∶6混合砂浆,每一层的厚度都应该控制在5~7mm。在拉毛灰大面积施工前,必须要先做好一个样板,当样板鉴定合格并确定了施工方法后,再组织施工。对于那些高层建筑则应该用经纬仪在大角两侧、门窗洞口两边、阳台两侧等部位打出垂直线,并做好灰饼;多层建筑可用特制的大线坠从顶层开始,在大角两侧、门窗洞口两侧、阳台两侧吊出垂直线,做好灰饼。这些灰饼即为以后抹灰层的依据。操作工艺流程:工艺流程:根据灰饼充筋→装档抹底层砂浆→养护→弹线、分格→粘分格条→抹拉毛灰→拉毛→起分格条→勾缝→养护→质量检查

(五)吊垂直、套方、弹控制线、冲筋

根据保温设计规定的厚度,在建筑顶部墙面的大角处固定好钢线,吊垂直。然后根据垂直来控制通线做垂直方向的灰饼,然后根据两垂直方向灰饼之间的通线来做保温层厚度灰饼,每个灰饼之间的距离(横、竖、斜向)都不应该2m。灰饼的质量要求、方法同一般的外墙面冲筋。

(六)抹保温浆料

保温浆料必须要指定专门的人来根据规定的材料配合比利用机械来进行搅拌,加水量则应该根据当时的实际气候条件进行调整,搅拌的时间一定要超过3分钟,对于已经拌制好的浆料必须在4小时内使用完,对于落地灰如果处于4个小时之内,就可以重新拌制使用,而如果是超过4小时则不能够再次使用。而在进行施工的过程中,则不能够再次向保温浆料加水搅拌。保温层砂浆要进行分层涂抹,每一次的厚度在20mm左右,涂抹时不宜来回拉抹,对于阴角部位,从外向内抹,打鱼鳞状底糙,分层抹保温浆料的间隔时间应该在24小时以上,且表面用手按不动。再进行下一次抹浆时,表面要用铝合金的刮尺初步刮平,再用木抹子搓平。平整度用2m长靠尺检查,控制在4mm以内。

(七)固定四角网

在保温层上全面铺盖的四角网需用塑料胀栓进行锚固。对于塑料胀栓的数量则是每平方米都不能够少于8个。四角网在转角处50㎝范围内都不能够搭接,其他地方的搭接宽度则应该大于等于4㎝,同时还必须要注意每块四角网的长度不得大于3米。

(八)抹抗裂砂浆

抗裂砂浆与保温浆料相同都应该制定专人按照规定进行搅拌,用砂浆机或者是搅拌器进行搅拌,搅拌时必须采用砂浆机或搅拌器,必须要严格禁止采用人工搅拌,与保温浆料相同也不能够在拌制好的抗裂砂浆中掺水。对于已经拌制好的抗裂砂浆则一定要在两小时内使用完。在进行抹料时要求必须要上杠找平,对于那些不合适的地方则要用木抹子搓平,必须要达到要求的强度时才能够进行下一道工序。在施工抗裂砂浆前也必须要先进行相关方面的验收合格后才可进行。必须要注意的是在国内干拌好的抗裂砂浆料有可能因为水泥过期使得强度降低,有时表面易起粉,贴面砖时会出现脱落的现象。对抗裂砂浆应该要分两次进行施工,这样做可以保证四角网在抗裂砂浆中的位置是正确的。

