欢迎来到优发表网,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

欧姆定律的实质(合集7篇)

时间:2023-11-10 11:05:27

欧姆定律的实质第1篇

欧姆定律是电学中的基本定律,是进一步学习电学知识和分析电路的基础.欧姆定律中电流、电压、电阻三者之间的定量关系是本章的核心.教材中安排了7个活动,其中探究电流大小与哪些因素有关、探究电流与电压(或电阻)的关系、伏安法测电阻、串联电路总电阻与各电阻的关系等实验是本章的重点活动,这些活动能充分展示物理实验的研究方法及规律,能充分培养学生实验探究的能力.

教材编排上充分体现了实验的探究过程,从小明和小华想设计一盏调光灯为探索背景,以任务驱动的方式将探究问题引向深入,本章紧紧围绕这个中心任务,在引导学生自主学习的过程中,让学生充分体验发现问题、提出问题、研究问题、总结规律、拓展应用、解决问题的乐趣,体会做中学,学中做,既动脑又动手,在潜移默化中感知科学研究的一般方式,接受人类研究自然、寻求真理、不断追求等崇高思想的熏陶.

下面我们一起分析两个实验探究题,来进一步体会实验探究的思路和方法.

例1(原创)小明是一个爱动脑筋的学生,最近学习了电路的初步知识,对电学现象兴趣浓厚.周日,他到住在老城区的奶奶家做客.晚上,他在房间里做作业,对房间里一只60 W的白炽灯发生了兴趣.他观察到:晚上7、8点钟时,灯不是很亮,但到了夜里11、12点钟时,灯显得特别亮.小明想:灯越亮,表明通过灯丝的电流越大.那么,灯丝中的电流大小又取决于什么呢?请你和小明一起探究“电路中电流大小与哪些因素有关?”

(1)小明根据平时对电学实验的观察,提出的猜想是:电流大小与电路两端的电压有关.你的猜想是:电流大小与_______有关.

(2)根据你已有的知识和经验,说说小明猜想的依据是_______.

(3)小明决定用实验来验证他的猜想,请你和他一起完成下列任务:

①所选用的实验器材有:_______;

②实验电路图:

③小明设计了一个实验表格来收集实验中观察到的实验现象,你认为此表格存在的缺陷是_______.

④根据实验数据,分析此次实验结论:_______.

(4)通过实验探究,小明知道了电路中电流大小与_______及_______两个因素有关.他又产生了新的疑问:家庭电路的电压是220 V,而灯泡灯丝的电阻也不变化,那为什么夜里灯比晚上时要亮呢?小明又开始了新的探究之路.

(5)小明在上面的实验中经历了哪些探究过程?请你选出并将相应的字母填入空格中.

___________________________________.

(A.评估、B.猜想与假设、C. 提出问题、D.进行实验和收集数据、E.设计实验、F.交流与合作、G.分析结论)

新课程标准中,要求培养学生科学探究的初步能力,科学探究过程中,要求学生能“提出问题、进行猜想与假设、制定计划和设计实验、进行实验和收集证据、分析与论证、评估、交流与合作”.在上题中,小明从日常生活中感兴趣的现象选取了一个改变电流大小因素的问题进行探究,从提出问题,并根据已有的知识和经验进行猜想与假设,制定实验计划并进行实验,根据实验现象分析结论.最后还提出新的疑问.

分析与解答(1)在许多学生实验中,能观察到电灯亮度变化的原因,有的是电池节数变化,有的是两个灯串联,降低了灯的亮度,所以电流变化受电压电阻的影响不难理解.也可用水流来类比电流,分析影响水流大小的因素同样也能分析出来.第一空填“导体的电阻”.

(2)小灯泡接在两节电池间时比接在一节电池间亮.

(3)①两节干电池、开关、导线、小灯泡、电压表、电流表.

②电路图如图1所示.

③缺电流表示数这一列.

④若前后两次电流相等,则电流大小与电压无关;若前后两次电流不等,则电流大小与电压有关.

(4)电路两端电压,导体的电阻.

(5)根据前面分析,可得:CBEDG.

例2(原创)小明在探究影响导体电阻大小的因素的活动后,想到盐水也能导电,他猜想盐水导电性可能与哪些因素有关.于是和同学们设计了如下实验:他们连接了如图2所示的电路,他们用两块表面平整大小相同的金属板正对着平行地插入盐水中,并将金属板连入电路.请你帮他们完成下列探究过程.