(九)外墙粘贴面砖、勾缝

采用该体系提供的瓷砖粘结剂和勾缝胶粉进行施工。施工方法及要求同一般的外墙面贴面,值得注意的是利用瓷砖粘结剂粘贴瓷砖有一定的下滑现象。应注意粘结剂不能厚。对勾缝要求饱满,以防渗漏分层。在进行面砖粘帖时,外墙饰面砖施工前应按规定进行粘贴强度试验,并在铺贴饰面砖后(勾缝前)抽样做粘贴强度检验。外墙饰面砖的粘结层应采用非憎水性水泥防水砂浆或其他具有粘结强度保证的特种砂浆;不得采用有机物作为主要粘结材料,粘结层厚度宜为4~8mm。找平层、氯丁胶防水砂浆防水层应预先淋透水湿润,让表面无明水;面砖提前浸水2小时以上并洗净浮尘,表面晾干后待用。粘贴应分片分块进行,每一分格内的粘贴顺序为从上至下,粘贴灰浆为水泥膏或1:2细砂浆(砂要预先过筛),厚度为4-8毫米,充满面砖背面;面砖贴上墙后要用灰匙木柄轻轻敲击砖面,使灰浆液化,同时另手压紧砖面并上、下、左、右将其推动,使砖就位并粘紧墙面;贴到一定面积后要用靠尺检查面砖平整度,拉线检查砖缝平直度。女儿墙或拦板压顶、窗台、腰线等细部贴面砖时,应使顶面面砖压立面面砖的做法,以免向内渗水而引起空鼓;同时表面应按规定做好斜水;窗台外侧饰面层的最高点应比内窗台低不小于10mm,且应向外排水,坡度不小于20%;饰面层与窗框下横档接缝处应留凹槽并嵌填密封材料。门窗框外侧与防水砂浆及饰面层接缝处应留宽8~10mm的凹槽,并嵌填高弹性耐候密封胶。勾缝时,缝用高弹性密封材料嵌填缝;如设计有说明时应按设计要求处理,,竖缝不填缝,横缝用1:1氯丁胶乳防水泥砂浆勾半缝。面砖抽样做粘结强度抽样检验后,可进行勾缝。事先要将贴面砖时挤出的灰浆疙瘩清除,将缝洁净并湿润,然后用高弹性密封材料勾缝。勾水平缝顺序是先上后下,勾好后应密实,表面光滑均匀,颜色一致(要用同一牌号水泥),凹入砖面2-3mm。勾缝质量的好坏,与墙面的防水性能和观感效果有很大的关系,必须仔细操作。当所有施工工序都完成后需要由专门的部门进行质量验收。

温控技术论文第5篇

对其他技术评价和控制思想的批判:温纳技术评价和控制思想独特性的彰显

温纳的技术评价和控制思想同时也建立在对其他流派思想认真反思的基础上。在这一过程中,温纳事实上重申了技术自主性和技术政治性思想的立场,或者说,以此为思想基础而彰显了其思想的独特性。1.对“适当技术”(appropriatetechnology)观念的批判“适当技术”的思想渊源可以追溯到工业批判、现代化批判思想,它主张通过技术改造使技术更适合人的维度。“‘适当技术’如何说服那些曾经致力于技术和经济实践传统形式的研究的人们的?回答是:给他们更优秀的产品。”[为此,“适当技术”思想提出了许多技术创新的标准,如软技术必须符合生态环境,能源必须是再生资源,技术应该与当地文化、民主政治相容等。“适当技术”和“软技术”虽然表明人们对技术后果的广泛关注,但温纳认为,“西方哲学或人类的任何经验都无法显示能用简单的列表来安排善恶”[3](72)。这不仅是因为有些标准是不可行的,而且那一系列作为善的技术标准之间也是相互矛盾的,人们最终对“什么是适当的”无法达成一致意见。同时,温纳通过技术自主性和内在地具有政治性的技术批判“适当技术”观念,他认为,“适当技术”即便在技术改造中考虑了政治因素,其考虑也是不彻底的,因为它没有注意到技术的隐形、内在的社会结构,忽略了有些技术是缺乏改造的灵活性问题。2.对“技术评估”思想的批判温纳揭示“技术风险评估”的保守性特性,他认为“它最终的结果是以维持免受社会限制的工业社会现状的方式,同时延误、复杂化或模糊当前面临的问题”[4](139)。“技术评估”忽略了文化、人性方面的价值,只关心技术对人的健康、安全、环境等的影响。而且其最根本的缺陷在于把技术的副作用看做是第二位的,并认为这些副作用并不一定与正在讨论的技术本身有必然的联系,且副作用可以被消除而技术本身可以完整保留。温纳特别指出这种方法只是处理了“症状而未涉及其根源”[5](11)。而由于技术自主性的特性,许多技术后果是技术本身运行的内在要求,是技术与生俱来的。3.对人文主义技术哲学家“新伦理”的批判人文主义哲学家总是提倡在意识领域内进行一次广泛的革命,进而在技术实践中采纳“新伦理”。温纳认为“新伦理”的致命缺陷在于“它们前进,好像整个工程是一个哲学工程———解决问题的特殊方法。但在阐明关于人、自然和存在的问题上,世界将不是一系列的难题,而是如果有区别的话,是一系列的疑问”[1](133)。人们对“新伦理”的价值原则本身很难形成共同的、确定的判断,从而最终也无法用“新伦理”来改造技术。在对“技术评估”、“适当技术”和人文主义技术哲学三者的批判中,温纳认为人文主义技术哲学比前两者更加深刻。“技术评估”、“适当技术”思想作为功利主义多元论的方法,主张人们需要一系列的规范、标准以及执行人员来最大限度地实现技术的有益影响,限制不良后果。政治也被认为是规定、执行这些规范的过程。人文主义技术哲学的价值则基于对技术本身作为建立规则的力量而存在的认识上,从而与温纳的理论旨趣不谋而合。但与人文主义技术哲学有所不同的是,温纳力图克服关于人性、文化以及形而上学的种种假设,把技术认识、技术评价和控制建立在对技术现象进行直接的政治分析基础上。其结果是,技术作为一种特殊的政治存在,不仅其政治性是技术评价的重要标准,而且技术本身也自然地进入政治所要引导和控制的领域。在一定意义上,对技术所做的政治控制也是对我们社会本身所做的政治引导。

从抽象向现实的回归:温纳关于技术评价和控制的主张

在技术自主性思想框架内,认识技术的政治性是否意味着否定了技术控制的可能呢?①温纳认,为在技术决定论和人类选择自由之间存在着一定的张力,技术和人也在相互塑造之中。由此,温纳从对技术的抽象的哲学关注和对他人的单纯批判转而关注现实的技术评价和控制问题,并提出了具体的主张。1.“有必要寻找新的技术形式。”[1](136)温纳对新技术形式的描述充分体现了技术评价的政治标准,对技术的选择和控制方式则体现了技术自主性思想。他明确表示,许多现代技术的政治影响与流行的民主—自由理想形成了公然的对立。因此,温纳提出应该用民主政治的智慧来引导技术,同时人们必须寻找与自由、公正以及与其他政治理想相符的新的技术形式。如果人们一旦面临一种内在隐含着政治特征的、非友善的技术,那么应该把这样的技术从我们的社会排除出去。温纳甚至认为:“说‘不’是参与技术(变革)的完全有效的方法。”[在现实中,温纳的这一观点在注重高效率和经济利益的现代社会中似乎缺乏可行性。2.技术形式的选择和设计过程要求公众的直接参与。温纳认为,与技术选择相关的技术评价和道德的培养必须源于特定环境中的社会群体间的对话。他注意到在现实中,“关于技术选择的大众讨论的情况在明显恶化。民主进程和专业知识相互交叉寻找共同目标的场合也在逐渐减少”[7]。因此,对技术决策来说,目前的挑战是怎样使大众早日参与技术决策中的问题,而不再简单的是关于评价标准的讨论问题。[8]温纳特别推崇北欧“协商会议”、“剧情讨论会”②这两种技术选择中的民主参与形式,但他自己并没有提出具体的制度设想。在此,温纳从对技术政治性的认识跨越到对技术进行政治引导的领域。不仅需要与民主、自由、公正相符的技术,也需要对技术进行民主选择。3.人们要培养关于“什么是适当的”认识能力,并用它来引导技术。温纳认为:“技术变革应该由社会公正、心理和谐、个人尊严所引导,而不是由无限的对效率和利益的追求所引导。”[9]而现代人缺乏的正是这样一种意识。温纳对公众意识的潜力始终抱有乐观的态度,他认为,如果人们能够意识到那些与技术和社会的相互影响有关的选择的重要性,并明确说出可替代的选择,那么历史将会有令人吃惊的转折。他不仅从理论上,而且也以更多的现实案例来印证自己的理论。温纳列举了很多历史事件,如1986年的雷克雅未克的高级会议不顾那些顾问们失望而不得不销毁炸弹和导弹,以及始于20世纪70年代的反原子弹的运动都证明了公众意识的力量。

温控技术论文第6篇

关键词:测控技术;温度;智能测控系统

引言

物体的许多物理现象和化学性质都与温度有关,温度是工农业生产、科学实验研究以及日常生活中需要普遍进行测量和控制的一个非常重要的物理量,如:在冶金、石油化工、机械、电力等工业生产中的温度控制;在蔬果大棚、温室花房、粮仓等农业生产中的温度测控;高等院校实验室微机测控系统中将温度作为被测参数,供学生做综合实验、实训或课程设计等。温度控制对于小到人民的日常生活、大到钢铁等大型工业生产工程都具有广阔的应用前景。准确地测量和有效地控制温度是优质、高产、低耗和安全生产的重要条件,所以对温度进行控制是非常必要且有意义的。