(1)小明在实验探究前先提出了假设,猜想影响两金属板间盐水电阻大小的因素可能有:①_______;②_______;③_______;④_______.

(2)小明根据和同学们的交流和筛选,决定探究从猜想中选出的四个影响因素.他在设计实验时思考了以下问题:

①实验中,如何将盐水电阻大小“显示”出来?

②如果影响电阻大小的因素有多个,如果只研究其中的一个因素是否影响了电阻的大小以及影响的程度?

③为此,除了装置图中出现的器材外,你还需要哪些器材?

(3)小明和同学们分别进行实验验证,小明想验证盐水电阻大小与两金属板间的距离是否有关,请你帮他写出实验操作及分析过程.

(4)小明他们将实验结果记录在下表中:

①比较_______两次实验数据可知:金属板间盐水电阻大小与盐水的浓度有关.

②比较2、3两次实验数据可知:_______.

(5)小明在探究实验结束后,汇总了同学们的实验结论,总结得出了影响盐水导电性能的各种因素.他在向全班同学汇报时,又说了这样的话:“影响液体导体和金属导体的电阻大小因素都差不多,这又如何解释呢?”

此题也体现了实验的探究过程的一般规律.此题中比较突出的是各种实验方法的运用,有控制变量法、转换法、类比法.在猜想与假设阶段,可将盐水导电性能与金属导电性能类比,金属导体电阻与材料、长度、横截面积、温度等有关,同样,可猜测两金属板间盐水电阻大小与板间距离、板的面积、盐水的浓度、盐水的温度等有关.用类比法帮助进行猜想,可以减少猜想的盲目性,更快捷、更准确地进行假设.电路中没有测电阻的仪器,如何反映出电阻大小的呢?采用转换法,当电压不变时,用电流大小来间接反映电阻大小.在实验过程中,影响电阻的因素有多个,就应采用控制变量法.并且要会通过分析实验数据得出结论.

分析与解答(1)①金属板间距离;②金属板面积;③盐水浓度;④盐水温度.

(2)①电流表示数大小,电流越大,电阻越小;电流越小,电阻越大.②采用控制变量法.③刻度尺、食盐、玻璃棒、一套加热装置、温度计.

(3)装配好图中的实验装置,闭合开关读出电流I1,加大两金属板间的距离,再读出电流I2,比较I1、I2的大小.若I1=I2,则金属板间盐水电阻与两金属板间的距离无关;若I1≠I2,则金属板间盐水电阻与两金属板间的距离有关.

欧姆定律的实质第2篇

关键词:欧姆定律;适用范围;微观机理;导电材料;能量转化

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

[1]普通高中课程标准实验教科书物理选修3-1[M].北京:人民教育出版社,2010.

欧姆定律的实质第3篇

关键词:欧姆定律;教学思考;教学研究

一、在欧姆定律教学过程当中,学生经常会遇到的问题

物理学科作为一门科学类学科,其教学内容通常比较枯燥,部分学生表示学习比较费劲,如何能让学生彻底明白和消化欧姆定律,是教师需要考虑的问题。教师可制订相关学习计划,针对不同层次的学生制订适合的学习计划。教学中的重点:电流、电压、电阻等相关知识点,一定要重点讲解以便学生掌握,将理论知识与动手实践结合起来,让学生在实践中加强对实验中的仪器和知识点的把握。

二、让学生明白欧姆定律的主要内容即电流、电压、电阻三者之间的关系

欧姆定律作为初中物理电学的基础,在初中教学之中只涉及部分电路,只有充分掌握了欧姆定律才能进一步学习电学部分的相关理论分析和计算。欧姆定律即阐述电流、电压、电阻三者之间相互关联的关系,教师在实验当中引导学生自己推算出电压、电阻、电流三者之间的关系,从而引出欧姆定律,让学生的记忆更加清楚。演示实验完成后要让学生自己动手,加深理解。

掌握基础定律知识后,教师则应当引导学生分析三者之间变化的问题,即电流是随着电阻与电压的变化而改变。在欧姆定律例题分析中比较常见的问题是多个变量的问题分析,教师要引导学生分析,运用一不变二变的方法来进行问题分析。由于初中学生的理解水平有限,且电压、电流、电阻的概念比较抽象,教师可借助多媒体教学工具,利用相关教学短片帮助学生理解。将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”,并且引导学生明白电阻是导体自身的特有属性,电阻的大小是受到温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,电阻不会随着电流或者电压的大小改变而改变,只是运用电压和通过的电流比例数值表达起来比较方便。

很多学生在学习欧姆定律之后,错误地以为电阻是受电流与电压影响的。相关教师一定要及时纠正学生的错误理解,教师在做演示实验时,需要让学生明白研究方法。运用控制变量法来研究,如电阻不变,研究电流与电压之间的数量关系;电压不变,来分析电阻与电流之间的量变关系,并且要直接将实验方法演示给学生看,从而加深学生的理解。

三、让学生一带一,提高学生掌握程度

不同的学生对欧姆定律的掌握程度不尽相同,教师可将成绩优秀的学生与成绩较差的学生进行分组,形成学习氛围较好的学习小组。采取团体合作的方式来帮助学生学习,有些学生面对老师和面对同学学习效果也不同。学生相互之间的沟通比较方便,理解能力也大体相同,进步速度也相对较快,教师从一旁进行指导。让学生在掌握了基础的相关知识以后,教师再进行分析,让学生充分掌握后再进行巩固提高,能提高举一反三采取多方面思维的能力。学生之间相互讨论,也能形成良性的竞争式学习,另外树立学习的榜样,也能从心理上鼓励学生主动学习,帮助学生产生学习兴趣和学习积极性。并且让学生不定期进行交换学习,以促进学生的整体学习水平。这样既能促进学生相互之间学习进步,又能培养学生团结合作的精神。

总之,欧姆定律作为电学的基础,学生必须真正掌握该定律,教师在实际教学过程当中,应该对物理教学内容进行细化和具体化,让不同层次的学生群体都能充分掌握。此外,还要引导学生在思维方面和动手实践方面进行改进,并且从中归纳出一些行之有效的教学方法,从而让学生更好地掌握欧姆定律的基础理论,为以后的学习做好铺垫,提高相关教学任务的质量,在实际教学过程当中,注重培养学生的动手实践能力、案例分析和其他方面解决问题的能力,让学生能够掌握控制变量法。同时要培养学生积极探索事物本质的科学精神,切实提高学生的物理综合素质。

参考文献:

[1]宣小东.对现行教材中欧姆定律教学设计的一些思考[J].物理教学探讨,2005(3).

[2]许忠林.初中物理欧姆定律教学中常见的问题及对策研究[J].成才之路,2015(9).

[3]符东生.关于初中“欧姆定律”教学的思考[J].物理教学,2014(8).

[4]王存香.《欧姆定律》教学思考[J].数理化解题研究,2014(5).

欧姆定律的实质第4篇

关键词:初中;物理;欧姆定律;教学问题

中图分类号:G633.7 文献标志码:A 文章编号:1008-3561(2015)09-0056-01

一、在实验探究中让学生学习欧姆定律

欧姆定律是电学重要内容之一,也是中考重点考查内容,所以能否教好欧姆定律关系到之后对中考的重点知识复习,更有可能影响学生对于物理学的热情。在实验探究的过程之中以学生为主,教师起引导作用,让学生通过观察电压表、电流表、滑动变阻器的微量变化发现问题、提出问题,他们对于自己发现的问题会比老师直接教导的印象深刻,从而达到了教学目的。

二、在欧姆定律的学习中最经常遇到的问题

在实际的教学之中,教师要把电路的认识与画电路图、连接电路作为主要的教学任务,开阔学生的思维,加强对电路的认识。物理是一门比较枯燥的课程,只有激发学生的热情,才能更好地完成授课。电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,这部分则比较重要,需要重点讲解。电流、电压、电阻的概念是基本的电学测量仪器,明确这些仪器的使用与操作,是非常重要的,关系到后期实验的正确性与对知识的理解。以上基础知识的理解与运用又是进一步学习欧姆定律的基础。

三、欧姆定律的主要内容是电流、电压、电阻的关系

这部分知识是在实验的基础上概括、归纳出了电路中电压、电流、电阻三者相互关联的关系。教师在实验中要让学生理解电流随电压和电阻的变化而变化,对于多个变量问题的研究是采用固定一个量不变,研究其余两个量的变化的处理方法,从而让学生学会物理学中常用这种方法。欧姆定律在初中只讲部分电路的欧姆定律,是电学中的基本定律,是进一步学习电学知识分析和进行电路计算的基础,是初中电学的重点知识。

欧姆定律是初中物理学电学的重点、也是难点,想要研究欧姆定律必须要建立电流、电压、电阻的关系,并在实验的基础上得出欧姆定律,做好演示实验,归纳、分析、概括实验结果,使学生正确理解欧姆定律的基础。所以,使用电流表、电压表、滑动变阻器是这部分知识中的重点实验的基础。