1. 现代测控技术的特点

1.1 网络化

Internet 为代表的计算机信息网络的快速发展和技术的逐渐完善,突破了地域和事件上的限制,使现代测控技术得到很大的进步。现代测控技术具有网络化的特点,测控技术与网络技术的结合,使组建网络化、分布式的测控系统变得十分方便快捷。随着现代网络信息技术的迅猛发展及许多相关技术的不断完善,网络信息系统的规模得到越来越快的壮大。现代测控技术的广泛应用,使得国防、通信、气象和航空航天等领域也得到广泛、有效的运用。

1.2 智能化

现代测控系统中所应用的设备都是智能化的,具有方便灵活、快捷、功能多样等特点,使得现代测控技术得到很大的提高。随着人工智能技术的不断引进和发展以及微电子技术的发展,智能化的仪器设备越来越高科化,其计算方法和计算能力都得到很大的加强和提高。

1.3 数字化

数字化的测控特点在现代测控技术中起着非常重要的作用。数字化在测控领域中的主要应用体现在多个方面:传感器的数字化控制,控制器到远程终端设备的数字化控制,信号处理、通信等过程的数字化控制等。

1.4 分布式化

现代测控技术设备可以分布设在多个地方,可以有效地检测出最符合和最需要仪器设备的地方。分布式化测控技术是以网络技术和微型计算机术为基础的, 采用将系统内所使用设备分布式地连接起来,组合成为最符合要求的分布式测系统。在仪器设备生产过程的控制过程中,分布式的测控系统可以实现测量―控制―管理的全自动化,能够在很大程度上降低测控成本,提高测控效率。分布式测试系统有许多优点:安全可靠,某一部分出现故障不会影响其他部分系统的正常运作;可以不断开发增加新的功能模板或者是新的接口,加强系统功能;采用并行处理,运行速度相当快速;使用方式灵活,可以单模块系统,也可以多模块系统组网等。

2. 温度测控系统控制方案

温度测控系统常用的控制方案有以下三类经典控制方案、基于现代控制理论的设计方案和智能控制方案。

2.1经典控制方案

经典控制方案采用常规气动、液动和电动仪表,对生产过程中的温度、流量、压力和液位等进行控制,控制系统以单回路结构、PID 策略为主,同时针对不同的对象和要求,设计了一些专门的控制算法,如根轨迹法、模型跟踪法、达林算法和 Smith预估器算法等。经典控制方案能较好地解决生产过程中单输入单输出的问题,主要用于线性定常系统,是目前工业过程控制领域中占统治地位的一种控制方案。

2.2基于现代控制理论的设计方案

现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础来分析和设计控制系统。此类设计方案主要有:最优控制、系统辨识、自校正控制等。这类设计方案适用范围广,适合于多输入多输出系统、某些非线性时变系统和一些具有随机扰动的系统。该方法优点是理论严谨,控制品质较好。缺点是需要知道被控对象确定的数学模型,对于许多结构复杂,随机干扰因素多而不易获取对象模型的系统,此方法的使用受到限制。

2.3智能控制方案

智能控制方案无需人的干预就能够针对控制对象的状态自动地调节控制规律以实现控制目标。智能控制避开了建立精确的数学模型和用常规控制理论进行定量计算与分析的困难性,是一种无模型控制方案,具有判断决策、信息处理、非线性、自寻优、变结构等特点及能力,适用于含有复杂性、不完全性、模糊性、不确定性和不存在已知算法的生产过程。

总结

现代测控技术是现代工业技术中的重要支柱,现代测控技术的迅猛发展可以为整个社会技术的进步和产业的升级起到改造和推动提升的巨大作用,越来越多的创新、高科技测控自动化的成果得到广泛应用。现代测控技术的未来发展将朝着智能化、标准化、系统化及系统功能的综合性等趋势发展,并更加标准化、开放化和全球化推动技术水平的提高。随着对生产效率的要求不断提高,对温度检测的要求也越来越高,融合现代检测技术和控制理论的智能检测是当今温度检测的一大趋势,研究和开发适用场合多样化、测温对象多样化、检测设备数字化以及检测元件新型化的测温仪表是国内外测温仪表研究的重点。

参考文献

[1] 刘志刚.现代测控技术的发展及其应用析[J].机电信息,2012(12):120-121.