电流、电压、电阻的概念是学生学习的难点,由于初中学生水平有限,对电流、电压的概念要求较低,并没有下准确的定义。因此,电阻的概念就成了学生理解的难点。教师要多举例子帮助学生理解电阻是导体本身的属性,决定于导体的材料、长度、横截面和温度,它用两端的电压和通过的电流的比值来表示是为了测量的方便,与外加电压、电流无关。同时,教师一定要纠正一些学生经常出现的电阻随电压、电流的变化而变化的错误概念,也就是对欧姆定律的错误理解。欧姆定律在学生头脑的建立过程是十分重要的,认真做好演示实验,用实验来探索一个量随两个量变化的定量关系是第一次。首先要向学生交代清楚实验的研究方法,本实验彩用控制变量法来研究,即“固定电阻不变,研究电流跟电压的关系;固定电压不变,研究电流跟电阻的关系”。在连接如图(图略)所示的实验电路时,要将具体接法演示给学生看。可以先从电源正极开始,按电流方向依次为电池、开关S、滑动变阻器R′、定值电阻R、电流表串联起来组成一个闭合回路,最后将电压表并联在定值电阻R两端。同时提醒学生注意电流必须从电流表和电压表的正接线柱流进电表,负接线柱流出电表及量程选择,电流表与R串联,其示数等于通过R的电流。电压表与R并联其数等于R两端的电压。

运用欧姆定律可以推导串联电路中的总电阻跟各串联电阻之间的关系及电压分配跟导体电阻的关系,具体推导如下:

在串联电路中:I=I1=I2;U=U1+U2;由欧姆定律公式I=U/R,可得U=IR;U1=I1R1;U2=I2R2将这些式子代入上式得:IR=I1R1+I2R2即R=R1+R2;也就是说串联电路的总电阻等于各串联导体的电阻之和。

在串联电路中:I=I1=I2;由欧姆定律公式I=U/R,可得:I1=U1/R1;I2=U2/R2;将这些式子代入上式得:U1/R2=U2/R2 变换一下形式得:U1/U2=R1/R2;即串联电路中,电压分配跟导体电阻成正比。

四、结束语

通过对物理教学内容的分析、思维方法、能力训练的具体研究,对教学内容进行归纳总结,可以使初中物理教师掌握欧姆定律的基本理论方法,更好地驾驶物理教材,提高物理教学质量,把重点真正落实在教学过程中,帮助学生提高实验操作能力、归纳概括能力、演绎推理能力、逻辑推理能力、抽象思维能力及灵活运用知识解决问题的能力,让学生学会控制变量法研究多个变量的问题,学会用等效法分析复杂电路。因此,教师要注重培养学生实事求是的科学态度,从而有效培养学生的物理素质。

参考文献:

欧姆定律的实质第5篇

关键词:初中物理;欧姆定律;应用

在电学的定律当中,欧姆定律是非常关键的一项,它贯穿于整个电学的始终。深入、系统和全面地理解欧姆定律是有效解决牵涉电学问题的基础和前提条件,针对欧姆定律的教学,教师需要做好如下的两个方面:

一、引导学生注重三个物理量之间的关系

“导体当中的电流,跟导体两端的电压成正比,跟导体的电阻成反比”,这就是欧姆定律。在此,教师应当引导学生注重三个物理量之间的关系。(1)欧姆定律强调电压与电阻决定了导体当中的电流,而不是由电源提供的电压,这跟电阻和电流是毫无关系的,电阻属于导体自身的性质,这跟电压和电流也是毫无关系的,因此是电压与电阻一起决定了电流。(2)注重计算关系。在公式:I= 当中,只要确定了任意的两个物理量,就可以对另外的一个物理量进行计算,这就需要引导学生熟练地掌握公式的变化。(3)注重这三个物理量一定要根据同一段的导体,比如,将R1与R2进行串联,接在30 V的电源上面,R1是10欧姆,经过R1的电流是0.2安,问R2的电阻与R2两端的电压是多少。教师在指导学生练习或者是讲解的时候,需要将电路图画出来,注明相应的物理量,突出需要注意的问题,以实现理想的教学效果。