[2]李欣国.浅谈现代测控技术及其应用[J].中小企业管理与科技,2010(16):247.

[3] 孙亮.现代测控技术的发展及应用[J].电子质量,2006(10):3-5.

[4] 吕辉.现代测控技术[M].西安电子科技大学出版社,2006,5.

[5]姜忠良,陈秀云.温度的测量与控制[M].北京:清华出版社,2005.

[6]覃强.模糊 PID 温度控制方案的仿真优选及其实现[硕士论文].北京:中国科学院电工研究所,2002.

[7]吴为民,王仁丽.温度控制系统的发展概况[J].工业炉,2002,24(20):18-20.

[8]冯勇.现代计算机控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.

作者简介:

温控技术论文第7篇

[关键词]智能 温度 控制系统

中图分类号:TV544 文献标识码:A 文章编号:1009-914X(2017)04-0128-01

一、引言

智能温度控制系统的总体设计是围绕低成本,模块化,可扩展以及寿命长的特点展开的,在硬件选择方面,选择性价比高的STCl2C5410AD单片机,LM358型放大器,LED显示器,采用低压差线性电压稳压器,较高内阻的毫Υ感器;在软件方面,采用了功能模块化,为以后的升级或者扩展做准备,同时采用间歇式的工作模式,非采样期间只有显示器,稳压器等处于活动状态;在保证性能要求的情况下缩短A/D转换的时间等一系列措施,有效的提高了器件寿命.为了降低整个系统的成本,在满足性能要求的前提下,选择低成本元器件,简化系统设计;采用多点校准技术和线性插值方法,降低了对传感器的线性的要求,扩大了可选传感器的范围,提高了产品的通用性和可扩展性,提高了产品的竞争力。

二、国内外发展现状

1、国外发展现状。国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。990年代中期,智能温控仪问世,它是微电子技术、计算机技术和自动测试技术的结晶。目前,国际上已开发出多种智能温控器系列产品。智能温控器内部都包含温度传感器、A/D转换器、信号处理器和接口电路。有的产品还有多路选择器、中央控制器(CPU)、随机存储器(RAM)和只读存储器(ROM)。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。

2、国内发展现状。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。

总的来说,温控器被广泛应用于工农业生产、科学研究和生活等领域,数量日渐上升。近百年来,温控器的发展大致经历了三个阶段:1.模拟温度控制器;2.集成温度控制器;3.能温度控制器,目前,国际上新型温控器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。

三、智能温度控制法的研究

1971年,著名的美籍华裔科学家傅京孙教授最早公开指出了一个崭新的研究领域,并提出了相应的概念,这就是智能控制系统(Intelligent Control Systems)。

1985年8月,IEEE在美国纽约召开了第一界智能控制学术讨论会,智能控制原理和智能控制系统结构这一提法成为这次会议的主要议题。这次会议决定,在IEEE控制系统学会下设立一个IEEE智能控制专业委员会。这标志着智能控制这一新兴学科研究领域的正式诞生。智能控制作为一门独立的学科,已正式在国际上建立起来。在过去的20多年里,智能控制理论发展迅猛,出现了大量新颖的控制理论。

温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。

智能控制系统是某些具有仿人智能的工程控制和信息处理系统,它与人工智能的发展紧密联系。智能控制是一门新兴的交叉前沿学科,它具有非常广泛的应用领域。智能可定义为:能有效的获取、传递、处理、再生和利用信息,从而在任意给定的环境下成功的达到目的的能力。人工智能是应用除了数学式子以外的方法把人们的思维过程模型化,并利用计算机来模仿人的智能的学科。它的应用范围远比控制理论广泛,如包括判断、理解、推理、预测、识别、规划、决策、学习和问题求解等,是高度脑力行为和体力行为的综合。智能控制就是应用人工智能的理论与技术和运筹学的优化方法,并将其同控制理论方法与技术相结将智能控制与PID控制相结合,实现温度的智能控制。智能控温法采用神经元网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。其中应用较多的有模糊控制、神经网络控制以及专家系统等。尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。目前已出现一种高精度模糊控制器,可以更好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。

目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别.主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度低,自适应性较差。这种不足的原因是多方面造成的,如针对不同的温控对象,由于控制算法的不足而导致控制精度不稳定等。

四、结语

近年来,温度的控制在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。

参考文献

[1] 王永骥,王金城,王敏.自动控制原理[M].二版.北京:化学工业出版社,2010.

[2] 易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2010.