二、拓展和应用欧姆定律

教师在讲解欧姆定律的时候,需要引导学生注重知识的应用和拓展。通过并、串联电路的电压和电流规律,对电阻规律进行推导,可以概括并联电路的规律是:(1)电流I=I1+I2;(2)电压U=U1=U2;(3)电阻 。可以概括串联电路的规律是:(1)电流I=I1=I2;(2)电压U=U1+U2;(3)电阻R=R1+R2,再应用电阻规律对一些实际问题进行解决。比如,教师在教学的过程中,可以提问学生下面的一些问题:为什么调节台灯的亮度按钮,灯泡能够变亮或者是变暗?为什么手电筒当中的电池使用时间长了之后,灯泡会变暗?这两个问题的原理是一样的吗?这样,学生就能够积极主动地探讨,纷纷发表自己的看法,课堂氛围顿时活跃起来。学生通过应用欧姆定律,对实际生活当中一些不好理解的问题进行了解释,从而调动了学生的学习兴趣。

总之,在初中物理教学当中,欧姆定律是非常重要的。教师一定要引起高度的重视,实施有效的教学策略,教授学生关于欧姆定律的知识。

参考文献:

欧姆定律的实质第6篇

欧姆定律是指,在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。该定律是由德国物理学家欧姆在1826年4月发表的《金属导电定律的测定》论文提出的。

随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆。

麦克斯韦诠释欧姆定律为,处于某状态的导电体,其电动势与产生的电流成正比。因此,电动势与电流的比例,即电阻,不会随着电流而改变。在这里,电动势就是导电体两端的电压。因为物质的电阻率通常相依于温度。根据焦耳定律,导电体的焦耳加热与电流有关,当传导电流于电体时,导电体的温度会改变。电阻对于温度的相依性,使得在典型实验里,电阻相依于电流,从而很不容易直接核对这形式的欧姆定律。

(来源:文章屋网 )

欧姆定律的实质第7篇

一、欧姆定律发现历程溯源

2.相同之处

欧姆定律适用于线性元件,如金属等,不适用于非线性元件,如气态导体等。

三、三点质疑

1.线性元件存在吗

材料的电阻率ρ会随其他因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

2.对所有非线性元件欧姆定律都不适合吗

在上述所有表述中都有欧姆定律适用于金属导体之说,又有欧姆定律适用的元件是线性元件之说,也就是说金属是线性材料,而我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,为了避免这种自相矛盾,许多资料上又说欧姆定律的应用有“同时性”,或者说“欧姆定律不适用于非线性元件,但对于各状态下是适合的”,笔者总觉得这样的解释难以让学生接受,有牵强之意,给教师的教造成难度,既然各个状态下都是适合的,那就是整个过程适合呀。

3.对欧姆定律适合的元件I与R一定成反比吗

I与R成反比必须有“导体两端的电压U相同”这一前提,在这一前提条件下改变导体的电阻R,那么通过导体的电流就会发生变化,因而导体的工作点就发生了变化,其制作材料的电阻率 ρ就随之变化,因此导致电阻又会发生进一步的变化,这样又会导致电流产生进一步的变化,所以实践中多数情况下I与R就不会成严格的反比关系,甚至相差很大。

四、两条教学对策

1.欧姆定律的表述需要改进

其实早就有一些老师对欧姆定律的表述进行过深入的分析,并结合他们自身长期的教学经验,已经提出了欧姆定律的表述的后半部分“I与R成反比”是多余的,应该删除,笔者也赞成这种做法,因为这种说法本身就是不准确的,这也是在上述三种大学普通物理教材中都没有出现这个说法的原因。

通过对欧姆定律发现历程的溯源,可知欧姆当时发现这一电路定律时也没有提出“反比”这一函数关系,只是定量地给出了一个等式,因此,笔者认为欧姆定律的现代表述有必要改进,既要传承欧姆当时的公式,也要符合实际情况,所以笔者认为欧姆定律应该表述为:通过导体的电流强度等于导体两端的电压与导体此时的电阻之比。

那么,为什么连“I与U成正比”也省去呢?当R一定时,I与U成正比是显然的,但如果在欧姆定律的表述中一旦出现“I与U成正比”的说法,学生就会很自然地想到“I与R成反比”,而这种说法是不对的,所以表述中最好不要出现“I与U成正比”和“I与R成反比”这两种说法。

2.线性还是非线性元件的区分不能以材料种类为判断标准

同样是金属材料,钨丝的伏安特性是非线性的,而一些合金材料导体的伏安特性却是非常接近理论线性,如标准电阻。所以我们在区分线性元件还是非线性元件时,不能以导体的材料种类作为判断的标准,而只能通过实验测定,得到I-U图象,以此来作为判断依据。